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S∗(Y )× S∗(X)

βY,X / /// S∗(X × Y )

commutes, where on spaces T (x, y) = (y, x), and on chain complexes T (a, b) = (−1)pq(b, a) when a
has degree p and b has degree q.

We will see that these properties hold up to chain homotopy for any choice of chain-level cross
product.

8 Relative homology

An ultimate goal of algebraic topology is to find means to compute the set of homotopy classes
of maps from one space to another. This is important because many geometrical problems can be
rephrased as such a computation. It’s a lot more modest than wanting to characterize, somehow,
all continuous maps from X to Y ; but the very fact that it still contains a great deal of interesting
information means that it is still a very challenging problem.

Homology is in a certain sense the best “additive” approximation to this problem; and its ad-
ditivity makes it much more computable. To justify this, we want to describe the sense in which
homology is “additive.” Here are two related aspects of this claim.

1. If A ⊆ X is a subspace, then H∗(X) a combination of H∗(A) and H∗(X −A).

2. The homology H∗(A ∪B) is like H∗(A) +H∗(B)−H∗(A ∩B).

The first hope is captured by the long exact sequence of a pair, the second by the Mayer-Vietoris
Theorem. Both facts show that homology behaves like a measure. The precise statement of both
facts uses the machinery of exact sequences. I’ll use the following language.

Definition 8.1. A sequence of abelian groups is a diagram of abelian groups of the form

· · · → Cn+1
fn−→ Cn

fn−1−−−→ Cn−1 → · · · ,

in which all composites are zero; that is, im fn ⊆ ker fn−1 for all n. It is exact at Cn provided that
this inequality is an equality.
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A sequence is just another name for a chain complex; it is exact at Cn if and only if Hn(C∗) = 0. 
So homology measures the failure of exactness.

Example 8.2. Sequences may be zero for n large or for n small. We may just not write them down
if all the groups from some point on are zero. For example, 0 → A i→ B is exact iff i is injective, 
and B p→ C → 0 is exact iff p is surjective.

Exactness was a key concept in the development of algebraic topology, and “exact” is a great word 
for the concept. A foundational treatment [5] of algebraic topology was published by Sammy 
Eilenberg and Norman Steenrod in 1952. The story goes that in the galleys for the book they left 
a blank space whenever the word representing this concept was used, and filled it in at the last 
minute.

Definition 8.3. A short exact sequence is an exact sequence of the form

0→ A
i−→ B

p−→ C → 0 .

Any sequence of the form A→ B → C expands to a diagram

ker(p)

""
A

OO

i // B
p //

##

C

coker(i)

OO

It is exact at B if and only if A
∼=−→ ker p or, equivalently, coker(i)

∼=−→ C. It is short exact if
furthermore i is injective and p is surjective.

We will study the homology of a space X by comparing it to the homology of a subspace A and
a complement or quotient modulo the subspace. Note that S∗(A) injects into S∗(X). This suggests
considering the quotient group

Sn(X)

Sn(A)
.

This is the group of relative n-chains of the pair (X,A).
Let’s formalize this a bit. Along with the category Top of spaces, we have the category Top2 of

pairs of spaces. An object of Top2 is a space X together with a subspace A. A map (X,A)→ (Y,B)
is a continuous map X → Y that sends A into B.

There are four obvious functors relating Top and Top2:

X 7→ (X,∅) , X 7→ (X,X) ,

(X,A) 7→ X , (X,A) 7→ A .

Do the relative chains form themselves into a chain complex?

Lemma 8.4. Let A∗ be a subcomplex of the chain complex B∗. There is a unique structure of chain
complex on the quotient graded abelian group C∗ with entries Cn = Bn/An such that B∗ → C∗ is a
chain map.
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Proof. To define d : Cn → Cn−1, represent c ∈ Cn by b ∈ Bn, and hope that [db] ∈ Bn−1/An−1 is
well defined. If we replace b by b+ a for a ∈ An, we find

d(b+ a) = db+ da ≡ db mod An−1 ,

so our hope is justified. Then d2[b] = [d2b] = 0.

Definition 8.5. The relative singular chain complex of the pair (X,A) is

S∗(X,A) =
S∗(X)

S∗(A)
.

This is a functor from pairs of spaces to chain complexes. Of course

S∗(X,∅) = S∗(X) , S∗(X,X) = 0 .

Definition 8.6. The relative singular homology of the pair (X,A) is the homology of the relative
singular chain complex:

Hn(X,A) = Hn(S∗(X,A)) .

One of the nice features of the absolute chain group Sn(X) is that it is free as an abelian group.
This is also the case for its quotent Sn(X,A), since the map Sn(A) → Sn(X) takes basis elements
to basis elements. Sn(X,A) is freely generated by the n-simplices in X that do not lie entirely in
A.

Example 8.7. Consider ∆n, relative to its boundary

∂∆n :=
⋃

im di ∼= Sn−1 .

We have the identity map ιn : ∆n → ∆n, the universal n-simplex, in Sinn(∆n) ⊆ Sn(∆n). It is not
a cycle; its boundary dιn ∈ Sn−1(∆n) is the alternating sum of the faces of the n-simplex. Each
of these singular simplices lies in ∂∆n, so dιn ∈ Sn−1(∂∆n), and [ιn] ∈ Sn(∆n, ∂∆n) is a relative
cycle. We will see that the relative homology Hn(∆n, ∂∆n) is infinite cyclic, with generator [ιn].

9 The homology long exact sequence

A pair of spaces (X,A) gives rise to a short exact sequence of chain complexes:

0→ S∗(A)→ S∗(X)→ S∗(X,A)→ 0 .

In homology, this will relate H∗(A), H∗(X), and H∗(X,A).
To investigate what happens, let’s suppse we have a general short exact sequence of chain

complexes,
0→ A∗ → B∗ → C∗ → 0 ,

and study what happens in homology. Clearly the composite H∗(A)→ H∗(B)→ H∗(C) is trivial.
Is this sequence exact? Let [b] ∈ Hn(B) such that g([b]) = 0. It’s determined by some b ∈ Bn
such that d(b) = 0. If g([b]) = 0, then there is some c ∈ Cn+1 such that dc = gb. Now, g is
surjective, so there is some b ∈ Bn+1 such that g(b) = c. Then we can consider db ∈ Bn, and
g(d(b)) = d(c) ∈ Cn. What is b − db? This maps to zero in Cn, so by exactness there is some
a ∈ An such that f(a) = b − db. Is a a cycle? Well, f(da) = d(fa) = d(b − db) = db − d2b = db,
but we assumed that db = 0, so f(da) = 0. This means that da is zero because f is an injection by

yunpeng
Rectangle



Bibliography

[1] M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math.
Soc. 13 (1962) 293–297.

[2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.

[3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.

[4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its
derived functors, Comment. Math. Helv. 40 (1965) 199–236.

[5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press,
1952.

[6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294–329.

[8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337–341.

[9] J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group,
Ann. Math. 59 (1954) 549–557.

[10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56–69.

109



MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Contents
	Singular homology
	Introduction: singular simplices and chains
	Homology
	Categories, functors, natural transformations
	Categorical language
	Homotopy, star-shaped regions
	Homotopy invariance of homology
	Homology cross product
	Relative homology
	The homology long exact sequence
	Excision and applications
	The Eilenberg Steenrod axioms and the locality principle
	Subdivision
	Proof of the Locality Principle

	Computational methods
	CW-complexes
	CW-complexes II
	Homology of CW-complexes
	Real projective space
	Euler characteristic and homology approximation
	Coefficients
	Tensor product
	Tensor and Tor
	The fundamental theorem of homological algebra
	Hom and Lim
	Universal coefficient theorem
	Künneth and Eilenberg-Zilber

	Cohomology and duality
	Coproducts, cohomology
	Ext and UCT
	Products in cohomology
	Cup product, continued
	Surfaces and nondegenerate symmetric bilinear forms
	Local coefficients and orientations
	Proof of the orientation theorem
	A plethora of products
	Cap product and ``Cech'' cohomology
	Cech cohomology as a cohomology theory
	The fully relative cap product
	Poincaré duality
	Applications

	Bibliography



