
Chapter 1

Basic homotopy theory

1 Limits, colimits, and adjunctions

Limits and colimits

I want to begin by developing a little more category theory. I still refer to the classic text Categories
for the Working Mathematician by Saunders Mac Lane [20] for this material.

Definition 1.1. Suppose I is a small category (so that it has a set of objects), and let C be another
category. Let X : I → C be a functor. A cone under X is a natural transformation e from X to a
constant functor; to be explicit, this means that for every object i of I we have a map ei : Xi → Y ,
and these maps are compatible in the sense that for every f : i → j in I the following diagram
commutes:

Xi

f∗
��

ei // Y

=

��
Xj

ej // Y

A colimit of X is an initial cone (L, ti) under X; to be explicit, this means that for any cone (Y, ei)
under X, there exists a unique map h : L→ Y such that h ◦ ti = ei for all i.

Any two colimits are isomorphic by a unique isomorphism compatible with the structure maps;
but existence is another matter. Also, as always for category theoretic concepts, some examples are
in order.

Example 1.2. If I is a discrete category (that is, the only maps are identity maps; I is entirely
determined by its set of objects), the colimit of a functor I → C is the coproduct in C (if this
coproduct exists!).

Example 1.3. In Lecture 23 we discussed directed posets and the direct limit of a directed system
X : I → C. The colimit simply generalizes this to arbitrary indexing categories rather than
restricting to directed partially ordered sets.

Example 1.4. Let G be a group; we can view this as a category with one object, where the
morphisms are the elements of the group and composition is given by the group structure. If
C = Top is the category of topological spaces, a functor G → C is simply a group action on a
topological space X. The colimit of this functor is the orbit space of the G-action on X (together
with the projection map to the orbit space).
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Similarly, a functor from G into vector spaces over a field k is a representation of G on a vector
space. Question for you: What is the colimit in this case?

Example 1.5. Let I be the category whose objects and non-identity morphisms are described by
the following directed graph:

b← a→ c .

The colimit of a diagram I → C is called a pushout. With C = Top, again, a functor I → C is
determined by a diagram of spaces:

A
f←− B g−→ C .

The colimit of such a functor is just the pushout B ∪A C := B t C/ ∼, where f(a) ∼ g(a) for all
a ∈ A. We have already seen this in action before: a special case of this construction appears in
the process of attaching cells to build up a CW-complex.

If C is the category of groups, instead, the colimit of such a functor is the free product quotiented
out by a certain relation; this is called the amalgamated free product.

Example 1.6. Suppose I is the category with two objects and two parallel morphisms:

a b .

The colimit of a diagram I → C is called the coequalizer of the diagram. If C = Top, the coequalizer
of f, g : A⇒ B is the quotient of B by the equivalence relation generated by f(a) ∼ g(a) for a ∈ A.

One can also consider cones over a diagram X : I → C: this is simply a cone in the opposite
category.

Definition 1.7. The limit of a diagram X : I → C is a terminal object in cones over X.

Exercise 1.8. Revisit the examples provided above: what is the limit of each diagram? For
instance, a product is a limit over a discrete category, and the limit of a group action is just the
fixed points. A diagram indexed by the category b → a ← c is a diagram B

f−→ A
g←− C, and its

limit is the “pullback,” denoted B ×A C. In Set, or Top,

B ×A C = {(b, c) ∈ B × C : f(b) = g(c) ∈ A} .

Definition 1.9. A category C is cocomplete if all functors from small categories to C have colimits.
Similarly, C is complete if all functors from small categories to C have limits.

All the large categories we typically deal with are both cocomplete and complete; in particular
both Set and Top are, as well as algebraic categories like Gp and R−Mod.

Adjoint functors

The notion of a colimit as a special case of the more general concept of an adjoint functor, as long
as we are dealing with a cocomplete category.

Let’s write CI for the category of functors from I to C, and natural transformations between
them. There is a functor c : C → CI , given by sending any object to the constant functor taking
on that value. The process of taking the colimit of a diagram supplies us with a functor colimI :
CI → C. (To be precise, we pick a specific colimit for each diagram, and then observe that a natural
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transformation of diagrams canonically defines a morphism between the corresponding colimits; and
that these morphisms compose correctly.) We can characterize this functor via the formula

C(colim
i∈I

Xi, Y ) = CI(X, cY ) ,

where X is any functor from I to C, Y is any object of C, and cY denotes the constant functor with
value Y . This formula is reminiscent of the adjunction operation in linear algebra, and is in fact
our first example of a category-theoretic adjunction.

Definition 1.10. Let C,D be categories, and suppose given functors F : C → D and G : D → C.
An adjunction between F and G is an isomorphism

D(FX, Y ) = C(X,GY )

that is natural in X and Y . In this situation, we say that F is a left adjoint of G and G is a right
adjoint of F .

This notion was invented by the late MIT Professor Dan Kan, in 1958.
We’ve already seen one example of adjoint functors. Here is another one.

Example 1.11 (Free groups). There is a forgetful functor u : Grp → Set. Any set X gives rise
to a group FX, the free group on X. It is determined by a universal property: For any group Γ,
set maps X → uΓ are the same as group homomorphisms FX → Γ. This is exactly saying that the
free group functor the left adjoint to the forgetful functor u.

In general, “free objects” come from left adjoints of forgetful functors.
As a general notational practice, try to write the left adjoint as the top arrow:

F : C � D : G or G : D � C : F .

These examples suggest that if a functor F has a right adjoint then any two right adjoints are
canonically isomorphic. This is true and easily checked. We’ll always speak of the right adjoint, or
the left adjoint.

Lemma 1.12. Suppose that

C
F
�
G
D

F ′

�
G′
E

is a composable pair of adjoint functors. Then F ′F,GG′ form an adjoint pair.

Proof. Compute:
E(F ′FX,Z) = D(FX,G′Y ) = C(X,GG′Y ) .

Proposition 1.13. Let F : C → D be a functor. If F admits a right adjoint then it preserves
colimits, in the sense that if X : I → C is a diagram in C with colimit cone X → cL, then
F ◦X → F (cL) is a colimit cone in D. Dually, if F admits a left adjoint then it preserves limits.

Proof. This follows from the lemma. The adjoint pair F : C � D : G induces an adjoint pair

F : CI � DI : G .
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Clearly cGY = GcY ; this is an equality of right adjoints, so the corresponding left adjoints must be
equal:

CI
F //

colim
��

DI
G
oo

colim
��

C

c

OO

F // D
G

oo

c

OO

That is to say, colimFX = F colimX.

For example, the free group on a disjoint union of sets is the free product of the two groups
(which is the coproduct in the category of groups). The dual statement says, for example, that the
product (in the category of groups) of groups is a group structure on the product of their underlying
sets.

The Yoneda lemma

An important and rather Wittgensteinian principle in category theory is that an object is determined
by the collection of all maps out of it. The Yoneda lemma is a way of making this precise. Observe
that for any X ∈ C the association Y 7→ C(X,Y ) gives us a functor C → Set. This functor is said to
be corepresented by X. Suppose that G : C → Set is any functor. An element x ∈ G(X) determines
a natural transformation

θx : C(X,−)→ G

in the following way. Let Y ∈ C and f : X → Y , and define

θx(f) = f∗(x) ∈ G(Y ) .

Lemma 1.14 (Yoneda lemma). The association x 7→ θx provides a bijection

G(X)
∼=−→ nt(C(X,−), G).

Proof. The inverse sends a natural transformation θ : C(X,−)→ G to θX(1X) ∈ G(X).

In particular, if G is also corepresentable – G = C(Y,−), say – then

nt(C(X,−), C(Y,−)) ∼= C(Y,X) .

That is, each natural transformation C(X,−) → C(Y,−) is induced by a unique map Y → X.
Consequently any natural isomorphism C(X,−)

∼=−→ C(Y,−) is induced by a unique isomorphism
Y
∼=−→ X.

2 Cartesian closure and compactly generated spaces

The category of topological spaces has a lot to recommend it, but it does not accommodate construc-
tions from algebraic topology gracefully. For example, the product of two CW complexes may fail
to have a CW structure. (This is a classic example due to Clifford Dowker, 1952, nicely explained
in [12, Appendix]. The CW complexes involved are one-dimensional!) This is closely related to the
observation that if X → Y is a quotient map, the induced map W ×X →W × Y may fail to be a
quotient map.
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It turns out that these problems can be avoided by working in a carefully designed subcategory
of Top, the category kTop of “compactly generated spaces.” The key idea is that the unwanted
behavior of Top is related to the fact that there isn’t a well-behaved topology on the set of continuous
maps between two spaces. The compact-open topology is available to us – and we’ll recall it later.
But it suffers from some defects. To clarify how a mapping object should behave in an ideal world,
I want to make another category-theoretical digression. Again, Mac Lane’s book [20] is a good
reference.

Cartesian closure

How should function objects behave? In the category Set, for example, the set of maps from X to
Y can be characterized by the natural bijection

Set(W ×X,Y ) = Set(W,Set(X,Y ))

under which f : W × X → Y corresponds to w 7→ (x 7→ f(w, x)) and g : W → Set(X,Y )
corresponds to (w, x) 7→ g(w)(x). This suggests the following definition.

Definition 2.1. Let C be a category with finite products. It is Cartesian closed if for any object
X in C, the functor −×X has a right adjoint.

We’ll write the right adjoint to −×X using exponential notation,

Y 7→ Y X ,

so that there is a bijection natural in the pair (W,Y ):

C(W ×X,Y ) = C(W,Y X) .

In a Cartesian closed category, Y X serves as a “mapping object” from X to Y . Let me convince
you that this is reasonable. Take Y = W ×X: the identity map on W ×X then corresponds to a
map

ηW : W → (W ×X)X .

Take W = Y X : the identity map Y X → Y X corresponds to a map

εY : Y X ×X → Y .

These maps are natural transformations. In the example of Set, the first is given by

w 7→ (x 7→ (w, x)) , inclusion of a slice ,

and the second is given by
(f, x) 7→ f(x) , evaluation .

Here are some direct consequences of Cartesian closure. Note: the assumption that finite prod-
ucts exist in C includes the case in which the indexing set is empty, in which case the universal
property of the product characterizes the terminal object of C, which thus exist in a Cartesian
closed category. We’ll denote it by ∗. You might call C(∗, X) the “set of points” in X.
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Proposition 2.2. Let C be Cartesian closed.
(1) (X,Z) 7→ ZX extends canonically to a functor Cop × C → C, and the bijection C(X × Y, Z) =
C(Y, ZX) is natural in all three variables.
(2) C(X,Z) = C(∗, ZX).
(3) X×− preserves colimits: If Y : I → C has a colimit, then the natural map X×Y → X×colimY
is a colimit cone.
(4) −X preserves limits: if Z : I → C has a limit, then the natural map (limZ)X → (ZX) is a limit
cone.

Many otherwise well-behaved categories are not Cartesian-closed. A category is pointed if it has
an initial object ∅ and a final object ∗, and the unique map ∅ → ∗ is an isomorphism. There are
many pointed categories! – abelian groups Ab and groups Gp, for example. By (2), the only way
a pointed category can be Cartesian closed is if there is exactly one map between any two objects.

k-spaces

The category Top is not Cartesian closed. We can see this using the observation (for which see for
example MIT professor emeritus Jim Munkres’s Topology [30]) that if X → Y is a quotient map,
the induced map W ×X → W × Y may fail to be a quotient map. We can characterize quotient
maps in Top categorically using the following definition.

Definition 2.3. An effective epimorphism in a category C is a map X → Y in C such that the
pullbackX×Y X exists and the mapX → Y is the coequalizer of the two projection mapsX×Y X →
X.

Lemma 2.4. A map in Top is a quotient map if and only if it is an effective epimorphism.

So item 3 of Proposition 2.2 shows that, sadly, Top is not Cartesian closed.
On the other hand, Henry Whitehead showed that crossing with a locally compact Hausdorff

space does preserve quotient maps. This will often suffice, but often not: for example CW complexes
may fail to be locally compact. And the convenience of working in a Cartesian closed category is
compelling.

Inspired by Whitehead’s theorem, we agree to accept only properties of a space that can be
observed by mapping compact Hausdorff spaces into it.

Definition 2.5. Let X be a space. A subspace F ⊆ X is said to be compactly closed, or k-closed,
if for any map k : K → X from a compact Hausdorff space K the preimage k−1(F ) ⊆ K is closed.

It is clear that any closed subset is compactly closed, but there might be compactly closed sets
that are not closed in the topology on X. This motivates the definition of a k-space:

Definition 2.6. A topological space X is compactly generated or is a k-space if every compactly
closed set is closed.

The k comes from the German “kompact,” though it might have referred to the general topologist
John Kelley, who explored this condition.

A more categorical characterization of this property is: X is compactly generated if and only if a
map X → Y is continuous precisely when for every compact Hausdorff space K and map k : K → X
the composite K → X → Y is continuous. For instance, compact Hausdorff spaces are k-spaces.
First countable spaces (so for example metric spaces) and CW-complexes are also k-spaces.
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While not all topological spaces are k-spaces, any space can be “k-ified.” The procedure is
simple: endow the underlying set of a space X with an new topology, one for which the closed sets
are precisely the sets that are compactly closed with respect to the original topology. You should
check that this is indeed a topology on X. The resulting topological space is denoted kX. This
construction immediately implies that the identity kX → X is continuous, and is the terminal map
to X from a k-space.

Let kTop be the category of k-spaces, as a full subcategory of Top. We will write j : kTop→
Top for the inclusion functor. The process of k-ification gives a functor k : Top→ kTop with the
property that

kTop(X, kY ) = Top(jX, Y ) .

This is another example of an adjunction! In this case the unit η : X → kjX is a homeomorphism.
We can conclude from this that limits in kTop may be computed by k-ifying limits in Top: For

any functor X : I → kTop,

lim kTopX
∼=−→ lim kTopkjX

∼=←− k lim TopjX .

The second map is an isomorphism because k is a right adjoint. In particular, the product in kTop
is formed by k-ifying the product in Top. Similarly, colimit (in kTop) of any diagram of k-spaces
can be computed by k-ifying the colimit in Top:

colimkTopX
∼=−→ kj colimkTopX

∼=←− k colimTop jX .

The second map is an isomorphism because j is a left adjoint.
The category kTop has good categorical properties inherited from Top: it is a complete and

cocomplete category. In fact it has even better categorical properties than Top does:

Proposition 2.7. The category kTop is Cartesian closed.

Proof. See [39, 10].

I owe you a description of the mapping object Y X . It consists of the set of continuous maps
from X to Y endowed with a certain topology. For general topological spaces X and Y , the set
Top(X,Y ) can be given the “compact-open topology”: a basis for open sets for the compact-open
topology is given by

V (F,U) = {f : X → Y : f(F ) ⊆ U}

where F runs over compact subsets of X and U runs over open subsets of Y . This space is not
generally compactly generated, however, and does not serve as a right adjoint to the product.

If X and Y are k-spaces, it’s natural to make a slight modification: To start with, replace the
compact subsets F in this definition by “k-compact” subsets, that is, subsets that are compact from
the perspective of compact Hausdorff spaces: A subset F ⊆ X is k-compact if there exists a compact
Hausdorff space K and a map k : K → X such that k(K) = F . This is to overcome the sad fact
that there are compact spaces that do not accept surjections from compact Hausdorff spaces.

The sets V (F,U) where F runs over k-compact subsets of X and U runs over open subsets of
Y form the basis of a new topology on Top(X,Y ). Even if we assume that X and Y are k-spaces,
this new topology may not be compactly generated. But we know what to do: k-ify it. This defines
a k-space Y X , and this turns out to witness the fact that kTop is Cartesian closed.
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3 Basepoints and the homotopy category

More on k-spaces

The ancients (mainly Felix Hausdorff, in 1914) came up with a good definition of a topology – but
k-spaces are better!

Most spaces encountered in real life are k-spaces already, and many operations in Top preserve
the subcategory kTop.

Proposition 3.1 (see [39, 10]). (1) Any locally compact Hausdorff space is compactly generated.
(2) Quotient spaces and closed subspaces of compactly generated spaces are compactly generated.
(3) If X is a locally compact Hausdorff space and Y is compactly generated then X ×Y is again

compactly generated.
(4) The colimit of any diagram of compactly generated spaces is compactly generated.

As a result of (4), in the homeomorphism

k colimTop jX• → colimkTopX•

that we considered in the last lecture, the space colimTop jX• is in fact already compactly generated;
no k-ification is necessary – the colimit constructed in Top is the same as the colimit constructed
in kTop.

When we say “space” in this course, we will always mean k-space, and the various constructions
– products, mapping spaces, and so on – will take place in kTop.

I should add that there is a version of the Hausdorff condition that is well suited to the compactly
generated setting. Check out the sources [39, 10] for this.

Here’s a simple example of how useful the formation of mapping spaces can be. We already
know that a homotopy between maps f, g : X → Y is a map h : I ×X → Y such that the following
diagram commutes.

X

in0

��

f

##
I ×X h // Y

X

in1

OO

g

;;

We write f ∼ g to indicate that f and g are homotopic. This is an equivalence relation on the set
Top(X,Y ), and we write

[X,Y ] = Top(X,Y )/ ∼

for the set of homotopy classes of maps from X to Y .
The maps f and g are points in the space Y X , and the homotopy h is the same thing as a path

ĥ : I → Y X from f to g. So
[X,Y ] = π0(Y X) .

Another important feature of k-spaces is this:

Theorem 3.2 (see [12, Theorem A.6]). Let X and Y be CW-complexes with skeleta SkiX and
SkjY . Then the k-space product X × Y admits the structure of a CW complex in which

Skn(X × Y ) =
⋃

i+j=n

SkiX × SkjY .
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Basepoints

To talk about the fundamental group and higher homotopy groups we have to get basepoints into
the picture.

A pointed space is a space X together with a specified point in it, to be called the basepoint. It
is conventionally denoted by ∗, though other symbols may be used as well. The term “basepoint”
leads some people refer to “based spaces,” but to my ear this makes it sound as if we are doing
chemistry, or worse, and I prefer “pointed.” We may put restrictions on the choice of basepoint; for
example we may require that {∗} be a closed subset. We will put a further restriction on {∗} ↪→ X
in 6.2.

This gives a category kTop∗ where the morphisms respect the basepoints. This category is
complete and cocomplete. For example

(X, ∗)× (Y, ∗) = (X × Y, (∗, ∗))

The coproduct is not the disjoint union; which basepoint would you pick? So you identify the two
basepoints; the coproduct in kTop∗ is the “wedge”

X ∨ Y =
X t Y
∗X ∼ ∗Y

.

The one-point space ∗ is the terminal object in kTop∗, as in kTop, but it is also initial in
kTop∗: kTop∗ is a pointed category. As we saw, this precludes it from being Cartesian closed. But
we still know what we would like to take as a “mapping object” in kTop∗: Define Y X

∗ to be the
subspace of Y X consisting of the pointed maps. In general we may have to k-ify this subspace, but
if {∗} is closed in Y then Y X

∗ is closed in Y X and hence is already a k-space. As a replacement for
Cartesian closure, let’s ask: For fixed X ∈ kTop∗, does the functor Y 7→ Y X

∗ have a left adjoint?
This would be an analogue in Top∗ of the functor A⊗− in Ab. Compute:

kTop(W,Y X) = {f : W ×X → Y }

kTop(W,Y X
∗ ) =

⊆

{f : f(w, ∗) = ∗ ∀w ∈W}

⊆

kTop∗(W,Y
X
∗ ) =

⊆ {
f :

f(w, ∗) = ∗ ∀w ∈W
f(∗, x) = ∗ ∀x ∈ X

}
.

⊆

So the map W ×X → Y corresponding to f : W → Y X
∗ sends the wedge W ∨X ⊆ X ×W to the

basepoint of Y , and hence factors (uniquely) through the smash product

W ∧X =
W ×X
W ∨X

obtained by pinching the “axes” in the product to a point. We have an adjoint pair

− ∧X : kTop∗ � kTop∗ : (−)X∗ .

A good way to produce a pointed space is to start with a pair (X,A) (with A a closed subspace
of X) and collapse A to a point. Thus

kTop∗(X/A, Y ) = {f : X → Y : f(A) ⊆ {∗}}.
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What if A = ∅? Then the condition is empty, so

kTop∗(X/∅, Y ) = Top(X,uY ) .

where uY is Y with the basepoint forgotten. The solution to this is X with a disjoint basepoint
adjoined. Notation:

X/∅ = X+ .

We have another adjoint pair!
It’s often useful to know that if A ⊆ X and B ⊆ Y then

(X/A) ∧ (Y/B) =
X × Y

(A× Y ) ∪A×B (X ×B)
.

For example, if we think of Im/∂Im as our model of Sm as a pointed space, we find that

Sm ∧ Sn = (Im/∂Im) ∧ (In/∂In) =
Im+n

(∂Im × In) ∪ (Im × ∂In)
= Im+n/∂Im+n = Sm+n .

Smashing with S1 is a critically important operation in homotopy theory, known as (reduced)
suspension:

ΣX = S1 ∧X =
I ×X

(∂I ×X) ∪ (I × ∗)
.

That is, the suspension is obtained from the cylinder by collapsing the top and the bottom to a
point, as well as the line segment along a basepoint.

You are invited to check the various properties enjoyed by the smash product, analogous to
properties of the tensor product. So it’s functorial in both variables; the two-point pointed space
serves as a unit; and it is associative and commutative. Associativity is a blessing bestowed by
assuming compact generation; notice that in forming it we are mixing limits (the product) with
colimits (the quotient by the axes), and indeed the smash product turns out not to be associative
in the full category of spaces. By induction, the n-fold suspension is thus

ΣnX = S1 ∧ Σn−1X = S1 ∧ (Sn−1 ∧X) = (S1 ∧ Sn−1) ∧X = Sn ∧X .

The smash product and its adjoint render kTop∗ a “closed symmetric monoidal category.”
We can also think about the loop space of a pointed space,

ΩX = XS1

∗ ,

or the iterated loop space ΩnX, which we claim equals XSn
∗ : by induction,

ΩnX = Ω(Ωn−1X) = (XSn−1

∗ )S
1

∗ = XSn−1∧S1

∗ = XSn

∗ .

You may be alarmed at the prospect of trying to understand the algebraic topology of a function
space like ΩX. Perhaps the following theorem of John Milnor will be of some solace.

Theorem 3.3 (Milnor; see [9]). If X is a pointed countable CW complex, then ΩX has the homotopy
type of a pointed countable CW complex.
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The homotopy category

From now on, Top will mean kTop.
Formation of sets of homotopy classes of maps leads to a new category, the homotopy category

(of spaces) HoTop. The objects of HoTop are the same as those of Top, but the set of morphisms
from X to Y is given by [X,Y ]. You should check that composition in Top descends to composition
in HoTop.

Be warned that the homotopy category has rather poor categorical properties. Products and
coproducts in Top provide products and coproducts in HoTop, but most other types of limits and
colimits do not exist in HoTop.

If we have basepoints around, we will naturally want our homotopies to respect them. A “pointed
homotopy” between pointed maps is a function h : I ×X → Y such that h(t,−) is pointed for all
t. This means that it factors through the quotient of I ×X obtained by pinching I × ∗ to a point.
This quotient space may be expressed in terms of the smash product:

I ×X
I × ∗

= I+ ∧X .

Pointed homotopy is again an equivalence relation, and we have the pointed homotopy category,
or, more properly, the homotopy category of pointed spaces HoTop∗. We’ll write [X,Y ]∗ for the set
of maps in this category.

Definition 3.4. Let (X, ∗) be a pointed space and n a positive integer. The nth homotopy group
of X is

πn(X) = [Sn, X]∗ .

Note the long list of aliases for this set: for any k with 0 ≤ k ≤ n,

πn(X) = [Sn, X]∗ = [S0,ΩnX]∗ = [Sk,Ωn−kX]∗ = πk(Ω
n−kX) .

Since π1 group-valued, πn(X) is indeed a group for any n ≥ 1. These groups look innocuous, but
they turn out to hold the solutions to many important geometric problems, and are correspondingly
difficult to compute. For example, if a simply connected finite complex is not contractible then
infinitely many of its homotopy are nonzero, and only finitely many of them are known.

4 Fiber bundles

Much of this course will revolve around variations on the following concept.

Definition 4.1. A fiber bundle is a map p : E → B, such that for every b ∈ B, there exists an
open subset U ⊆ B containing b and a map p−1(U)→ p−1(b) such that p−1(U)→ U × p−1(b) is a
homeomorphism.

When p : E → B is a fiber bundle, E is called the total space, B the base space, and p the
projection. The point pre-image p−1(b) ⊆ for b ∈ B is the the fiber over b. We may use the symbol
ξ for the bundle, and write ξ : E ↓ B.

An isomorphism from p : E → B to p′ : E′ → B is a homeomorphism f : E → E′ such that
p′ ◦ f = p. The map p : E → B is a fiber bundle if it is “locally trivial,” i.e. locally (in the base)
isomorphic to a “trivial” bundle pr1 : U × F → U .

Fiber bundles are naturally occurring objects. For instance, a covering space E → B is precisely
a fiber bundle with discrete fibers.
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Example 4.2. The “Hopf fibration” provides a beautiful example of a fiber bundle. Let S3 ⊂ C2

be the unit 3-sphere. Write p : S3 → CP 1 ∼= S2 for the map sending a vector v to the complex line
through v and the origin. This is a fiber bundle whose fiber is S1.

We said “the fiber” of p is S1. It’s not hard to see that any two fibers of a fiber bundle over a
path connected base space are homeomorphic, so this language isn’t too bad. If we envision S3 as
the one-point compactification of R3, we can visualize how the various fibers relate to each other.
The fiber through the point at infinity is a line in R3; imagine it as the z-axis. All the other fibers
are circles. It’s a great exercise to envision [15] how they fill up Euclidean space.

This map S3 → S2 is the attaching map for the 4-cell in the standard CW structure on CP 2. The
nontriviality of the cup-square in H∗(CP 2) shows that it is essential, that is, not null-homotopic.
This example is due to Heinz Hopf (1894–1971), a German mathematician working mainly at ETH
in Zürich. He discovered the Hopf fibration and its nontriviality during a visit to Princeton in
1927–28. This was the first indication that spheres might have interesting higher homotopy groups.

Example 4.3. The Stiefel manifold Vk(Rn) is the space of orthogonal “k-frames,” that is, ordered
k-element orthonormal sets of vectors in Rn. Equivalently, it is the space of linear isometric embed-
dings of Rk into Rn; or the set of n× k matrices A such that AAT = Ik. It is a compact manifold.
(Eduard Stiefel (1909–1978) was a Swiss mathematician at ETH Zürich.)

We also have the Grassmannian Grk(Rn), the space of k-dimensional vector subspaces of Rn.
(Hermann Grassmann (1809–1877) discovered much of the theory of linear algebra, but his work
was not appreciated during his lifetime. He taught at a Gymnasium in Stettin, Poland, and wrote
on linguistics.) By forming the span, we get a map

Vk(Rn)→ Grk(Rn)

generalizing the double cover Sn−1 → RPn−1 (which is the case k = 1). There is of course a complex
analogue,

Vk(Cn)→ Grk(Cn)

generalizing the Hopf bundle (which is the case n = 2, k = 1).

These maps are fiber bundles (with fiber over V given by the space of ordered orthonormal bases
of V ). We can regard fact this as a special case of the following general theorem about homogeneous
spaces of compact Lie groups (such as O(n), U(n), or a finite group).

Proposition 4.4. Let G be a compact Lie group and let G ⊇ H ⊇ K a sequence of closed subgroups
(also then compact Lie groups in their own right). Then the projection map between homogeneous
spaces G/K → G/H is a fiber bundle.

The orthogonal groupO(n) acts on the Stiefel manifold Vk(Rn) from the left, by postcomposition.
This action is transitive, and the isotropy group of the basepoint is the subgroup O(n− k)× Ik ⊆
O(n). This means that

Vk(Rn) = O(n)/O(n− k)× Ik ,

and we have a fibration O(n)→ Vk(Rn) with fiber O(n−k). For example, V1(Rn) is the unit sphere
Sn−1 in Rn, so we have a fibration O(n) → Sn−1 with fiber O(n − 1). This will be useful in an
analysis of this topological group.

Another interesting map occurs if we forget all but the first vector in a k-frame. This gives us
a map Vk(Rn)→ Sn−1. This is the bundle of tangent (k− 1)-frames on the (n− 1)-sphere. A deep
question asks for which n and k this bundle has a section.
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The Grassmannian Grk(Rn) is obtained by dividing by the larger subgroup O(n − k) × O(k),
and Proposition 4.4 implies that the map Vk(Rn)→ Grk(Rn) is a fiber bundle.

Proposition 4.4 is a corollary of the following general criterion.

Theorem 4.5 (Ehresmann, 1951; see [8]). Suppose E and B are smooth manifolds, and let p : E →
B be a smooth (i.e., C∞) map. If p is a proper (preimages of compact sets are compact) submersion
(that is, dp : TeE → Tp(e)B is a surjection for all e ∈ E), then it is a fiber bundle.

Much of this course will consist of a study of fiber bundles such as these through various essen-
tially algebraic lenses. To bring them into play, we will always demand a further condition of our
bundles.

Definition 4.6. An open cover U of a space X is numerable if there exists subordinate partition
of unity; i.e., there is a family of functions ϕU : X → [0, 1] = I, indexed by the elements of U ,
such that ϕ−1

U ((0, 1]) = U and any x ∈ X belongs to only finitely many U ∈ U . The space X is
paracompact if any open cover admits a numerable refinement. A fiber bundle is numerable if it
admits a numerable trivializing cover.

So any fiber bundle over a paracompact space is numerable. This isn’t too restrictive for us:

Proposition 4.7 (Miyazaki; see Theorem 1.3.5 in [9]). CW-complexes are paracompact.

5 Fibrations, fundamental groupoid

Fibrations and path liftings

During the 1940s, much effort was devoted to extracting homotopy-theoretic features of fiber bun-
dles. It came to be understood that the desired consequences relied entirely on a “homotopy lifting
property.” One of the revolutions in topology around 1950 was the realization that it was advanta-
geous to simply take that property as a definition. This extension of the notion of a fiber bundle
included wonderful new examples, but still retained the homotopy theoretic consequences. Here is
the definition.

Definition 5.1. A fibration is a map p : E → B that satisfies the homotopy lifting property (“HLP”):
Given any f : W → E and any homotopy h : I ×W → B with h(0, w) = pf(w), there is a map h
that lifts h and extends f : that is, making the following diagram commute.

W
f //

in0

��

E

p

��
I ×W h //

h

;;

B

(1.1)

For example, for any space X (even the empty space!) the unique map X → ∗ is a fibration
(A lift is given by h(t, w) = f(w).) as is the unique map ∅→ X (Why?). In general, though, this
seems like an alarming definition, since the HLP has to be checked for all spaces W , all maps f ,
and all homotopies h!

On the other hand, an advantage of this type of definition, by means of a lifting condition, is
that it enjoys various easily checked persistence properties.

• Base change: If p : E → B is a fibration and X → B is any map, then the induced map
E ×B X → X is again a fibration. In particular, any product projection is a fibration.
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• Products: If pi : Ei → Bi is a family of fibrations then the product map
∏
pi is again a

fibration.

• Exponentiation: If p : E → B is a fibration and A is any space, then EA → BA is again
fibration.

• Composition: If p : E → B and q : B → X are both fibrations, then the composite qp : E → X
is again a fibration.

Not all of these persistence properties are true for fiber bundles. Which ones fail?
There is a nice geometric interpretation of what it means for a map to be a fibration, in terms

of “path liftings”. We’ll use Cartesian closure! The adjoint of the solid arrow part of (1.1) is

W
f //

ĥ
��

E

p

��
BI ev0 // B

(1.2)

By the definition of the pullback, the data of this diagram is equivalent to a map W → BI ×B E.
Explicitly,

BI ×B E = {(ω, e) ∈ BI × E : ω(0) = p(e)} .
This space comes equipped with a map from EI , given by sending a path ω : I → E to

p̃(ω) = (pω, ω(0)) ∈ BI ×B E .

In these terms, giving a lift h in (1.1) is equivalent to giving a lift

EI

p̃
��

W //

h̃

::

BI ×B E

This again needs to be checked for every W and every map to BI ×B E. But at least there is now
a universal case to consider: W = BI ×B E mapping by the identity map! So p is a fibration if and
only if a lift λ exists in the following diagram; that is, a section of p̃:

EI

p̃
��

BI ×B E

λ

88

1 // BI ×B E

The section λ is called a path lifting function. To understand why, suppose (ω, e) ∈ BI ×B E, so
that ω is a path in B with ω(0) = p(e). Then λ(ω, e) is then a path in E lying over ω and starting
at e. The path lifting function provides a continuous lift of paths in B. The existence (or not) of
a section of p̃ provides a single condition that needs to be checked if you want to see that p is a
fibration.

There is no mention of local triviality in this definition. However:

Theorem 5.2 (Albrecht Dold, 1963; see [42], Chapter 13). Let p : E → B be a continuous map.
Assume that there is a numerable cover of B, say U , such that for every U ∈ U the restriction
p|p−1(U) : p−1U → U is a fibration. Then p itself is a fibration.

Corollary 5.3. Any numerable fiber bundle is a fibration.
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Comparing fibers over different points

If p : E → B is a covering space, then unique path lifting provides, for any path ω from a to b,
a homeomorphism Fa → Fb depending only on the path homotopy class of ω. Our next goal is to
construct an analogous map for a general fibration.

Consider the solid arrow diagram:

Fa

in0

��

// E

p

��
I × Fa

h

66

pr1 // I
ω // B .

This commutes since ω(0) = a. By the homotopy lifting property, there is a dotted arrow that
makes the entire diagram commute. If x ∈ Fa, the image h(1, x) is in Fb. This supplies us with a
map f : Fa → Fb, given by f(x) = h(1, x).

Since we are not working with a covering space, there will in general be many lifts h and so
many choices of f . But we may at least hope that the homotopy class of f is determined by the
path homotopy class of ω.

So suppose we have two paths ω0, ω1, with ω0(0) = ω1(0) = a and ω0(1) = ω1(1) = b, and
a homotopy g : I × I → B between them (so that g(0, t) = ω0(t), g(1, t) = ω1(t), g(s, 0) = a,
g(s, 1) = b). Here’s a picture.

a

ω1

b

ω0t

s

g

Choose lifts h0 and h1 as above. These data are captured by a diagram of the form

((∂I × I) ∪ (I × {0}))× Fa
in0

��

// E

p

��
I × I × Fa

pr1 //

33

I × I g // B

The map along the top is given by h0 and h1 on ∂I × I × Fa and by pr2 : I × Fa → Fa followed by
the inclusion on the other summand.

If the dotted lift exists, it would restrict on I × {1} × Fa to a homotopy between f0 and f1.
Well, the subspace (∂I × I) ∪ (I × {0}) of I × I wraps around three edges of the square. It’s easy
enough to create a homeomorphism with the pair (I × I, {0} × I), so the HLP (with W = I × Fa)
gives us the dotted lift.

So the map Fa → Fb is well-defined up to homotopy by the path homotopy class of the path ω
from a to b. Let’s denote it by fω.

The fundamental groupoid

We can set this up in categorical terms. The space B defines a category whose objects are the points
of B and in which a morphism from a to b is a homotopy class of paths from a to b. Composition
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is given by the juxtaposition rule

(σ · ω)(t) =

{
ω(2t) 0 ≤ t ≤ 1/2

σ(2t− 1) 1/2 ≤ t ≤ 1.

The constant path ca serves as an identity at up to homotopy: here are pictures of the homotopy
between cb · ω and ω, and between σ · ca and σ.

ω

b

cbω

a
b

ω

ω

b

ωca

a

a

ω

Similar pictures show that (α · σ) ·ω ' α · (σ ·ω) and that every morphism has an inverse, given by
ω(t) = ω(1− t).

This gives us a groupoid – a small category in which every morphism is an isomorphism – called
the fundamental groupoid of B, and written with a capital π: Π1(X).

Our work can be succinctly summarized as follows.

Proposition 5.4. Formation of fibers of a fibration p : E → B determines a functor Π1(B) →
HoTop.

Proof. We should check functoriality: if ω : a ∼ b and σ : b ∼ c, then hopefully the induced
homotopy classes compose:

fσω = fσ ◦ fω .

To see this, pick lifts hω and hσ in

Fa

in0

��

// E

��

Fb

in0

��

// E

��
I × Fa

hω

<<

ω // B I × Fb

hσ

<<

σ // B

so that fω(e) = hω(1, e) and fσ(e) = hσ(1, e). Then construct a lifting in

Fa

in0

��

// E

��
I × Fa

<<

σω // B

by using hω in the left half of the interval and hσ ◦ fω in the right half. The resulting map Fa → Fb
is then precisely fσ ◦ fω.

Remark 5.5. Last semester we defined the product of loops as juxtaposition but in the reverse
order. That convention would have produced a contravariant functor Π1(X)→ HoTop.

Remark 5.6. Since any functor carries isomorphisms to isomorphisms, Proposition 5.4 implies that
a path from a to b determines a homotopy class of homotopy equivalences from Fa to Fb.
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Fix a map p : E → Y . The pullback of E along a map f : X → Y can vary wildly as f is
deformed; it is far from being a homotopy invariant. Just think of the case X = ∗, for example,
when the pullback along f : ∗ → Y is the point preimage p−1(f(∗)). One of the great features of
fibrations is this:

Proposition 5.7. Let p : E → Y be a fibration and f0, f1 : X → Y two maps. Write E0 and
E1 for pullbacks of E along f0 and f1. If f0 and f1 are homotopic then E0 and E1 are homotopy
equivalent.

Proof. We construct a fibration over Y X whose fiber over f is f∗E, the pullback of E → Y along
f . It occurs as the middle vertical composite in the following diagram of pullbacks.

f∗E //

��

E ×Y (Y X ×X) //

��

E

p

��
∗ ×X

inf×1
//

��

Y X ×X ev //

pr1
��

Y

∗
inf // Y X

The middle horizontal composite is the map f , so the pullback is f∗E as shown. Now a homotopy
between f0 and f1 is a path in Y X from f0 to f1, and so by Lemma 5.4 the fibers over them are
homotopy equivalent.

Remark 5.8. We could ask for more: We could ask that E0 and E1 are homotopy equivalent by
maps and homotopies respecting the projections to X: that there is a fiber homotopy equivalence
between them. This is in fact the case, as you will show for homework.

Corollary 5.9. Let p : E → B be a fibration. If B is contractible to ∗ ∈ B, then the inclusion of
the fiber p−1(∗) ↪→ E is a homotopy equivalence.

Proof. The identity map 1B and the constant map c : B → B with value ∗ are homotopic, so pulling
back E ↓ B along them produce homotopy equivalent spaces. One gives E, the other B × p−1(∗).
The projection pr2 : B × p−1(∗) → p−1(∗) is a homotopy equivalence since B is contractible. We
leave you to check that the resulting equivalence is the inclusion.

6 Cofibrations

Let i : A→ X be a map of spaces, and Y some other space. When is the induced map Y X → Y A

a fibration? For example, if a ∈ X, does evaluation at a produce a fibration Y X → Y ?
By the definition of a fibration, we want a lifting in the solid-arrow diagram

W //

in0

��

Y X

��
I ×W

::

// Y A .
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Adjointing over, we get:

A×W i×1 //

1×in0

��

X ×W

��

��

A× I ×W //

++

X × I ×W

&&
Y .

Adjointing over again, this diagram transforms to:

A //

��

X

��

��

A× I //

**

X × I

$$
Y W .

This discussion motivates the following definition of a cofibration, “dual” to the notion of fibration.

Definition 6.1. A cofibration is a map i : A → X that satisfies homotopy extension property
(sometimes abbreviated as “HEP”): for any solid-arrow commutative diagram as below, a dotted
arrow exists making the whole diagram commutative.

A
i //

��

X

��

��

A× I //

))

X × I

##
Z .

How shall we check that a map is a cofibration? By the universal property of a pushout, A→ X
is a cofibration if and only if there is an extension in

(X × 0) ∪A (A× I)
j //

f

((

X × I

��
Z

for every map f . Now there is a universal example, namely Z = (X × 0) ∪A (A× I), f = id. So a
map i is a cofibration if and only if the map j : (X × 0)∪A (A× I)→ X × I admits a retraction: a
map r : X × I → (X × 0) ∪A (A× I) such that rj = 1.

The space involved is called the mapping cylinder, and written

M(i) = (X × 0) ∪A (A× I) .

It’s not hard to check (using the mapping cylinder) that any cofibration is a subspace embedding.
But the map j may not be an embedding; the map (X×0)∪A(A×I)→ im(j) ⊆ X×I is a continuous
bijection but it may not be a homeomorphism. If A ⊆ X is a closed subset then A× I ⊆ X × I is
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a closed map, and X × 0 ⊆ X × I is also, so the map from the pushout is a closed map and hence
is then a homeomorphism to its image.

So the inclusion of a closed subspace A ⊆ X is a cofibration if and only if there is a retraction
from X × I onto its subspace (X × 0) ∪ (A× I).

Definition 6.2. A basepoint ∗ in X is nondegenerate if {∗} ↪→ X is a closed cofibration. One also
says that (X, ∗) is well-pointed.

Any point in a CW complex, for example, will serve as a nondegenerate basepoint. If ∗ is a
nondegenerate basepoint of A, the evaluation map ev : XA → X is a fibration, The fiber of ev over
the basepoint of X is then exactly the space of pointed maps XA

∗ . Whenever convenient we will
assume our basepoints are nondegenerate.

Example 6.3. i : Sn−1 ↪→ Dn is a cofibration: The map

j : Dn ∪Sn−1 (Sn−1 × I) ↪→ Dn × I

is the inclusion of the open tin can into the closed can full of soup –

The illustrated retraction of Dn × I onto the open can send a point in the soup to its shadow on
the open tin can.

In particular, setting n = 1 in this example, {0, 1} ↪→ I is a cofibration, so evaluation at the
pair of endpoints,

ev0,1 : Y I → Y × Y ,

is a fibration. Every point in I is nondegenerate, so eva : Y I → Y is a fibration for any a ∈ I.

The class of cofibrations is closed under the following operations.

• Cobase change: if A→ X is a cofibration and A→ B is any map, the pushout B → X ∪A B
is again a cofibration.

• Coproducts: if Aj → Xj is a cofibration for every j, then the coproduct map
∐
Aj →

∐
Xj

is again a cofibration.

• Product: If A → X is a cofibration and B is any space, then A × B → X × B is again a
cofibration.

• Composition: If A → B and B → X are both cofibrations, then the composite A → X is
again a cofibration.
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It follows from these inheritance properties and the single example Sn−1 ↪→ Dn that if X is a
CW complex and A is a subcomplex then A → X is a cofibration. CW complexes are Hausdorff
spaces, and in any such a case a cofibration is a closed embedding.

Cofibrance provides a natural condition under which a contractible subspace can be collapsed
with out damage.

Proposition 6.4. Let A → X be a cofibration, and write X/A for the pushout of ∗ ← A → X. If
A is contractible then X → X/A is a homotopy equivalence.

Proof. Pick a contracting homotopy h : A × I → A, so that h(a, 0) = a and h(a, 1) = ∗ ∈ A for
all a ∈ A. By cofibrance there is an extension of f ◦ h to a homotopy g : X × I → X such that
g(x, 0) = x. g(−, 1) then factors through the projection p : X → X/A: there is a map r : X/A→ X
such that r ◦ p is homotopic the identity.

To construct a homotopy from p ◦ r to 1 : X/A→ X/A, note that the homotopy g sends A× I
into A, so its composite with p : X → X/A factors through a map g : (X/A)× I → X/A. At t = 0
this is the identity; at t = 1 it is just p ◦ r.

7 Cofibration sequences and co-exactness

There is a pointed version of the cofibration condition: but you only ask to extend pointed homo-
topies; so the condition is weaker than the unpointed version. (It’s true that we seek an extension
to a pointed homotopy, but since the basepoint is in the source space this is automatic.) A pointed
homotopy can be thought of as a pointed map

X ∧ I+ =
X × I
∗ × I

→ Y

The condition that the embedding of a closed subspace i : A ⊆ X is a pointed cofibration can
again be expressed as requiring that the inclusion of the (now “reduced”) mapping cylinder

M(i) = (X × 0) ∪A×0 (A ∧ I+)

into X ∧ I+ admits a retraction. Today we’ll work entirely in the pointed context, and I’ll tend to
omit the adjectives “reduced” and “pointed.” (Maybe I should have written Mu for the unpointed
variant!)

Any pointed map f : X → Y admits a canonical factorization as a closed pointed cofibration
followed by a pointed homotopy equivalence:

X
f

||
i
��

Y M(f)
'oo

where i embeds X along t = 1. For example, the cone on a space X is a mapping cylinder:

CX = M(X → ∗) = X ∧ I .

The mapX → ∗ factors as the cofibrationX → CX followed by the homotopy equivalence CX → ∗.
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Since i is a cofibration, we should feel entitled to collapse it to a point; that is, form the pushout
in

X
f

||
i
��

// ∗

��
Y M(f)

'oo // C(f) .

C(f) is the mapping cone of f . If the mapping cylinder is a top hat, the mapping cone is a witch’s
hat. One example: the suspension functor is given by

ΣX = C(X → ∗) .

Since i is a cofibration, the pushout ∗ → C(f) is again a cofibration; the cone point is always
nondegenerate.

This pushout can be expressed differently: Instead of replacing f : X → Y with a cofibration,
let’s replace X → ∗ with a cofibration, namely, the inclusion X ↪→ CX. So we have a pushout
diagram

∗

X

;;

in1 //

f
��

CX

'

OO

��
Y

i(f) // C(f) .

This pushout is homeomorphic to the earlier one; but notice that the homeomorphism uses the
automorphism of the unit interval sending t to 1− t.

If f is already a cofibration, the cobase change property implies that CX → C(f) is again
cofibration. CX is contractible, so by Proposition 6.4, collapsing it to a point is a homotopy
equivalence. But collapsing CX in C(f) is the same as collapsing Y in X:

Lemma 7.1. If f : X → Y is a cofibration then the collapse map C(f) → Y/X is a homotopy
equivalence.

Co-exactness

Definition 7.2. A cofibration sequence is a diagram that that is homotopy equivalent to

X
f−→ Y

i(f)−−→ C(f)

for some map f .

The composite X → C(f) is null-homotopic; that is, it’s homotopic to the constant map (with
value the basepoint). The homotopy is given by h : (x, t) 7→ [x, t]: When t = 0 we can use
[x, 0] ∼ f(x) to see the composite, while when t = 1 we get the constant map.

The pair (i(f), h) is universal with this property: giving a map g : Y → Z along with a null-
homotopy of the composite g ◦ f is the same thing as giving a map C(f)→ Z that extends g.

An implication of this is the following:

Lemma 7.3. For any pointed map f : X → Y and any pointed space Z, the sequence of pointed
sets

[X,Z]∗
f∗←− [Y, Z]∗

i(f)∗←−−− [C(f), Z]∗
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is exact, in the sense that
im(i(f)∗) = {g : Y → Z : g ◦ f ' ∗} .

Any sequence of composable arrows with this property is “co-exact”: so cofibration sequences
are coexact.

The map f : X → Y functorially determines the map i(f) : Y → C(f), and we may form its
mapping cone, and continue:

X
f−→ Y

i(f)−−→ C(f)
i2(f)−−−→ C(i(f))

i3(f)−−−→ C(i2(f))
i4(f)−−−→ · · · .

This looks like it will lead off into the wilderness, but luckily there is a kind of periodicity at work.
Here’s a picture of C(i(f)):

CX

CY

The map i(f) is the pushout of the cofibration X → CX along X → Y , so it is a cofibration.
Therefore, by Lemma 7.1 the collapse map C(i(f))→ C(f)/Y is a homotopy equivalence. But

C(f)/Y = ΣX ,

the suspension of X. So we have the commutative diagram

X
f // Y

i(f) // C(f)
i2(f)//

π(f)

%%

C(i(f))

'
��

ΣX .

Now we have two ways to continue! I combine them in the homotopy commutative diagram

X
f // Y

i(f) // C(f)
i2(f) //

π(f)

$$

C(i(f))

'
��

π(i(f))

%%

i3(f) // C(i2(f))

'
��

π(i2(f))

##

i4(f) // · · ·

ΣX
−Σf // ΣY

−Σi(f) // · · ·

Notice the minus sign! It means that instead of [t, x] 7→ [t, f(x)], we have to use [t, x] 7→ [1−t, f(x)].
This is needed to make the triangle commute, even up to homotopy, as you can see by being careful
with the parametrization of the cones.

The resulting long sequence of maps

X → Y → C(f)→ ΣX → ΣY → ΣC(f)→ Σ2X → · · ·

is the Barratt-Puppe sequence associated to the map f . Each two-term subsequence is a cofiber
sequence and is co-exact.
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The Barratt-Puppe sequence is a “homotopy theoretic” version of the long exact homology
sequence of a pair. Suppose that A is a subspace of X. Then I claim that

H∗(X ∪ CA)∼=H∗(X,A)

If you combine that with the suspension isomorphism in reduced homology, the Barratt-Puppe
sequence gives you the homology long exact sequence of the pair.

To see the equality, just use homotopy invariance and excision:

H∗(X ∪ CA) = H∗(X ∪ CA, ∗) = H∗(X ∪ CA,CA)

= H∗(X ∪ C≤(1/2)A,C≤(1/2)A) = H∗(X ∪A× I, A× I) = H∗(X,A) .

Since X ∪ CA ' X/A if A→ X is a cofibration, this is a good condition to guarantee that

H∗(X,A) = H∗(X/A) .

8 Weak equivalences and Whitehead’s Theorems

We now have defined the homotopy groups of a pointed space,

πn(X) = [Sn, X]∗ .

So π0(X) is the pointed set of path components. For n > 0, πn only sees the path component of
the basepoint. It’s a group for n = 1, and hence also for n ≥ 1 since πn(X) = π1(Ωn−1).

Here’s another very useful way to represent an element of πn(X, ∗). Recall our description of
the n-sphere as a pointed space:

Sn = In/∂In .

So an element of πn(X, ∗) is a homotopy class of maps of pairs

(In, ∂In)→ (X, ∗) .

Lemma 8.1. For n ≥ 2, πn(X) is abelian.

Proof. I’ll give you two proofs of this fact. Since πn(X) = π2(Ωn−2X), it suffices to consider n = 2.
First, geometric: Given f, g : I2 → X, both sending ∂I2 to ∗, we can form another one by

putting the two side by side (and compressing the horizontal coordinate by a factor of 2 in each).
This is the sum in πn(X). This is homotopic to the map that does f and g in much smaller
rectangles and fills in the rest of the square with maps to the basepoint. Now I’m free to move these
two smaller rectangles around one another, exchanging positions. Then I can re-expand, to get the
addition g + f .

f g f g
f

g
g f g f
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Now, algebraic: An H-space is a pointed space Y together with map µ : Y × Y → Y such that

Y
1

##

in1 // Y × Y
µ

��

Y
in2oo

1

{{
Y

commutes in Ho(Top∗). The relevant example here is Y = ΩX. Then π1(Y, ∗) has extra structure:
Since π1(Y × Y, ∗) = π1(Y, ∗) × π1(Y, ∗) (as groups) we get a group G together with a group
homomorphism µ : G×G→ G such that

G
1

##

in1 // G×G
µ

��

G
1

{{

in2oo

G

commutes. That is to say, µ(a, 1) = a, µ(1, d) = d, and, since (a, b) · (c, d) = (ac, bd) in G×G,

µ(ac, bd) = µ(a, b) · µ(c, d) .

Take b = 1 = c so µ(a, d) = ad : that is, the “multiplication” µ is none other than the group
multiplication. Then take a = 1 = d so µ(c, b) = bc : that is, the group structure is commutative.

We can trace what happens when we move the basepoint. Let ω : I → X be a path from a to
b. It induces a map

ω# : πn(X, a)→ πn(X, b)

in the following way. Given f : In → X representing α ∈ πn(X, ∗), define a map

(In × 0) ∪ (∂In × I)→ X

by

(v, t) 7→

{
f(v) for v ∈ In, t = 0

ω(t) for v ∈ ∂In .

Precompose this map with the map from the face In × 1 given by projecting from the point (b, 2),
where b is the center of In. The result is a new map In → X; it sends the middle part of the cube
by f , and the peripheral part by ω.

f

ω

ω

ω ω

It’s easy to check that this gives rise to a functor Π1(X) → Set, and hence to an action of
π1(X, ∗) on πn(X, ∗). For n = 1, this is the conjugation action,

ω · α = ωαω−1 .

For all n ≥ 1 it is an action by group homomorphisms; for n ≥ 2, πn(X, ∗) is a Z[π1(X, ∗)]-module.
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Definition 8.2. A space is simple if this action is trivial for every choice of basepoint.

Example 8.3. If all path components are simply connected, the space is simple. A topological
group is a simple space.

This action can be used to explain how homotopic maps act on homotopy groups.

Proposition 8.4. Let h : f0 ∼ f1 be a (“free,” as opposed to pointed) homotopy of maps X → Y .
Let ∗ ∈ X, and let ω : I → X by ω(t) = h(∗, t). Then

πn(Y, f0(∗))

ω#

��

πn(X, ∗)

f0∗
77

f1∗

''
πn(Y, f1(∗))

commutes.

Proof. The homotopy h fills in the cube In × I, and provides a pointed homotopy from ω · f0 to
f1.

While it may be hard to compute homotopy groups, we can think about what sort of maps
induce isomorphisms in them.

Definition 8.5. A map f : X → Y is a weak equivalence if it induces an isomorphism in π0 and in
πn for all n ≥ 1 and every choice of basepoint in X.

Of course it suffices to pick one point in each path component.
Weak equivalences may not have any kind of map going in the opposite direction. The definition

seems very base-point focused, but in fact it is not. For example,

Proposition 8.6. Any homotopy equivalence is a weak equivalence.

Proof. Let f : X → Y be a homotopy equivalence with homotopy inverse g : Y → X, and pick a
homotopy h : 1X ∼ gf . Define ω : I → X by ω(t) = h(∗, t). Then by Proposition 8.4 we have a
commutative diagram

πn(X, ∗) f∗ //

ω#

''

πn(Y, f(∗))
g∗
��

πn(X; gf(∗))

in which the diagonal is an isomorphism. Picking a homotopy 1 ∼ fg gives the rest of the diagram

πn(X, ∗) f∗ //

∼=

''

πn(Y, f(∗))
g∗
��

∼=

((
πn(X, gf(∗)) f∗ // π∗(Y, fgf(∗)) .

It follows that g∗ is an isomorphism, and therefore f∗ is also.
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Here are three fundamental theorems about weak equivalences, all due more or less to J.H.C.
Whitehead. (John Henry Constantine Whitehead (fl. 1930–1961, Oxford) was a pioneer in the
development of homotopy theory, inventor i.a. of CW complexes.)

Theorem 8.7. Any weak equivalence induces an isomorphism in singular homology.

Since H0(X) is the free abelian group generated by π0(X), this is obvious in dimension 0, and
on each path component Poincaré’s theorem implies it in dimension 1.

Theorem 8.8. Let X and Y be simple spaces. Any map from X to Y that induces an isomorphism
in homology is a weak equivalence.

Theorem 8.9. Let X and Y be CW complexes. Any weak equivalence from X to Y is in fact a
homotopy equivalence.

Theorem 8.8 clearly provides a powerful way to construct weak equivalences, and, when combined
with Theorem 8.9, homotopy equivalences. We will prove a vast generalization of Theorem 8.8 later
in the course.

Here is a useful strengthening of Theorem 8.9:

Theorem 8.10 (“Whitehead’s little theorem”). A map f : X → Y is a weak equivalence if and only
if f ◦ − : [W,X]→ [W,Y ] is bijective for all CW complexes W .

Proof of 8.10⇒8.9. We assume that

f ◦ − : [K,X]→ [K,Y ]

is bijective for every CW complex K. Taking K = Y , we find that there is a map g : Y → X such
that f ◦ g = 1Y . We claim that g ◦ f = 1X as well. To see this we take K = X: so

f ◦ − : [X,X]→ [X,Y ]

is a monomorphism. Under it 1 7→ f , but g ◦ f does as well:

g ◦ f 7→ f ◦ (g ◦ f) = (f ◦ g) ◦ f = 1Y ◦ g = f .

So g ◦ f = 1X .

Remark 8.11. There is a deep shift of focus involved here. In the beginning, homotopy theory
dealt with what happens when you define an equivalence relation (“homotopy”) on maps. Focusing
on weak equivalences is an entirely different perspective: we are picking out a collection of maps that
will be regarded as “equivalences.” They are to become the isomorphism in the homotopy category.
The fact that they satisfy 2-out-of-3 makes the collection of weak equivalences an appropriate choice.

This change in perspective may be attributed to Daniel Quillen, who, in Homotopical Algebra
(written while Quillen was a professor at MIT, in collaboration with his colleague Dan Kan), set out
an axiomatization of homotopy theory using three classes of maps, which he termed “weak equiva-
lences,” “cofibrations,” and “fibrations.” They are assumed to be related to each other through ap-
propriate factorization and lifting properties. The resulting theory of “model categories” dominated
the underlying framework of homotopy theory for thirty years, and is still a critically important
tool.



9. HOMOTOPY LONG EXACT SEQUENCE AND HOMOTOPY FIBERS 27

9 Homotopy long exact sequence and homotopy fibers

Relative homotopy groups

We’ll continue to think of πn(X, ∗) as a set of homotopy classes of maps of pairs:

πn(X, ∗) = [(In, ∂In), (X, ∗)] .

As usual in algebraic topology, there is much to be gained from establishing a “relative” version.
We will use the sequence of subspaces

In ⊇ ∂In ⊇ ∂In−1 × I ∪ In−1 × 0

in this definition. We will write Jn for the last subspace, so for example J1 = {0} ⊂ I. In general
it’s an “open box”:

Definition 9.1. Let (X,A, ∗) be a pointed pair. For n ≥ 1, define a pointed set

πn(X,A, ∗) = [(In, ∂In, Jn), (X,A, ∗)] .

This definition is set up in such a way that

πn(X, {∗}, ∗) = πn(X, ∗)

so that the inclusion {∗} ↪→ A induces a map

πn(X, ∗)→ πn(X,A, ∗) .

Also, restricting to the “back face” In−1 × 0 provides a map

∂ : πn(X,A, ∗)→ πn−1(A, ∗)

and the composite of these two is obviously “trivial,” meaning that its image is the basepoint
∗ ∈ πn−1(A, ∗). We get a sequence of pointed sets

· · · // π3(X,A, ∗)
∂

tt
π2(A, ∗) // π2(X, ∗) // π2(X,A, ∗)

∂

tt
π1(A, ∗) // π1(X, ∗) // π1(A,X, ∗)

∂

tt
π0(A, ∗) // π0(X, ∗)
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We claim that this is an exact sequence of pointed sets: the long exact homotopy sequence of a
pair. For example, an element of π1(X,A, ∗) is represented by a path starting at the basepoint and
ending in A. Its boundary is the component of that point in A. Saying that the component of
a ∈ A maps to the base point component of X is exactly saying that [a] ∈ π0(A) is in the image of
∂ : π1(X,A, ∗)→ π0(A, ∗).

We will investigate the structure of these relative homotopy groups, and explain why the sequence
is exact, by developing an analogue of the Barratt-Puppe sequence that will turn out to give rise to
the homotopy long exact sequence of a pair.

Fiber sequences

In the pointed category, we could redefine “fibration” slightly (as is done in [21], for example) so
that p : E → B is a fibration if every pointed solid arrow diagram

W //

in0

��

E

p

��
I+ ∧W //

;;

B

admits a lift. There are fewer diagrams, but more is demanded of the lift.
Instead we’ll leave the fibrations as they are, but in compensation insist that our basepoints

should be nondegenerate. Lifting is then contained in the following lemma. See [40] for the proof,
which we forgo, preferring to give the proof of similar result 10.4 later.

Lemma 9.2 (Relative homotopy lifting property). Let A ⊆ X be a closed cofibration and E → B
a fibration. Then a lifting exists in any solid arrow diagram

(X × 0) ∪ (A× I) //

��

E

��
X × I //

77

B .

Exactly the same proof we did before shows that if A → B is a pointed cofibration and the
basepoints are nondegenerate then XB

∗ → XA
∗ is a fibration. For example we can take (B,A, ∗) =

(I, ∂I, 0) to see that the map from the path space

P (X) = XI
∗ = {ω : I → X : ω(0) = ∗}

to X by evaluation at 1 is a fibration.
Taking A to be a singleton in Lemma 9.2:

Corollary 9.3. Let p : E → B be a fibration and suppose given f : W → E and g : W → B such
that pf ' g: so g is a lift of f up to homotopy. Then f is homotopic to a lift “on the nose,” that
is, a function f : W → E such that pf = g.

So if g : W → B is such that pg ' ∗, then g is homotopic to a map that lands in the fiber
p−1(∗) = F of p over ∗. This shows that the sequence – the “fiber sequence” – of pointed spaces

F → E → B
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is “exact,” in the sense that for any well-pointed space W the sequence

[W,F ]∗ → [W,E]∗ → [W,B]∗

is exact.
Not every map is a fibration, but every map factors as

X
' //

f

!!

T (f)

p

��

= {(x, ω) ∈ X × Y I : ω(1) = f(x)}

Y

where X → T (f) is a homotopy equivalence and p is a fibration.
The fiber of p is the homotopy fiber of f , written F (f):

F (f) = {(x, ω) ∈ X × Y I
∗ : ω(1) = f(x)} .

Here we take 0 ∈ I as the basepoint, so ω is a path in Y from ∗ to f(x).
As in our discussion of the Barratt-Puppe cofibration sequence, there is an equivalent way of

constructing F (f), by replacing ∗ → Y with a fibration, namely the path space Y I
∗ , and forming

the pullback over X:
F (f) //

��

P (Y )

��

= Y I
∗

X // Y

Lemma 9.4. Let p : E → B be a fibration and ∗ ∈ B. The natural map p−1(∗) → F (p) is a
homotopy equivalence.

Proof. Regard F (p) as the pullback of p along PB ↓ B. The induced map on fibers is a homeomor-
phism; but PB is contractible so the inclusion of the fiber of F (p) ↓ PB into F (p) is a homotopy
equivalence, by Corollary 5.9.

Continuing with the analogy with cofibrations, the map p(f) : F (f) → X is a fibration, with
fiber ΩX, and we have the Barratt-Puppe fibration sequence

Y
f←− X p←− F (f)

i←− ΩY
Ωf←−− ΩX

Ωp←− ΩF (f)
Ωi←− · · ·

that is exact. It gives rise to the long exact homotopy sequence:

Lemma 9.5. Let (X,A, ∗) be a pointed pair, and let F denote the homotopy fiber of the inclusion
A→ X. For each n ≥ 1 there is a natural isomorphism

πn(X,A)
∼=−→ πn−1(F, ∗)

such that
πn(X, ∗) //

∼=

��

πn(X,A, ∗)
∂

''
∼=

��

πn−1(A, ∗)

πn−1(ΩX, ∗) i // πn−1(F, ∗)

p
77

commutes.
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Corollary 9.6. The sequence homotopy long exact sequence of a pair is in fact exact; for n ≥ 2 the
set πn(X,A, ∗) is a group, abelian for n ≥ 3; and all the maps between groups in the sequence are
homomorphisms.

Furthermore the bottom sequence makes sense (and is exact) even if A→ X is not a subspace
inclusion.

Proof of Lemma 9.5. To begin with, notice that π1(X,A, ∗) is the set of path components of the
space of maps

(I, ∂I, J1)→ (X,A, ∗) .

This is the space of paths in X from ∗ to some element of a: that is, it’s precisely F (A→ X).
In fact, for any n ≥ 1, the space of maps

(In, ∂In, Jn)→ (X,A, ∗)

is precisely Ωn−1F (A → X). For example, when n = 2, an element in the given space is given by
a map I2 → X that is the basepoint along the bottom and takes values in A along the top – so
a path in F (A → X) – and also is the basepoint along the left and right edges – so it’s a loop in
F (A→ X).

The diagram is easily seen to commute.

There is another perspective on the homotopy long exact sequence, arising from Lemma 9.4.

Lemma 9.7. Let p : E → B be a fibration and ∗ ∈ E. Write ∗ also for the image of ∗ in B, and
let F be the fiber over ∗. Then

p∗ : π∗(E,F, ∗)→ π∗(B, ∗)

is an isomorphism.

Proof. F (p)→ E is a fibration, so by Proposition 5.7 and Lemma 9.4,

hofib(F → E) ∼= hofib(F (p)→ E) ∼= fib(F (p)→ E) = ΩB .

We leave to you the check that the resulting composite isomorphism

πn(E,F )→ πn−1(hofib(F → E))→ πn−1(ΩB)→ πn(B)

is indeed the map induced by p∗.

We saw that π1(A, ∗) acts on πn(A, ∗). The map πn(A, ∗) → πn(X, ∗) is equivariant, if we let
π1(A, ∗) act on πn(X, ∗) via the group homomorphism π1(A, ∗) → π1(X, ∗). The group π1(A, ∗)
also acts on πn(X,A, ∗), compatibly.

f

ω

ωω

It’s clear from the picture that the maps in the homotopy long exact sequence are equivariant.
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