
Chapter 3

Vector bundles and principal bundles

16 Vector bundles

Each point in a smooth manifold M has a “tangent space.” This is a real vector space, whose
elements are equivalence classes of smooth paths σ : R → M such that σ(0) = x. The equivalence
relation retains only the velocity vector at t = 0. These vector spaces “vary smoothly” over the
manifold. The notion of a vector bundle is a topological extrapolation of this idea.

Let B be a topological space. To begin with, let’s define the “category of spaces over B,” Top/B.
An object is just a map E → B. To emphasize that this is single object, and that it is an object
“over B,” we may give it a symbol and display the arrow vertically: ξ : E ↓ B. A morphism from
p′ : E′ → B to p : E → B is a map E′ → E making

E′ //

p′   

E

p��
B

commute.
This category has products, given by the fiber product over B:

E′ ×B E = {(e′, e) : p′e′ = pe} ⊆ E′ × E .

Using it we can define an “abelian group over B”: an object E ↓ B together with a “zero section”
0 : B → E (that is, a map from the terminal object of Top/B) and an “addition” E ×B E → E (of
spaces over B) satisfying the usual properties.

As an example, any topological abelian group A determines an abelian group over B, namely
pr1 : B × A → B with its evident structure maps. If A is a ring, then pr1 : B × A → B is a “ring
over B.” For example, we have the “reals over B,” and hence can define a “vector space over B.”
Each fiber has the structure of a vector space, and this structure varies continuously as you move
around in the base.

Vector spaces over B form a category in which the morphisms are maps covering the identity
map of B that are linear on each fiber.

Example 16.1. Let S be the subspace of R2 consisting of the x and y axes, and consider pr1 :
S → R. Then pr−1

1 (0) = R and pr−1
1 (s) = 0 for s 6= 0. With the evident structure maps, this is

a perfectly good (“skyscraper”) vector space over R. This example is peculiar, however; it is not
locally constant. Our definition of vector bundles will exclude it and similar oddities. Sheaf theory
is the proper home for examples like this.
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But this example occurs naturally even if you restrict to trivial bundles and maps between them.
The trivial bundle pr1 : R× R→ R has as an endomorphism the map

(s, t) 7→ (s, st) .

This map is an isomorphism on almost all fibers, but is zero over s = 0. So if you want to form a
kernel or the cokernel, you will get the skyscraper vector space over R. The image will be a vector
space over X with a complementary peculiarity.

Definition 16.2. A vector bundle over B is a vector space E over B that is locally trivial – that is,
every point b ∈ B has a neighborhood over which E is isomorphic to a trivial bundle – and whose
fiber vector spaces are all of finite dimension.

Remark 16.3. As in our definition of fiber bundles, we will always assume that a vector bundle
admits a numerable trivializing cover. On the other hand, there is nothing to stop us from replacing
R with C or even with the quaternions H, and talking about complex or quaternionic vector bundles.

If ξ : E ↓ B is a vector bundle, then E is called the total space, the map p : E → B is called the
projection map, and B is called the base space. We may write E(ξ), B(ξ) for the total space and
base space, and ξb for the fiber of ξ over b ∈ B.

If all the fibers are of dimension n, we have an n-dimensional vector bundle or an “n-plane
bundle.”

Example 16.4. The “trivial” n-dimensional vector bundle over B is the projection pr1 : B×Rn →
B. We may write nε for it.

Example 16.5. At the other extreme, Grassmannians support highly nontrivial vector bundles.
We can form Grassmannians over any one of the three (skew)fields R,C,H. WriteK for one of them,
and consider the (left) K-vector space Kn. The Grassmannian (or Grassmann manifold) Grk(K

n)
is the space of k-dimensional K-subspaces of Kn. As we saw last term, this is a topologized as a
quotient space of a Stiefel variety Vk(Kn) of k-frames in Kn. To each point in Grk(K

n) is associated
a k-dimensional subspace of Kn. This provides us with a k-dimensional K-vector bundle ξn,k over
Grk(K

n), with total space

E(ξn,k) = {(V, x) ∈ Grk(K
n)×Kn : x ∈ V }

This is the canonical or tautologous vector bundle over Grk(K
n). It occurs as a subbundle of nε.

Exercise 16.6. Prove that ξn,k, as defined above, is locally trivial, so is a vector bundle over
Grk(K

n).

For instance, when k = 1, we have Gr1(Rn) = RPn−1. The tautologous bundle ξn,1 is 1-
dimensional; it is a line bundle, the canonical line bundle over RPn−1. We may write λ for this or
any line bundle.

Example 16.7. Let M be a smooth manifold. Define τM to be the tangent bundle TM ↓M over
M . For example, if M = Sn−1, then

TSn−1 = {(x, v) ∈ Sn−1 × Rn : v · x = 0}.
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Constructions with vector bundles

Just about anything that can be done for vector spaces can also be done for vector bundles:

1. The pullback of a vector bundle is again a vector bundle: If p : E → B is a vector bundle
then the map p′ in the pullback diagram below is also a vector bundle.

E′
f //

p′

��

E

p

��
B′

f
// B

The pullback of ξ : E ↓ B bundle may be denoted f∗ξ.

There’s a convenient way characterize a pullback: the top map f in the pullback diagram has
two key properties: It covers f , and it is a linear isomorphism on fibers. These conditions
suffice to present p′ as the pullback of p along f .

2. If p : E → B and p′ : E′ → B′, then the product map p × p′ : E × E′ → B × B′ is a vector
bundle whose fiber over (x, y) is the vector space p−1(x)× p′−1(y).

3. If B = B′, we can form the pullback:

E ⊕ E′ //

��

E × E′

��
B

∆ // B ×B

The bundle ξ⊕ξ′ : E⊕E′ ↓ B is called the Whitney sum of ξ : E ↓ B and ξ′ : E′ ↓ B. (Hassler
Whitney (1907–1989) working mainly at the Institute for Advanced Study in Princeton, is
responsible for many early ideas in geometric topology.) For instance,

nε = ε⊕ · · · ⊕ ε.

4. If ξ : E ↓ B and ξ′ : E′ ↓ B are two vector bundles over B, we can form another vector
bundle ξ ⊗ ξ′ over B by taking the fiberwise tensor product. Likewise, taking the fiberwise
Hom produces a vector bundle Hom(ξ, ξ′) over B.

Example 16.8. Recall from Example 16.5 the tautological bundle λ over RPn−1. The tangent
bundle τRPn−1 also lives over RPn−1. It is natural to wonder what is the relationship between these
two bundles. We claim that

τRPn−1 = Hom(λ, λ⊥)

where λ⊥ denotes the fiberwise orthogonal complement of λ in nε. To see this, make use of the dou-
ble cover Sn−1 ↓ RPn−1. The projection map is smooth, and covered by a fiberwise isomorphism of
tangent bundles. The fibers TxSn−1 and T−xSn−1 are both identified with the orthogonal comple-
ment of Rx in Rn, and the differential of the antipodal map sends v to −v. So the tangent vector
to ±x ∈ RPn−1 represented by (x, v) is the same as the tangent vector represented by (−x,−v).
This tangent vector determines a homomorphism λx → λ⊥x sending tx to tv.

Exercise 16.9. Prove that
τGrk(Rn) = Hom(ξn,k, ξ

⊥
n,k) .
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Metrics and splitting exact sequences

A map of vector bundles, ξ → η, over a fixed base can be identified with a section of Hom(ξ, η). We
have seen that the kernel and cokernel of a homomorphism will be vector bundles only if the rank
is locally constant.

In particular, we can form kernels of surjections and cokernels of injections; and consider short
exact sequences of vector bundles. It is a characteristic of topology, as opposed to analytic or
algebraic geometry, that short exact sequences of vector bundles always split. To see this we use a
“metric.”

Definition 16.10. A metric on a vector bundle is a continuous choice of inner products on the
fibers.

Lemma 16.11. Any (numerable) vector bundle ξ admits a metric.

Proof. This will use the fact that if g, g′ are both inner products on a vector space then tg+(1− t)g′
(for t between 0 and 1) is another. So the space of metrics on a vector bundle E ↓ B forms a convex
subset of the vector space of continuous functions E ×B E → R.

Pick a trivializing open cover U for ξ, and for each U ∈ U an isomorphism ξ|U ∼= U × VU . Pick
an inner product gU on each of the vector spaces VU . Pick a partition of unity subordinate to U ;
that is, functions φU : U → [0, 1] such that the preimage of (0, 1] is U and∑

x∈U
φU (x) = 1 .

Now the sum
g =

∑
U

φUgU

is a metric on ξ.

Corollary 16.12. Any exact sequence 0 → ξ′ → ξ → ξ′′ → 0 of vector bundles (over the same
base) splits.

Proof. Pick a metric for ξ. Using it, form the orthogonal complement ξ′⊥. The composite

ξ
′⊥ ↪→ ξ → ξ′′

is an isomorphism. This provides a splitting of the surjection ξ → ξ′′ and hence of the short exact
sequence.

17 Principal bundles, associated bundles

I-invariance

We will denote by Vect(B) the set of isomorphism classes of vector bundles over B, and Vectn(B)
the set of n-plane bundles.

Exercise 17.1. Justify the use of the word “set”!
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Vector bundles pull back, and isomorphic vector bundles pull back to isomorphic vector bundles.
This establishes Vect as a contravariant functor on Top:

Vect : Topop → Set .

How computable is this functor? As a first step in answering this, we note that it satisfies the
following characteristic property of bundle theories.

Theorem 17.2. The functor Vect is I-invariant (where I denotes the unit interval): that is, the
projection pr1 : X × I → X induces an isomorphism Vect(X)→ Vect(X × I).

We will prove this in the next lecture. The map pr1 : X × I → X is a split surjection, so
pr∗1 : Vect(X)→ Vect(X × I) is a split injection. Surjectivity is harder.

An important corollary of this result is:

Corollary 17.3. Vect is a homotopy functor.

Proof. Let ξ : E ↓ B be a vector bundle and suppose H : B′ × I → B a homotopy between two
maps f0 and f1. We are claiming that f∗0 ξ∼= f∗1 ξ. This is far from obvious!

In the diagram
B′

in0

��

f0

##
B′ B′ × I

pr1oo h // B

B′

in1

OO

f1

<<

the map pr1 induces a surjection in Vect by Theorem 17.2. It follows that in∗0 = in∗1, so f∗0 =
in∗0 ◦ h∗ = in∗1 ◦ h∗ = f∗1 .

Principal bundles

Definition 17.4. Let G be a topological group. A principal G-bundle is a right action of G on a
space P such that:

1. G acts freely.

2. The orbit projection P → P/G is a fiber bundle.

There’s a famous video of J.-P. Serre talking about writing mathematics. In it he says you
have to know the difference between “principle” and “principal”. He contemplated what a “bundle
of principles” might be – varying over a moduli space of individuals, perhaps.

We will only care about Lie groups, among which are discrete groups.
Principal bundles are not unfamiliar objects, as the next example shows.

Example 17.5. Suppose G is discrete. Then the fibers of the orbit projection P → P/G are all
discrete. Therefore, the condition that P → P/G is a fiber bundle is simply that it’s a covering
projection. Such an action is sometimes said to be “properly discontinuous.”

As a special case, let X be a space with universal cover X̃ ↓ X (so X is path connected and semi-
locally simply connected). Then π1(X) acts freely on X̃, and p : X̃ → X is the orbit projection; we
have a principal π1(X)-bundle. Explicit examples include the principal C2-bundles Sn−1 ↓ RPn−1.
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We can use the universal cover to classify covering spaces of X. Remember how this goes: The
fundamental group at ∗ acts on the fiber over ∗ of any covering projection to produce a left π1(X)-
set. A functor in the other direction is given as follows. Let F be any set with left π1(X)-action,
and form the “balanced product”

X̃ ×π1(X) F = X̃ × F/ ∼

where (y, gz) ∼ (yg, z), for elements y ∈ X̃, z ∈ F , and g ∈ π1(X). The composite p◦pr1 : X̃×F →
X factors to give a map

X̃ ×π1(X) F → X

that is a covering projection.

Theorem 17.6 (Covering space theory). Suppose that X is path-connected and semi-locally simply
connected. Then these constructions provide an equivalence of categories{

Left π1(X)-sets
equivariant bijections

}
∼=
{
Covering spaces of X

isomorphisms

}
.

This story motivates constructions in the more general setting of principal G-bundles.

Construction 17.7. Let P ↓ B be a principal G-bundle. If F is a left G-space, we can define a
new fiber bundle, “associated” to P ↓ B, exactly as above:

P ×G F
q

��
B

Let’s check that the fibers are homeomorphic to F . Let x ∈ B, and pick y ∈ P over x. Map
F → q−1(x) by z 7→ [y, z]. We claim that this is a homeomorphism. The inverse q−1(x) → F is
given by

[y′, z′] = [y, gz′] 7→ gz′,

where y′ = yg for some g (which is necessarily unique since the G action is simply transitive on
fibers of P ). These two maps are inverse homeomorphisms.

If F is a finite dimensional vector space on which G acts linearly, then we get a vector bundle
from this construction.

Let ξ : E ↓ B be an n-plane bundle. Construct a principal GLn(R)-bundle P (ξ) by defining

P (ξ)b = {ordered bases for E(ξ)b = Iso(Rn, E(ξ)b)} .

To define the topology, think of P (ξ) as a quotient of the disjoint union of trivial bundles over the
open sets in a trivializing cover for ξ; while for trivial bundles

P (B × Rn) = B × Iso(Rn,Rn)

topologically, where Iso(Rn,Rn) = GLn(R) is given the usual topology as a subspace of Rn2 .
There is a right action of GLn(R) on P (ξ), given by precomposition. It is easy to see that this

action is free and simply transitive on fibers. One therefore has a principal action of GLn(R) on
P (ξ). The bundle P (ξ) is called the principalization of ξ.
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Given the principalization P (ξ), we can recover the total space E(ξ), using the defining linear
action of GLn(R) on Rn:

E(ξ)∼=P (ξ)×GLn(R) Rn .

These two constructions are inverses: the theories of n-plane bundles and of principal GLn(R)-
bundles are equivalent.

Remark 17.8. Suppose that we have a metric on ξ. Instead of looking at all ordered bases, we
can use instead all ordered orthonormal bases in each fiber. This give the frame bundle

Fr(ξ)b = {ordered orthonormal bases of E(ξ)b} = {isometric isomorphisms Rn → E(ξ)b} .

The orthogonal group O(n) acts freely and fiberwise transitively on this space, endowing Fr(ξ) with
the structure of a principal O(n)-bundle.

Providing a vector bundle with a metric, when viewed in terms of the associated principal
bundles, is an example of “reduction of the structure group.” We are giving a principal O(n)
bundle P together with an isomorphism of principal GLn(R) bundles from P ×O(n) GLn(R) to the
principalization of ξ. Many other geometric structures can be described in this way. An orientation
of ξ, for example, consists of a principal SLn(R) bundle Q together with an isomorphism from
Q×SLn(R) GLn(R) to the principalization of ξ.

Fix a topological group G. Define BunG(B) as the set of isomorphism classes of G-bundles over
B. An isomorphism is a G-equivariant homeomorphism over the base. Again, arguing as above,
this leads to a contravariant functor BunG : Top → Set. The above discussion gives a natural
isomorphism of functors:

BunGLn(R)(B)∼= Vect(B).

The I-invariance of Vect is therefore a special case of:

Theorem 17.9. BunG is I-invariant, and hence is a homotopy functor.

One case is easy to prove: If X is contractible, then any principal G-bundle P ↓ X is trivial.
It’s enough to construct a section. Since the identity map on X is homotopic to a constant map
(with value ∗ ∈ X, say), the constant map cp : X → Q for any p ∈ P over ∗ ∈ X makes

P

��
X

cp
>>

// X

commute up to homotopy. But since P ↓ X is a fibration, this implies that there is then an actual
section. And a section of a principal bundle determines a trivialization of it.

We have considered only isomorphisms of principal bundles. But any continuous equivariant
map of principal bundles over the same base that covers the identity endomorphism of the base is
in fact an isomorphism.

18 I-invariance of BunG, and G-CW-complexes

Let G be a topological group. We want to show that the functor BunG : Topop → Set is I-
invariant, i.e., the projection pr1 : X × I → X induces an isomorphism BunG(X)

∼=−→ BunG(X × I).
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Injectivity is easy: the composite X in0−−→ X × I pr1−−→ X is the identity and gives you a splitting

BunG(X)
pr∗1−−→ BunG(X × I)

in∗0−−→ BunG(X).
The rest of this lecture is devoted to proving surjectivity. There are various ways to do this.

Husemoller does the general case; see [13, §4.9]. Steve Mitchell has a nice treatment in [28]. We
will prove this when X is a CW-complex, by adapting CW methods to the equivariant situation.

To see the point of this approach, notice that the word “free” is used somewhat differently in the
context of group actions than elsewhere. The left adjoint of the forgetful functor from G-spaces to
spaces sends a space X to the G-space X ×G in which G acts, from the right, by (x, g)h = (x, gh).
If G and X are discrete, any free action of G on X has this form. But this is not true topologically:
just think of the antipodal action of C2 on the circle, for instance.

The condition that an action is principal is one way to demand that an action should be “locally”
free in the stronger sense. G-CW complexes afford a different way.

G-CW-complexes

We would like to set up a theory of CW-complexes with an action of the group G. The relevant
question is, “What is a G-cell?” There is a choice here. For us, and for the standard definition of a
G-CW-complex, the right thing to say is that it is a G-space of the form

Dn ×H\G .

Here H is a closed subgroup of G, and H\G is the orbit space of the action of H on G by left
translation, viewed as a right G-space. The “boundary” of the G-cell Dn×H\G is just ∂Dn×H\G
(with the usual convention that ∂D0 = ∅).

Definition 18.1. A relative G-CW-complex is a (right) G-space X with a filtration

A = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X

by G-subspaces such that for all n ≥ 0 there exists a pushout square of G-spaces∐
∂Dn

i ×Hi\G //

��

∐
Dn
i ×Hi\G

��
Xn−1

// Xn ,

and X has the direct limit topology.

Remarks 18.2. A CW-complex is just a G-CW-complex for the trivial group G. If G is discrete,
the skeleton filtration provides X with the structure of a CW-complex by neglect of the G-action.
The subspace Xn is called the n-skeleton of X, even though if G is itself of positive dimension Xn

may well have dimension larger than n.
If X is a G-CW-complex, then X/G inherits a CW-structure whose n-skeleton is given by

(X/G)n = Xn/G.
If P ↓ X is a principal G-bundle, a CW-structure on X lifts to a G-CW-structure on P .
The action of G on a G-CW complex is principal if and only if all the isotropy groups are trivial.
A good source for much of this is [18]; see for example Remark 2.8 there.

Theorem 18.3 (Illman [14], Verona). If G is a compact Lie group and M a smooth manifold on
which G acts by diffeomorphisms, then M admits a G-CW structure.
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It’s quite challenging in general to write down a G-CW structure even in simple cases, such as
when the manifold is the unit sphere in an orthogonal representation of G. But sometimes it’s easy.
For example, the standard CW structure on RPn−1, with one k-cell for each k with 0 ≤ k ≤ n− 1,
lifts to a C2-CW structure on Sn−1. In it, the (k − 1)-skeleton is Sk−1, for each k ≤ n, and there
are two k-cells, given by the upper and lower hemisphere of Sk.

For another example, regard S1 as the complex numbers of magnitude 1, equipped with a C2

action by complex conjugation. This has a C2-CW structure with 0-skeleton given by {±1} a single
free 1-cell.

Proof of I-invariance

Recall that our goal is to prove that every principal G-bundle p : P → X × I is pulled back from
some principle G-bundle over X. Actually there’s no choice here; since pr1 ◦ in0 = 1, P must be
pulled back from in∗0P , that is, from the restriction of P to X × 0.

For notational convenience, let us write Y = X × I. Remember that we are assuming that X is
a CW-complex. We will filter Y by subcomplexes, as follows. Let Y0 = X × 0; in general, we define

Yn = Xn × 0 ∪Xn−1 × I.

We may construct Yn from Yn−1 via a pushout:

∐
(∂Dn−1 × I ∪Dn−1 × 0) //

��

∐
(Dn−1 × I)

��
Yn−1

// Yn,

The restriction of P to Yn is a principal bundle with total space

Pn = p−1(Yn) .

So P0 ↓ Y0 is just in∗0P ↓ X.
We will show that P and pr∗1in∗0P are isomorphic over Y . For this it will be enough to construct

an equivariant map P → in∗0P covering the projection map pr1 : Y → X. We’ll do this by inductively
constructing compatible equivariant maps Pn → P0 covering the composites Yn ↪→ Y → X, starting
with the identity map P0 → in∗0P covering the isomorphism Y0 → X.

We can build Pn from Pn−1 by lifting the pushout construction of Yn from Yn−1:

∐
(∂Dn−1 × I ∪Dn−1 × 0)×G //

��

∐
(Dn−1 × I)×G

��
Pn−1

// Pn
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So to extend Pn−1 → P0 to Pn → P0, we must construct an equivariant map f in∐
(∂Dn−1 × I ∪Dn−1 × 0) //

��

∐
(Dn−1 × I)

��

��∐
(∂Dn−1 × I ∪Dn−1 × 0)×G //

��

∐
(Dn−1 × I)×G

f

��

��
Pn−1

,,

// Pn

''
P0

(3.1)

covering the map Yn → Y0. Since the action is free, it’s enough to define f on Dn−1 × I for each
cell, in such a way that the diagram

∂Dn−1 × I ∪Dn−1 × 0 //

��

Dn−1 × I

��

��

Pn−1

��

// P0

��
Yn−1

// Y0

commutes, and then extend by equivariance. Since

(Dn−1 × I, ∂Dn−1 × I ∪Dn−1 × 0)∼=(Dn−1 × I,Dn−1 × 0) ,

what we have is:
Dn−1 × 0

��

// P0

��
Dn−1 × I //

::

Y0

So the dotted map exists, since P0 → Y0 is a fibration!

19 The classifying space of a group

Representability

Theorem 19.1. Let G be a topological group and ξ : E ↓ B a principal G-bundle such that E is
weakly contractible (just as a space, forgetting the G-action). For any CW complex X, the map

[X,B]→ BunG(X)

sending a map f : X → B to the isomorphism class of f∗ξ is bijective.

This theorem as two parts: surjectivity and injectivity. Both are proved using the following
proposition.
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Proposition 19.2. Let E be a G-space that is weakly contractible as a space. Let (P,A) be a free
relative G-CW complex. Then any equivariant map f : A → E extends to an equivariant map
P → E, and this extension is unique up to an equivariant homotopy rel A.

Proof. Just do what comes naturally, after the experience of the proof of I-invariance!

Proof of Theorem 19.1. Surjectivity is immediate; take A = ∅.
To prove injectivity, let f0, f1 : P → E be two equivariant maps. We wish to show that they are

homotopic by an equivariant homotopy, which thus descends to a homotopy between the induced
maps on orbit spaces. Our data give an equivariant map A = P × ∂I → E, which we extend to an
equivariant map from P × I again using Proposition 19.2.

As usual, the representing object is unique up to isomorphism (in the homotopy category). Any
choice of contractible free G-CW complex will be written EG, and its orbit space BG. EG ↓ BG
is the universal principal G-space, and BG classifies principal G-bundles.

What remains is to construct a G-CW complex that is both free and contractible. There are
many ways to do this. One can use Brown Representability, for example.

When the group is discrete, say π, this amounts to finding a K(π, 1): the action of π on
the universal cover is “properly discontinuous,” which is to say principal. So we have a bunch of
examples! For instance, let π = π1(Σ) where Σ is any closed connected surface other than S2 and
RP 2. Then any principal π-bundle over any CW-complex B is pulled back from the universal cover
of Σ under a unique homotopy class of maps B → Σ.

If G is a compact Lie group – for example a finite group – there is a very geometric way to go
about this, based on the following result.

Theorem 19.3 (Peter-Weyl, [17, Corollary IV.4.22]). Any compact Lie group admits a finite-
dimensional faithful unitary representation.

Clearly, if P is free as a G-space then it is also free as an H-space for any subgroup H of G. It’s
also the case that a if P is a principal G-space then it is also a principal H space, provided that H
is a closed subgroup of G.

Combining these facts, we see that in order to construct a universal principal G action, for any
compact Lie group G, it suffices to construct such a thing for the particular Lie groups U(n).

Gauss maps

Before we look for highly connected spaces on which U(n) acts, let’s look at the case in which the
base space is a compact Hausdorff space (for example a finite complex). In this case we can be more
geometically explicit about the classifying map.

Lemma 19.4. Over a compact Hausdorff space, any vector bundle embeds in a trivial bundle.

Proof. Let U be a trivializing open cover of the base B; since B is compact, we may assume that
U is finite, with, say, k elements U1, . . . , Uk. We agreed that our vector bundles would always
be numerable, but we don’t even have to mention this here since compact Hausdorff spaces are
paracompact. So we can choose a partition of unity {φi} subordinate to U . By treating path
components separately if need be, we may assume that our vector bundle ξ : E ↓ B is an n-plane
bundle, with projection p. The trivializations are fiberwise isomorphisms gi : p−1(Ui) → Rn. We
can assemble these maps using the partition of unity, and define g : E → (Rn)k as the unique map
such that

prig(e) = φi(p(e))gi(e) .
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This is a fiberwise linear embedding. The map e 7→ (p(e), g(e)) is an embedding into the trivial
bundle B × Rnk.

We can now use the standard inner product on Rnk (or any other metric on B × Rnk) to form
the complement of E:

Corollary 19.5. Over a compact Hausdorff space, any vector bundle has a complement (i.e. a
vector bundle ξ⊥ such that ξ ⊕ ξ⊥ is trivial).

Suppose our vector bundle has fiber dimension n. The image of g(Ex) is an n-plane in Rnk; that
is, an element f(x) ∈ Grn(Rnk). We have produced a diagram

E
g //

ξ

��

E(ξnk,n)

��
B

f // Grn(Rnk)

that expresses ξ as the pullback of the tautologous bundle ξnk,n under a map f : B → Grn(Rnk).
This map f , covered by a bundle map, is a Gauss map for ξ.

The Grassmannian model

The frame bundle of the tautologous vector bundle over the Grassmannian Grn(Cn+k) is the complex
Stiefel manifold

Vn(Cn+k) = {isometric embeddings Cn ↪→ Cn+k} .

Ehresmann’s Theorem 4.5 (for example) tells us that the projection map

Vn(Cn+k) ↓ Grn(Cn+k)

sending an embedding to its image is a fiber bundle, so we have a principal U(n)-bundle.
How connected is this complex Stiefel variety? U(q) acts transitively on the unit sphere in Cq

and the isotropy group of the basis vector eq is U(q− 1) embedded in U(q) in the upper left corner.
So we get a tower of fiber bundles with the indicated fibers:

S2k+1 // U(n+ k)/U(k)

��

= Vn(Cn+k)

S2k+3 // U(n+ k)/U(1 + k)

��
...

��
S2(n+k)−1 = // U(n+ k)/U((n− 1) + k) .

The long exact homotopy sequence shows that Vn(Cn+k) is (2k)-connected. It’s a “twisted product”
of the the spheres S2k+1, S2k+3, · · · , S2(n+k)−1.

So forming the direct limit
Vn(C∞) = lim

k→∞
Vn(Cn+k)
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gives us a contractible CW complex with a principal action of U(n). The quotient map

Vn(C∞) ↓ Vn(C∞)/U(n) = Grk(C∞)

provides us with a universal principal U(n) bundle, and hence also a universal n-plane bundle ξn.
An element of E(ξn) is an n-dimensional subspace of the countably infinite dimensional vector space
C∞. This is the “infinite Grassmannian,” and it deserves the symbol BU(n).

Dividing by a closed subgroup G ⊆ U(n) provides us with a model for BG. Of course sometimes
we have more direct constructions; for example the same observations show that BO(n) is the space
of n-planes in R∞.

20 Simplicial sets and classifying spaces

We encountered simplicial sets at the very beginning of 18.905, as a step on the way to constructing
singular homology. We will take this story up again here, briefly, because simplicial methods
provide a way to organize the combinatorial data needed for the construction of classifying spaces
and maps. It turns out that simplicial sets actually afford a completely combinatorial model for
homotopy theory, though that is a story for another time.

Simplex category and nerve

The simplex category ∆ has as objects the finite totally ordered sets

[n] = {0, 1, . . . , n} , n ≥ 0 ,

and as morphisms the order preserving maps. In particular the “coface” map di : [n] → [n + 1] is
injection omitting i and the “codegeneracy” map si : [n]→ [n−1] is the surjection repeating i. Any
order-preserving map can be written as the composite of these maps, and there are famous relations
that they satisfy. They generate the category ∆.

The standard (topological) simplex is the functor ∆ : ∆ → Top defined by sending [n] to the
“standard n-simplex” ∆n, the convex hull of the standard basis vectors e0, e1, . . . , en in Rn+1. Order-
preserving maps get sent to the affine extension of the map on basis vectors. So di includes the ith
codimension 1 face, and si collapses onto a codimension 1 face.

Definition 20.1. Let C be a category. Denote by sC the category of simplicial objects in C, i.e.,
the category Fun(∆op, C). We write Xn = X([n]) for the “object of n-simplices.”

A simplicial object can be defined by giving an object Xn ∈ C for every n ≥ 0 along with maps
di : Xn+1 → Xn and si : Xn−1 → Xn satisfying certain quadratic identities.

Our first example of a simplicial object is the singular simplicial set Sin(X) of a space X:

Sin(X)n = Sinn(X) = Top(∆n, X) .

There is a categorical analogue of ∆ : ∆→ Top. After all, the ordered set [n] is a particularly
simple small category: ∆ is a full subcategory of the category of small categories. So a small
category C determines a simplicial set NC, the nerve of C, with

(NC)n = NnC = Fun([n], C) .

Thus N0C is the set of objects of C; N1C is the set of morphisms; d0 : N1C → N0C sends a
morphism to its target, and d1 : N1C → N0C sends a morphism to its source; s0 : N0C → N1C
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sends an object to its identity morphism. In general NnC is the set of n-chains in C: composable
sequences of n morphisms. For 0 < i < n, the face map di : NnC → Nn−1C forms the composite of
two adjacent morphisms, while d0 omits the initial morphism and dn omits the terminal morphism.
Degeneracies interpose identity maps.

For example, a group G can be regarded as a small category, one with just one object. We
denote it again by G. Then NnG = Gn, and for 0 < i < n

di(g1, . . . , gn) = (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) .

while
d0(g1, . . . , gn) = (g2, . . . , gn) , dn(g1, . . . , gn) = (g1, . . . , gn−1) .

In general, the nerve construction allows us to regard small categories as a special class of sim-
plicial sets. This attitude is the starting point for the theory of “quasi-categories” or “∞-categories,”
which constitute a somewhat more general class of simplicial sets.

Realization

The functor Sin transported us from spaces to simplicial sets. Milnor [24] described how to go the
other way.

Let K be a simplicial set. The geometric realization |K| of K is

|K| =
(∐
n≥0

∆n ×Kn

)
/ ∼

where ∼ is the equivalence relation defined by:

∆m ×Km 3 (v, φ∗x) ∼ (φ∗v, x) ∈ ∆n ×Kn

for all maps φ : [m]→ [n].

Example 20.2. The equivalence relation is telling us to glue together simplices as dictated by
the simplicial structure on K. To see this in action, let us look at φ∗ = di : Kn+1 → Kn and
φ∗ = di : ∆n → ∆n+1. In this case, the equivalence relation then says that (v, dix) ∈ ∆n ×Kn is
equivalent to (div, x) ∈ ∆n+1 ×Kn+1. In other words: the ith face of the n+ 1 simplex labeled by
x is identified with the n-simplex labeled by dix.

There’s a similar picture for the degeneracies si, where the equivalence relation dictates that
every element of the form (v, six) is already represented by a simplex of lower dimension. A simplex
in a simplicial set is “nondegenerate” if it is not in the image of a degeneracy map. Neglecting the
topology, |X| is the disjoint union of (topological) simplex interiors labeled by the nondegenerate
simplices of K.

Example 20.3. Let n ≥ 0, and consider the simplicial set ∆(−, [n]). This is called the “simplicial
n-simplex”, for good reason: Its geometric realization is canonically homeomorphic to the geometric
n-simplex ∆n.

The realization |K| of a simplicial set has a naturally defined CW structure with

skn|K| =
( ∐
k≤n

∆k ×Kk

)
/ ∼ .
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The face maps give the attaching maps; for more details, see [11, Proposition I.2.3]. This is a very
combinatorial way to produce CW-complexes.

The geometric realization functor and the singular simplicial set functor form one of the most
important and characteristic examples of an adjoint pair:

| − | : sSet � Top : Sin

The adjunction morphisms are easy to describe. For K ∈ sSet, the unit for the adjunction K →
Sin|K| sends x ∈ Kn to the map ∆n → |K| defined by v 7→ [(v, x)].

To describe the counit, let X be a space. There is a continuous map ∆n × Sinn(X)→ X given
by (v, σ) 7→ σ(v). The equivalence relation defining |Sin(X)| says precisely that the map factors
through the dotted map in the following diagram:

|Sin(X)| // X

∐
∆n × Sinn(X)

88
OOOO

A theorem of Milnor [24] asserts that this map is a weak equivalence. This provides a functorial
(and therefore spectacularly inefficient) CW approximation for any space.

This adjoint pair enjoys properties permitting the wholesale comparison of the homotopy theory
of spaces with a combinatorially defined homotopy theory of simplicial sets. For more details, see
for example [11].

Classifying spaces

Combining the two constructions we have just discussed, we can assign to any small category C a
space

BC = |NC| ,

known as its classifying space. For example, B[n] = ∆n.
When C is a group, G, this space does in fact support a principal G-bundle. Before we explain

that, let’s look at the example of the group C2 of order 2. Write t for the non-identity element of
C2. There is just one non-degenerate n simplex in NC2 for any n ≥ 0, namely (t, t, . . . , t). So the
realization BC2 has a single n-cell for every n. Not bad, since it’s supposed to be a CW structure
on RP∞! Think about what the low skelata are. There’s just one object, so (BC2)0 = ∗. There is
just one nondegenerate 1-simplex, (t) ∈ C1

2 , so (BC2)1 is a circle. There’s just one nondegenerate
2-simplex, (t, t) ∈ C2

2 . Its faces are

d0(t, t) = t , d1(t, t) = t2 = 1 , d2(t, t) = t .

The middle face has been identified with * since it’s degenerate, and we see a standard representation
of RP 2 as a “lune” with its two edges identified. A similar analysis shows that (BC2)n = RPn for
any n.

The projection maps C ×D → C and C ×D → D together induce a natural map

B(C ×D)→ BC ×BD .

Lemma 20.4. The classifying space construction sends natural transformations to homotopies.
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Proof. A natural transformation of functors C → D is the same thing as a functor C × [1] → D.
Since B[1] = ∆1, we can form the homotopy

BC ×∆1 = BC ×B[1]→ B(C × [1])→ BD

Corollary 20.5. An adjoint pair induces a homotopy equivalence on classifying spaces.

Corollary 20.6. If C contains an initial object or a terminal object then BC is contractible.

Proof. Saying that o ∈ C is initial is saying that the inclusion o : [0]→ C is a left adjoint.

The following is a nice surprise, and requires the use of the compactly generated topology on
the product.

Theorem 20.7. The natural map B(C ×D)→ BC ×BD is a homeomorphism.

Sketch of proof. This is nontrivial – not “categorical” – because it asserts that certain limits commute
with certain colimits. The underlying fact is the Eilenberg-Zilber theorem, which gives a simplicial
decomposition of ∆m × ∆n and verifies the result when C = [m] and D = [n]. The general
result follows since every simplicial set is a colimit of its “diagram of simplicies,” and B respects
colimits.

The translation groupoid

An action of G on a set X determines a category, a groupoid in fact, the “translation groupoid,”
which I will denote by GX. Its object set is X, and

GX(x, y) = {g ∈ G : gx = y}

Composition comes from the group multiplication. This is a special case of the “Grothendieck
construction.”

When X = ∗ we recover the category G. Another case of interest is when X = G with G acting
from the left by translation. The category GG is “unicursal”: there is exactly one morphism between
any two objects; every object is both initial and terminal. This implies that B(GG) is contractible.

The association
X 7→ GX 7→ N(GX) 7→ |N(GX)| = B(GX)

is functorial. In particular, right multiplication by g ∈ G on the set G is equivariant with respect
to the left action of G on it. Therefore G acts from the right on GG and hence on B(GG). This is
a “free” action: no g ∈ G except the identity element fixes any simplex. This implies that B(GG)
admits the structure of a free G-CW complex. It’s not hard to verify that B(GG)/G = BG, so we
have succeeded in constructing a functorial classifying space for any discrete group.

21 The Čech category and classifying maps

In this lecture I’ll sketch a program due to Graeme Segal [33] (1941–, Oxford) for classifying principal
G-bundles using the simplicial description of the classifying space proposed in the last lecture. That
machinery admits an extension to general topological groups.



21. THE ČECH CATEGORY AND CLASSIFYING MAPS 69

Top-enrichment

The Grassmannian model provides a classifying space for any compact Lie group. This includes
finite discrete groups, which are also covered by the construction we just did. But we’d like to
provide a construction to cover arbitrary topological groups.

Definition 21.1. A category enriched in Top is a category C together with topologies on all the
morphism sets, with the property that the composition maps are continuous.

The fact that Top is Cartesian closed provides us with an enrichment in Top of the category Top
itself. A simpler (and smaller) example is given by any topological group (or monoid), regarded as
a category with one object. Then a continuous action of G on a space X is just a functor G→ Top
that is continuous on hom spaces: a “topological functor.”

The “nerve” construction now produces a simplicial space,

NG ∈ sTop

associated to any topological group G. The formula for geometric realization still makes perfectly
good sense for a simplicial space. (It won’t generally be a CW complex anymore, but it does have
a useful “skeleton” filtration given by assembling only simplices of dimension up to n.) Combining
the two constructions, we may form the “classifying space”

BG = |NG| .

This provides a functorially defined classifying space for topological groups.

Internal categories

To justify this language, we should produce a principal G-bundle over this space with contractible
total space. This construction requires one further invasion of topology into category theory (or
vice versa), namely, an “internal category” in Top.

Definition 21.2. Top-category is a pair of spaces C0 and C1 (to be thought of as the space of
objects and the space of morphisms), together with continuous structure maps

source, target : C1 ⇒ C0 , identity : C0 → C1

composition : C1 ×C0 C1 → C1

satisfying the axioms of a category.

If the object space is discrete, this is just an enrichment in Top. But there are other important
examples. The simplest one is entirely determined by a space X: write cX for it. Just take it
(cX)0 = (cX)1 = X with the “identity” map (cX)0 → (cX)1 given by the identity map.

The nerve and classifying space constructions carry over without change to this new setting.
(NC)0 will no longer be discrete. The classifying space of cX is justX, for example. The observation
that an adjoint pair yields a homotopy equivalence still holds.

Now suppose that G acts on a space X. The construction of GX carried out in the previous
lecture provides us with a Top-category. Its classifying space maps to that of G, since X maps to
a point.

Proposition 21.3. If G is a Lie group (and much more generally as well) the map B(GG)→ BG
is a principal G-bundle, and B(GG) is contractible.
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So this gives the classifying space of G, functorially in G. It’s not hard to see that in fact

B(GX) = B(GG)×G X .

This degree of generality provides an inductive way to construct Eilenberg Mac Lane spaces
explicitly. Begin with any discrete abelian group π. Apply the classifying space construction we’ve
just described, to obtain a K(π, 1). Now being abelian is equivalent to the multiplication map
π × π → π being a homomorphism. So we may leverage the functoriality of B, and the fact that it
commutes with products, and form

Bπ ×Bπ∼=B(π × π)→ Bπ .

This provides on Bπ the structure of a topological abelian group. So we can apply B again:
BBπ = K(π, 2). And so on:

Bnπ = K(π, n) .

Descent

Let π : Y → X be a map of spaces. We can use it to define a Top-category, the “descent category”
or “Čech category” Č(π), as follows. The space of objects is X, and the space of morphisms is
Y ×X Y . The structure maps are given by

id = ∆ : Y → Y ×X Y y 7→ (y, y)

source = pr1 : Y ×X Y → Y (y1, y2)→ y1

target = pr2 : Y ×X Y → Y (y1, y2)→ y2

composition : (Y ×X Y )×Y (Y ×X Y )→ Y ×X Y ((y1, y2), (y2, y3)) 7→ (y1, y3) .

There is a continuous functor
π̌ : Č(π)→ cX

determined by mapping the object space by the identity.
This construction is best understood from its motivating case. Suppose that U is a cover of X

and let
Y =

∐
U∈U

U,

mapping to X by sending x ∈ U to x ∈ X. Then

Y ×X Y =
∐

(U,V )∈U×U

U ∩ V ,

the disjoint union of intersections of ordered pairs of elements of U . Source and target just embed
U ∩ V into U and V .

In this case let’s write Č(U) for the Čech category. In good cases we can recover X from Č(U):

Proposition 21.4. If the open cover U of X admits a subordinate partition of unity, then Bπ̌ :
BČ(U)→ X is a homotopy equivalence.

Proof. A sequence U0, U1, . . . Un of elements of U together with a point x in their intersection
determines a chain (x ∈ U0) → (x ∈ U1) → · · · → (x ∈ Un) in the category Č(U). The counit of
the realization-singular adjunction then gives a map

ε : ∆n × (U0 ∩ U1 ∩ · · · ∩ Un)→ BČ(U) .
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Now let {φU : U ∈ U} be a partition of unity subordinate to U , so that, for every x ∈ X, φU (x) = 0
for all but finitely many U ∈ U , and

∑
U φU = 1. Pick a partial order on the elements of U that is

total on any subset with nonempty intersection. For any x let U0(x), . . . , Un(x)(x) be the ordered
sequence of elements of U that contain x. Then define

X → BČ(U)

by sending
x 7→ ε((φU0(x)(x), . . . , φUn(x)(x)(x)), x) .

It’s not hard to check that this gives a well-defined map that is homotopy inverse to Bπ̌.

Remark 21.5. A final comment: In [33] Segal explains how to use these methods to construct
a spectral sequence from this approach, one that includes the Serre spectral sequence and more
generally the topological version of the Leray spectral sequence. We won’t pursue that avenue in
these lectures, though, but instead will describe two other approaches.

Transition functions, cocycles, and classifying maps

Now suppose that p : P → B is a principal G-bundle. Pick a trivializing open cover U , along with
trivializations ϕU : p−1U → U ×G for U ∈ U . These data determine a continuous functor

Č(U)→ G

as follows. There’s no choice about behavior on objects. On morphisms, we use the “transition
functions” associated with the given trivializations. So for U, V ∈ U , the intersection U ∩ V is a
subspace of the space of morphisms in Č(U). We map it to G by

x 7→ ϕV (x)ϕU (x)−1 ∈ G .

The “cocycle condition” on these transition functions is the statement that together these maps
constitute a functor.

Therefore we get a diagram
BČ(U) //

'
��

BG

X

JJ

and one can check that the bundle EG ↓ BG pulls back to P ↓ X under the composite X → BG.
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