
Chapter 6

Electric circuits:
Hypergraph categories and operads

6.1 The ubiquity of network languages

Electric circuits, chemical reaction networks, finite state automata, Markov processes:

these are all models of physical or computational systems that are commonly described

using network diagrams. Here, for example, we draw adiagram thatmodels a flip-flop,

an electric circuit—important in computermemory—that can store a bit of information:

VS

OUTPUT

OUTPUT

SET

RESET

1KΩ

1KΩ

10KΩ

10KΩ

Network diagrams have time-tested utility. In this chapter, we are interested in

understanding the commonmathematical structure that they share, for the purposes of

translating between and unifying them; for example certain types of Markov processes

can be simulated and hence solved using circuits of resisters. When we understand

the underlying structures that are shared by network diagram languages, we can make

comparisons between the corresponding mathematical models easily.

At first glance networkdiagrams appear quite different from thewiringdiagramswe

have seen so far. For example, the wires are undirected in the case above, whereas in a
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182 CHAPTER 6. CIRCUITS: HYPERGRAPH CATEGORIES AND OPERADS

category—includingmonoidal categories seen in resource theories or co-design—every

morphism has a domain and codomain, giving it a sense of direction. Nonetheless,

we shall see how to use categorical constructions such as universal properties to create

categoricalmodels that precisely capture the above type of “network” compositionality,

i.e. allowing us to effectively drop directedness when convenient.

In particular we’ll return to the idea of a colimit, which we sketched for you at the

end of Chapter 3, and show how to use colimits in the category of sets to formalize

ideas of connection. Here’s the key idea.

Connections via colimits. Let’s say we want to install some lights: we want to create

a circuit so that whenwe flick a switch, a light turns on or off. To start, we have a bunch

of circuit components: a power source, a switch, and a lamp connected to a resistor:

We want to connect them together, but there are many ways to do so. How should we

describe the particular way that will form a light switch?

First, we claim that circuits should really be thought of as open circuits: each carries

the additional structure of an ‘interface’ exposing it to the rest of the electrical world.

Here by interface we mean a certain set of locations, or ports, at which we are able to

connect them with other components.1 As is so common in category theory, we begin

by making this more-or-less obvious fact explicit. Let’s depict the available ports using

a bold •. If we say that in the each of the three drawings above, the ports are simply

the dangling end points of the wires, they would be redrawn as follows:

Next, we have to describe which ports should be connected. We’ll do this by draw-

ing empty circles ◦ connected by arrows to two ports •. Each will be a witness-to-

connection, saying ‘connect these two!’

1
If your circuit has no such ports, it still falls within our purview, by taking its interface to be the

empty set.
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Looking at this picture, it is clear what we need to do: just identify—i.e. merge or make
equal—the ports as indicated, to get the following circuit:

But mathematics doesn’t have a visual cortex with which to generate the intuitions

we can count on with a human reader such as yourself.2 Thus we need to specify

formally what ‘identifying ports as indicated’ means mathematically. As it turns out,

we can do this using finite colimits in a given category C.

Colimits are diagramswith certain universal properties, which is kind of an epiphe-

nomenon of the category C. Our goal is to obtain C’s colimits more directly, as a kind

of operation in some context, so that we can think of them as telling us how to connect

circuit parts together. To that end, we produce a certain monoidal category—namely

that of cospans in C, denoted CospanC—that can conveniently package C’s colimits in

terms of its own basic operations: composition and monoidal product.

In summary, the first part of this chapter is devoted to the slogan ‘colimits model

interconnection’. In addition to universal constructions such as colimits, however,

another way to describe interconnection is to use wiring diagrams. We go full circle

whenwe find that these wiring diagrams are strongly connected to cospans, and hence

colimits.

Composition operations and wiring diagrams. In this book we have seen the utility

of defining syntactic or algebraic structures that describe the sort of composition op-

erations that make sense and can be performed in a given application area. Examples

include monoidal preorders with discarding, props, and compact closed categories.

Each of these has an associated sort of wiring diagram style, so that any wiring dia-

gram of that style represents a composition operation that makes sense in the given

area: the first makes sense in manufacturing, the second in signal flow, and the third

in collaborative design. So our second goal is to answer the question, “how do we

describe the compositional structure of network-style wiring diagrams?”

Network-type interconnection can be described using something called a hyper-

graph category. Roughly speaking, these are categories whose wiring diagrams are

those of symmetricmonoidal categories togetherwith, for each pair of natural numbers

(m , n), an icon sm ,n : m → n. These icons, known as spiders,3 are drawn as follows:

Two spiders can share a leg, and when they do, we can fuse them into one spider. The

intuition is that spiders are connection points for a number of wires, and when two

2
Unless the future has arrived since the writing of this book.

3
Our spiders have any number of legs.
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connection points are connected, they fuse to form an evenmore ‘connect-y’ connection

point. Here is an example:

�

A hypergraph category may have many species of spiders with the rule that spiders

of different species cannot share a leg—and hence not fuse—but two spiders of the

same species can share legs and fuse. We add spider diagrams to the iconography of

hypergraph categories.

As we shall see, the ideas of describing network interconnection using colimits and

hypergraph categories come together in the notion of a theory. We first introduced the

idea of a theory in Section 5.4.2, but here we explore it more thoroughly, starting with

the idea that, approximately speaking, cospans in the category FinSet form the theory

of hypergraph categories.

We can assemble all cospans in FinSet into something called an ‘operad’. Through-

out this book we have talked about using free structures and presentations to create

instances of algebraic structures such as preorders, categories, and props, tailored

to the needs of a particular situation. Operads can be used to tailor the algebraic

structures themselves to the needs of a particular situation. We will discuss how this

works, in particular how operads encode various sorts of wiring diagram languages

and corresponding algebraic structures, at the end of the chapter.

6.2 Colimits and connection

Universal constructions are central to category theory. They allow us to define objects,

at least up to isomorphism, by describing their relationship with other objects. So far

we have seen this theme in a number of different forms: meets and joins (Section 1.3),

Galois connections and adjunctions (Sections 1.4 and 3.4), limits (Section 3.5), and free

and presented structures (Section 5.2.3-5.2.5). Here we turn our attention to colimits.

In this section, our main task is to have a concrete understanding of colimits in the

category FinSet of finite sets and functions. The idea will be to take a bunch of sets—

say two or fifteen or zero—use functions between them to designate that elements in

one set ‘should be considered the same’ as elements in another set, and then merge the

sets together accordingly.

6.2.1 Initial objects

Just as the simplest limit is a terminal object (see Section 3.5.1), the simplest colimit is

an initial object. This is the case where you start with no objects and you merge them

together.
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Definition 6.1. Let C be a category. An initial object in C is an object � ∈ C such that for

each object T in C there exists a unique morphism !T : � → T.

The symbol � is just a default name, a notation, intended to evoke the right idea;

see Example 6.4 for the reason why we use the notation �, and Exercise 6.7 for a case

when the default name �would probably not be used.

Again, the hallmark of universality is the existence of a unique map to any other

comparable object.

Example 6.2. An initial object of a preorder is a bottom element—that is, an element that

is less than every other element. For example 0 is the initial object in (N, ≤), whereas

(R, ≤) has no initial object.

Exercise 6.3. Consider the set A � {a , b}. Find a preorder relation ≤ on A such that

1. (A, ≤) has no initial object.

2. (A, ≤) has exactly one initial object.

3. (A, ≤) has two initial objects. ♦

Example 6.4. The initial object in FinSet is the empty set. Given any finite set T, there
is a unique function � → T, since � has no elements.

Example 6.5. As seen in Exercise 6.3, a category C need not have an initial object. As a

different sort of example, consider the category shown here:

C B
A• B•

f

1

If there were to be an initial object �, it would either be A or B. Either way, we need to

show that for each object T ∈ Ob(C) (i.e. for both T � A and T � B) there is a unique

morphism � → T. Trying the case � �? A this condition fails when T � B: there are

two morphisms A→ B, not one. And trying the case � �? B this condition fails when

T � A: there are zero morphisms B→ A, not one.

Exercise 6.6. For each of the graphs below, consider the free category on that graph,

and say whether it has an initial object.

1.

a• 2.

a• → b• → c• 3.

a• b• 4.

a• ♦

Exercise 6.7. Recall the notion of rig from Chapter 5. A rig homomorphism from

(R, 0R ,+R , 1R , ∗R) to (S, 0S ,+S , 1S , ∗S) is a function f : R → S such that f (0R) � 0S,

f (r1 +R r2) � f (r1) +S f (r2), etc.
1. We said “etc.” Guess the remaining conditions for f to be a rig homomorphism.



186 CHAPTER 6. CIRCUITS: HYPERGRAPH CATEGORIES AND OPERADS

2. Let Rig denote the category whose objects are rigs and whose morphisms are rig

homomorphisms. We claim Rig has an initial object. What is it? ♦

Exercise 6.8. Explain the statement “the hallmark of universality is the existence of

a unique map to any other comparable object,” in the context of Definition 6.1. In

particular, what is being universal in Definition 6.1, and which is the “comparable

object”? ♦

Remark 6.9. As mentioned in Remark 3.85, we often speak of ‘the’ object that satisfies a

universal property, such as ‘the initial object’, even thoughmany different objects could

satisfy the initial object condition. Again, the reason is that initial objects are unique

up to unique isomorphism: any two initial objects will have a canonical isomorphism

between them, which one finds using various applications of the universal property.

Exercise 6.10. Let C be a category, and suppose that c1 and c2 are initial objects. Find

an isomorphism between them, using the universal property from Definition 6.1. ♦

6.2.2 Coproducts

Coproducts generalize both joins in a preorder and disjoint unions of sets.

Definition 6.11. Let A and B be objects in a category C. A coproduct of A and B
is an object, which we denote A + B, together with a pair of morphisms (ιA : A →
A + B, ιB : B → A + B) such that for all objects T and pairs of morphisms ( f : A →
T, 1 : B→ T), there exists a uniquemorphism [ f , 1] : A+B→ T such that the following

diagram commutes:

A A + B B

T

ιA

f
[ f ,1]

ιB

1
(6.12)

We call [ f , 1] the copairing of f and 1.

Exercise 6.13. Explain why, in a preorder, coproducts are the same as joins. ♦

Example 6.14. Coproducts in the categories FinSet and Set are disjoint unions. More

precisely, suppose A and B are sets. Then the coproduct of A and B is given by

the disjoint union At B together with the inclusion functions ιA : A −→ At B and
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ιB : B→ At B.

apple

•
banana•
pear

•
cherry

•
orange

•

A

apple

•
tomato•
mango

•

B

t

apple1

•
banana1•
pear1

•
cherry1

•
orange1

•

apple2

•
tomato2•
mango2

•

A t B

� (6.15)

Suppose we have functions f : A → T and 1 : B → T for some other set T,
unpictured. The universal property of coproducts says there is a unique function

[ f , 1] : At B → T such that ιA # [ f , 1] � f and ιB # [ f , 1] � 1. What is it? Any element

x ∈ At B is either ‘from A’ or ‘from B’, i.e. either there is some a ∈ A with x � ιA(a) or
there is some b ∈ B with x � ιB(b). By Eq. (6.12), we must have:

[ f , 1](x) �
{

f (x) if x � ιA(a) for some a ∈ A;

1(x) if x � ιB(b) for some b ∈ B.

Exercise 6.16. Suppose T � {a , b , c , . . . , z} is the set of letters in the alphabet, and let

A and B be the sets from Eq. (6.15). Consider the function f : A → T sending each

element of A to the first letter of its label, e.g. f (apple) � a. Let 1 : B → T be the

function sending each element of B to the last letter of its label, e.g. 1(apple) � e. Write

down the function [ f , 1](x) for all eight elements of A t B. ♦

Exercise 6.17. Let f : A→ C, 1 : B→ C, and h : C→ D be morphisms in a category C

with coproducts. Show that

1. ιA # [ f , 1] � f .
2. ιB # [ f , 1] � 1.
3. [ f , 1] # h � [ f # h , 1 # h].
4. [ιA , ιB] � idA+B. ♦

Exercise 6.18. Suppose a category C has coproducts, denoted +, and an initial object,

denoted�. Then (C,+,�) is a symmetric monoidal category (recall Definition 4.45). In

this exercise we develop the data relevant to this fact:

1. Show that + extends to a functor C × C → C. In particular, how does it act on

morphisms in C × C?
2. Using the universal properties of the initial object and coproduct, show that there

are isomorphisms A + � → A and � + A→ A.

3. Using the universal property of the coproduct, write down morphisms

a) (A + B) + C→ A + (B + C).
b) A + B→ B + A.
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If you like, check that these are isomorphisms.

It can thenbe checked that this data obeys the axiomsof a symmetricmonoidal category,

but we’ll end the exercise here. ♦

6.2.3 Pushouts

Pushouts are a way of combining sets. Like a union of subsets, a pushout can combine

two sets in a non-disjoint way: elements of one set may be identified with elements of

the other. The pushout construction, however, is much more general: it allows (and

requires) the user to specify exactly which elements will be identified. We’ll see a

demonstration of this additional generality in Example 6.29.

Definition 6.19. Let C be a category and let f : A → X and 1 : A → Y be morphisms

in C that have a common domain. The pushout X +A Y is the colimit of the diagram

A X

Y

f

1

In more detail, a pushout consists of (i) an object X +A Y and (ii) morphisms ιX : X →
X +A Y and ιY : Y → X +A Y satisfying (a) and (b) below.

(a) The diagram

A X

Y X +A Y

f

1 ιX

ιY

p
(6.20)

commutes. (We will explain the ‘p’ symbol below.)

(b) For all objects T and morphisms x : X → T, y : Y → T, if the diagram

A X

Y T

f

1 x

y

commutes, then there exists a unique morphism t : X +A Y → T such that

A X

Y X +A Y

T

f

1 ιX x
ιY

y
t

(6.21)

commutes.



6.2. COLIMITS AND CONNECTION 189

If X +A Y is a pushout, we denote that fact by drawing the commutative square

Eq. (6.20), together with the p symbol as shown; we call it a pushout square.
We further call ιX the pushout of 1 along f , and similarly ιY the pushout of f along 1.

Example 6.22. In a preorder, pushouts and coproducts have a lot in common. The

pushout of a diagram B ← A → C is equal to the coproduct B t C: namely, both are

equal to the join B ∨ C.

Example 6.23. Let f : A → X be a morphism in a category C. For any isomorphisms

i : A→ A′ and j : X → X′, we can take X′ to be the pushout X +A A′, i.e. the following

is a pushout square:

A X

A′ X′

f

i j

f ′

p

where f ′ B i−1 # f # j. To see this, observe that if there is any object T such that the

following square commutes:

A X

A′ T

f

i x

a

then f # x � i # a, and so we are forced to take x′ : X → T to be x′ B j−1 # x. This makes

the following diagram commute:

A X

A′ X′

T

f

i j
x

f ′

a

x′

because f ′ # x′ � i−1 # f # j # j−1 # x � i−1 # i # a � a.

Exercise 6.24. For any set S, we have the discrete category DiscS, with S as objects and

only identity morphisms.

1. Show that all pushouts exist in DiscS, for any set S.
2. For what sets S does DiscS have an initial object? ♦

Example 6.25. In the category FinSet, pushouts always exist. The pushout of functions

f : A → X and 1 : A → Y is the set of equivalence classes of X tY under the equiva-

lence relation generated by—that is, the reflexive, transitive, symmetric closure of—the
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relation { f (a) ∼ 1(a) | a ∈ A}.
We can think of this in terms of interconnection too. Each element a ∈ A provides

a connection between f (a) in X and 1(a) in Y. The pushout is the set of connected

components of X tY.

Exercise 6.26. What is the pushout of the functions f : 4 → 5 and 1 : 4 → 3 pictured

below?

f : 4→ 5 1 : 4→ 3

♦

Check your answer using the abstract description from Example 6.25.

Example 6.27. Suppose a category C has an initial object �. For any two objects X,Y ∈
ObC, there is a unique morphism f : � → X and a unique morphism 1 : � → Y; this

is what it means for � to be initial.

The diagram X
f
←− �

1

−→ Y has a pushout in C iff X and Y have a coproduct in C,

and the pushout and the coproduct will be the same. Indeed, suppose X and Y have a

coproduct X + Y; then the diagram to the left

� X

Y X + Y

f

1 ιX

ιY

� X

Y T

f

1 x

y

commutes (why?
1
), and for any object T and commutative diagram as to the right, there

is a unique map X + Y → T making the diagram as in Eq. (6.21) commute (why?
2
).

This shows that X + Y is a pushout, X +� Y � X + Y.

Similarly, if a pushout X +� Y exists, then it satisfies the universal property of the

coproduct (why?
3
).

Exercise 6.28. In Example 6.27 we asked “why?” three times.

1. Give a justification for “why?
1
”.

2. Give a justification for “why?
2
”.

3. Give a justification for “why?
3
”. ♦

Example 6.29. Let A � X � Y � N. Consider the functions f : A → X and 1 : A → Y
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given by the ‘floor’ functions, f (a) B ba/2c and 1(a) B b(a + 1)/2c.

X

A

Y

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

· · ·

· · ·

· · ·

f

1

What is their pushout? Let’s figure it out using the definition.

If T is any other set and we have maps x : X → T and y : Y → T that commute with

f and 1, i.e. f � x � 1 � y, then this commutativity implies that

y(0) � y(1(0)) � x( f (0)) � x(0).

In other words, Y’s 0 and X’s 0 go to the same place in T, say t. But since f (1) � 0

and 1(1) � 1, we also have that t � x(0) � x( f (1)) � y(1(1)) � y(1). This means Y’s 1

goes to t also. But since 1(2) � 1 and f (2) � 1, we also have that t � 1(1) � y(1(2)) �
x( f (2)) � x(1), which means that X’s 1 also goes to t. One can keep repeating this

and find that every element of Y and every element of X go to t! Using mathematical

induction, one can prove that the pushout is in fact a 1-element set, X tA Y � {1}.

6.2.4 Finite colimits

Initial objects, coproducts, and pushouts are all types of colimits. We gave the general

definition of colimit in Section 3.5.4. Just as a limit in C is a terminal object in a

category of cones over a diagram D : J→ C, a colimit is an initial object in a category of

cocones over some diagram D : J→ C. For our purposes it is enough to discuss finite

colimits—i.e. when J is a finite category—which subsume initial objects, coproducts,

and pushouts.4

In Definition 3.102, cocones in C are defined to be cones in Cop
. For visualization

purposes, if D : J→ C looks like the diagram to the left, then a cocone on it shown in

the diagram to the right:

D1 D3

D2 D4 D5

C

D1 D3

D2 D4 D5

T

Here, any two parallel paths that end at T are equal in C.

4
If a category J has finitely many morphisms, we say that J is a finite category. Note that in this case it

must have finitely many objects too, because each object j ∈ Ob J has its own identity morphism id j .
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Definition 6.30. We say that a category C has finite colimits if a colimit, colimJ D, exists

whenever J is a finite category and D : J→ C is a diagram.

Example 6.31. The initial object in a category C, if it exists, is the colimit of the functor

! : 0→ C, where 0 is the categorywith no objects and nomorphisms, and ! is the unique

such functor. Indeed, a cocone over ! is just an object of C, and so the initial cocone over

! is just the initial object of C.

Note that 0 has finitely many objects (none); thus initial objects are finite colimits.

We often want to know that a category C has all finite colimits (in which case, we

often drop the ‘all’ and just say ‘C has finite colimits’). To check that C has (all) finite

colimits, it’s enough to check it has a few simpler forms of colimit, which generate all

the rest.

Proposition 6.32. Let C be a category. The following are equivalent:

1. C has all finite colimits.

2. C has an initial object and all pushouts.

3. C has all coequalizers and all finite coproducts.

Proof. We will not give precise details here, but the key idea is an inductive one: one

can build arbitrary finite diagrams using some basic building blocks. Full details can

be found in [Bor94, Prop 2.8.2]. �

Example 6.33. Let C be a category with all pushouts, and suppose we want to take the

colimit of the following diagram in C:

B Z

A C

D

(6.34)

In it we see two diagrams ready to be pushed out, and we know how to take pushouts.

So suppose we do that; then we see another pushout diagram so we take the pushout

again:

B Z

A Y R

X Q

p

p

B Z

A Y R

X Q S

p

p p
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is the result—consisting of the object S, together with all the morphisms from the

original diagram to S—the colimit of the original diagram? One can check that it

indeed has the correct universal property and thus is a colimit.

Exercise 6.35. Check that the pushout of pushouts from Example 6.33 satisfies the

universal property of the colimit for the original diagram, Eq. (6.34). ♦

We have already seen that the categories FinSet and Set both have an initial object

and pushouts. We thus have the following corollary.

Corollary 6.36. The categories FinSet and Set have (all) finite colimits.

In Theorem 3.95 we gave a general formula for computing finite limits in Set. It is
also possible to give a formula for computing finite colimits. There is a duality between

products and coproducts and between subobjects and quotient objects, so whereas a

finite limit is given by a subset of a product, a finite colimit is given by a quotient of a

coproduct.

Theorem 6.37. Let J be presented by the finite graph (V,A, s , t) and some equations,

and let D : J→ Set be a diagram. Consider the set

colim

J
D B

{
(v , d) | v ∈ V and d ∈ D(v)

}
/∼

where this denotes the set of equivalence classes under the equivalence relation ∼
generated by putting (v , d) ∼ (w , e) if there is an arrow a : v → w in J such that

D(a)(d) � e. Then this set, together with the functions ιv : D(v) → colimJ D given by

sending d ∈ D(v) to its equivalence class, constitutes a colimit of D.

Example 6.38. Recall that an initial object is the colimit on the empty graph. The formula

thus says the initial object in Set is the empty set �: there are no v ∈ V .

Example 6.39. A coproduct is a colimit on the graph J �
v1• v2• . A functor D : J→ Set

can be identified with a choice of two sets, X B D(v1) and Y B D(v2). Since there are
no arrows in J, the equivalence relation ∼ is vacuous, so the formula in Theorem 6.37

says that a coproduct is given by

{(v , d) | d ∈ D(v), where v � v1 or v � v2}.

In other words, the coproduct of sets X and Y is their disjoint union XtY, as expected.
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Example 6.40. If J is the category 1 �
v• , the formula in Theorem 6.37 yields the set

{(v , d) | d ∈ D(v)}

This is isomorphic to the set D(v). In other words, if X is a set considered as a diagram

X : 1→ Set, then its colimit (like its limit) is just X again.

Exercise 6.41. Use the formula in Theorem 6.37 to show that pushouts—colimits on a

diagram X
f
←− N

1

−→ Y—agree with the description we gave in Example 6.25. ♦

Example 6.42. Another important type of finite colimit is the coequalizer. These are

colimits over the graph •⇒ • consisting of two parallel arrows.

Consider some diagram X Y
f

1
on this graph in Set. The coequalizer of this

diagram is the set of equivalence classes of Y under equivalence relation generated by

declaring y ∼ y′ whenever there exists x in X such that f (x) � y and 1(x) � y′.
Let’s return to the example circuit in the introduction to hint at why colimits are

useful for interconnection. Consider the following picture:

We’ve redrawn this picture with one change: some of the arrows are now red, and

others are now blue. If we let X be the set of white circles ◦, and Y be the set of black

circles •, the blue and red arrows respectively define functions f , 1 : X → Y. Let’s

leave the actual circuit components out of the picture for now; we’re just interested in

the dots. What is the coequalizer?

It is a three element set, consisting of one element for each newly-connected pair of

•’s . Thus the colimit describes the set of terminals after performing the interconnection

operation. In Section 6.4 we’ll see how to keep track of the circuit components too.

6.2.5 Cospans

When a category C has finite colimits, an extremely useful way to package them is by

considering the category of cospans in C.

Definition 6.43. Let C be a category. A cospan in C is just a pair of morphisms to a

common object A → N ← B. The common object N is called the apex of the cospan

and the other two objects A and B are called its feet.
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If we want to say that cospans form a category, we should begin by saying how

composition would work. So suppose we have two cospans in C

N

A B

f 1
and

P

B C

h k

Since the right foot of the first is equal to the left foot of the second, we might stick

them together into a diagram like this:

N P

A B C

f 1 h k

Then, if a pushout of N
1

←− B
h−→ P exists in C, as shown on the left, we can extract a

new cospan in C, as shown on the right:

N +B P

N P

A B C

yιN ιP

f 1 h k
 

N +B P

A C

f #ιN k#ιP

(6.44)

Itmight look likewehave achievedourgoal, butwe’remissing some things. First, we

need an identity on every object C ∈ ObC; but that’s not hard: use C→ C← C where

bothmaps are identities in C. More importantly, we don’t know that C has all pushouts,

so we don’t know that every two sequential morphisms A→ B→ C can be composed.

And beyond that, there is a technical condition that when we form pushouts, we only

get an answer ‘up to isomorphism’: anything isomorphic to a pushout counts as a

pushout (check the definition to see why). We want all these different choices to count

as the same thing, sowe define two cospans to be equivalent iff there is an isomorphism

between their respective apexes. That is, the cospan A → P ← B and A → P′ ← B
in the diagram shown left below are equivalent iff there is an isomorphism P � P′

making the diagram to the right commute:

P
A B

P′

P
A B

P′
�

Now we are getting somewhere. As long as our category C has pushouts, we are in

business: CospanC will form a category. But in fact, we are very close to getting more.

If we also demand that C has an initial object � as well, then we can upgrade CospanC

to a symmetric monoidal category.

Recall from Proposition 6.32 that a category C has all finite colimits iff it has an

initial object and all pushouts.
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Definition 6.45. Let C be a category with finite colimits. Then there exists a category

CospanC with the same objects as C, i.e. Ob(CospanC) � Ob(C), where the morphisms

A→ B are the (equivalence classes of) cospans from A to B, and composition is given

by the above pushout construction.

There is a symmetric monoidal structure on this category, denoted (CospanC ,�,+).
The monoidal unit is the initial object � ∈ C and the monoidal product is given by

coproduct. The coherence isomorphisms, e.g. A + � � A, can be defined in a similar

way to those in Exercise 6.18.

It is a straightforward but time-consuming exercise to verify that (CospanC ,�,+)
fromDefinition 6.45 really does satisfy all the axiomsof a symmetricmonoidal category,

but it does.

Example 6.46. The category FinSet has finite colimits (see 6.36). So, we can define a

symmetric monoidal category CospanFinSet. What does it look like? It looks a lot like

wires connecting ports.

The objects of CospanFinSet are finite sets; here let’s draw them as collections of •’s.
The morphisms are cospans of functions. Let A and N be five element sets, and B be a

six element set. Below are two depictions of a cospan A
f
−→ N

1

←− B.

A BN

A B

In the depiction on the left, we simply represent the functions f and 1 by drawing

arrows from each a ∈ A to f (a) and each b ∈ B to 1(b). In the depiction on the right, we

make this picture resemble wires a bit more, simply drawing a wire where before we

had an arrow, and removing the unnecessary center dots. We also draw a dotted line

around points that are connected, to emphasize an important perspective, that cospans

establish that certain ports are connected, i.e. part of the same equivalence class.

The monoidal category CospanFinSet then provides two operations for combining

cospans: composition and monoidal product. Composition is given by taking the

pushout of the maps coming from the common foot, as described in Definition 6.45.

Here is an example of cospan composition, where all the functions are depicted with
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arrow notation:

A N B P C

{

A N +B P C

(6.47)

The monoidal product is given simply by the disjoint union of two cospans; in pictures

it is simply combining two cospans by stacking one above another.

Exercise 6.48. In Eq. (6.47) we showed morphisms A→ B and B→ C in CospanFinSet.

Draw their monoidal product as a morphism A + B→ B + C in CospanFinSet. ♦

Exercise 6.49. Depicting the composite of cospans in Eq. (6.47) with the wire notation

gives

� (6.50)

Comparing Eq. (6.47) and Eq. (6.50), describe the composition rule in CospanFinSet in

terms of wires and connected components. ♦

6.3 Hypergraph categories

A hypergraph category is a type of symmetric monoidal category whose wiring di-

agrams are networks. We will soon see that electric circuits can be organized into a

hypergraph category; this is what we’ve been building up to. But to define hypergraph

categories, it is useful to first introduce Frobenius monoids.

6.3.1 Frobenius monoids

The pictures of cospans we saw above, e.g. in Eq. (6.50) look something like icons in

signal flow graphs (see Section 5.3.2): various wires merge and split, initialize and

terminate. And these follow the same rules they did for linear relations, which we

briefly discussed in Exercise 5.84. There’s a lot of potential for confusion, so let’s start

from scratch and build back up.

In any symmetric monoidal category (C, I , ⊗), recall from Section 4.4.2 that objects

can be drawn as wires and morphisms can be drawn as boxes. Particularly noteworthy

morphismsmight be iconified as dots rather than boxes, to indicate that themorphisms
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there are not arbitrary but notation-worthy. One case of this is when there is an object X
with special “abilities”, e.g. the ability to duplicate into two, or disappear into nothing.

Tomake this precise, recall fromDefinition 5.65 that a commutativemonoid (X, µ, η)
in symmetric monoidal category (C, I , ⊗) is an object X of C together with (noteworthy)

morphisms

µ : X ⊗ X → X η : I → X

obeying

� � �

(associativity) (unitality) (commutativity)

(6.51)

where is the symmetry on X ⊗ X. A cocommutative cocomonoid (X, δ, ε) is an

object X with maps δ : X → X ⊗ X, ε : X → I, obeying the mirror images of the laws in

Eq. (6.51).

Suppose X has both the structure of a commutative monoid and cocommutative

comonoid, and consider a wiring diagram built only from the icons µ, η, δ, and ε,

where every wire is labeled X. These diagrams have a left and right, and are pictures

of how ports on the left are connected to ports on the right. The commutative monoid

and cocommutative comonoid axioms thus both express when to consider two such

connection pictures should be considered the same. For example, associativity says the

order of connecting ports on the left doesn’t matter; coassociativity (not drawn) says

the same for the right.

If you want to go all the way and say “all I care about is which port is connected to

which; I don’t even care about left and right”, then you need a few more axioms to say

how the morphisms µ and δ, the merger and the splitter, interact.

Definition 6.52. Let X be an object in a symmetricmonoidal category (C, ⊗, I). A Frobe-
nius structure on X consists of a 4-tuple (µ, η, δ, ε) such that (X, µ, η) is a commutative

monoid and (X, δ, ε) is a cocommutative comonoid, which satisfies the six equations

above ((co-)associativity, (co-)unitality, (co-)commutativity), as well as the following

three equations:

� � �

(the Frobenius law) (the special law)

(6.53)

We refer to an object X equipped with a Frobenius structure as a special commutative
Frobenius monoid, or just Frobenius monoid for short.
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With these two equations, it turns out that two morphisms X⊗m → X⊗n
—defined

by composing and tensoring identities on X and the noteworthymorphisms µ, δ, etc.—

are equal if and only if their string diagrams connect the same ports. This link between

connectivity, and Frobenius monoids can be made precise as follows.

Definition 6.54. Let (X, µ, η, δ, ε) be a Frobenius monoid in a monoidal category

(C, I , ⊗). Let m , n ∈ N. Define sm ,n : X⊗m → X⊗n
to be the following morphism

...
...

m wires n wires

It can be written formally as (m− 1) µ’s followed by (n− 1) δ’s, with special cases when

m � 0 or n � 0.

We call sm ,n the spider of type (m , n), and can draw it more simply as the icon

m legs n legs

So a special commutative Frobenius monoid, aside from being a mouthful, is a

‘spiderable’ wire. You agree that in any monoidal category wiring diagram language,

wires represent objects and boxes represent morphisms? Well in our weird way of

talking, if a wire is spiderable, it means that we have a bunch of morphisms µ, η, δ, ε, σ

that we can combine without worrying about the order of doing so: the result is just

“how many in’s, and how many out’s”: a spider. Here’s a formal statement.

Theorem6.55. Let (X, µ, η, δ, ε)be aFrobeniusmonoid in amonoidal category (C, I , ⊗).
Suppose that we have a map f : X⊗m → X⊗n

each constructed from spiders and the

symmetry map σ : X⊗2 → X⊗2
using composition and the monoidal product, and such

that the string diagram of f has only one connected component. Then it is a spider:

f � sm ,n .

Example 6.56. As the following two morphisms both (i) have the same number of

inputs and outputs, (ii) are constructed only from spiders, and (iii) are connected,

Theorem 6.55 immediately implies they are equal:

�

Exercise 6.57. Let X be an object equipped with a Frobenius structure. Which of the

morphisms X ⊗ X → X ⊗ X ⊗ X in the following list are necessarily equal?

1.
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2.

3.

4.

5.

6.

♦

Back to cospans. Another way of understanding Frobenius monoids is to relate them

to cospans. Recall the notion of prop presentation from Definition 5.33.

Theorem 6.58. Consider the four-element set G B {µ, η, δ, ε} and define in, out : G→
N as follows:

in(µ) B 2, in(η) B 0, in(δ) B 1, in(ε) B 1,

out(µ) B 1, out(η) B 1, out(δ) B 2, out(ε) B 0.

Let E be the set of Frobenius axioms, i.e. the nine equations from Definition 6.52.

Then the free prop on (G, E) is equivalent, as a symmetric monoidal category,
a
to

CospanFinSet.

a
Wewill not explain precisely what it means to be equivalent as a symmetric monoidal category, but

you probably have some idea: “they are the same for all category-theoretic intents and purposes.” The

idea is similar to that of equivalence of categories, as explained in Remark 3.59.

Thus we see that ideal wires, connectivity, cospans, and objects with Frobenius

structures are all intimately related. We use Frobenius structures (all that splitting,

merging, initializing, and terminating stuff) as a way to capture the grammar of circuit

diagrams.

6.3.2 Wiring diagrams for hypergraph categories

We introduce hypergraph categories through their wiring diagrams. Just like for

monoidal categories, the formal definition is just the structure required to unambigu-

ously interpret these diagrams.
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Indeed, our interest in hypergraph categories is best seen in their wiring diagrams.

The key idea is that wiring diagrams for hypergraph categories are network diagrams.

This means, in addition to drawing labeled boxes with inputs and outputs, as we can

for monoidal categories, and in addition to bending these wires around as we can for

compact closed categories, we are allowed to split, join, terminate, and initialize wires.

Here is an example of a wiring diagram that represents a composite of morphisms

in a hypergraph category

f h

h

1

A
B

C

D
D

B

A

We have suppressed some of the object/wire labels for readability, since all types can

be inferred from the labeled ones.

Exercise 6.59.
1. What label should be on the input to h?
2. What label should be on the output of 1?

3. What label should be on the fourth output wire of the composite? ♦

Thus hypergraph categories are general enough to talk about all network-style dia-

grammatic languages, like circuit diagrams.

6.3.3 Definition of hypergraph category

We are now ready to define hypergraph categories formally. Since the wiring diagrams

for hypergraph categories are just those for symmetric monoidal categories with a few

additional icons, the definition is relatively straightforward: we just want a Frobenius

structure on every object. The only coherence condition is that these interact nicely

with the monoidal product.

Definition 6.60. A hypergraph category is a symmetric monoidal category (C, I , ⊗) in
which each object X is equipped with a Frobenius structure (X, µX , δX , ηX , εX) such
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that

X ⊗ Y

X ⊗ Y
X ⊗ Y �

X

X

X

Y

Y

Y

X ⊗ Y �
X
Y

X ⊗ Y

X ⊗ Y
X ⊗ Y �

X

X

X

Y

Y

Y

X ⊗ Y �
X
Y

for all objects X, Y, and such that ηI � idI � εI .

A hypergraph prop is a hypergraph category that is also a prop, e.g. Ob(C) � N, etc.

Example 6.61. For any C with finite colimits, CospanC is a hypergraph category. The

Frobenius morphisms µX , δX , ηX , εX for each object X are constructed using the uni-

versal properties of colimits:

µX B
(
X + X

[idX ,idX]−−−−−−→ X
idX←−−−−−−−−−− X

)
ηX B

(
�

!X−−−−−−−−−−→ X
idX←−−−−−−−−−− X

)
δX B

(
X

idX−−−−−−−−−−→ X
[idX ,idX]←−−−−−− X + X

)
εX B

(
X

idX−−−−−−−−−−→ X
!X←−−−−−−−−−− �

)
Exercise 6.62. By Example 6.61, the categoryCospanFinSet is a hypergraph category. (In

fact, it is equivalent to a hypergraph prop.) Draw the Frobenius morphisms for the ob-

ject 1 in CospanFinSet using both the function andwiring depictions as in Example 6.46.

♦

Exercise 6.63. Using your knowledge of colimits, show that the maps defined in

Example 6.61 do indeed obey the special law (see Definition 6.52). ♦

Example 6.64. Recall the monoidal category (Corel,�,t) from Example 4.61; its objects

are finite sets and its morphisms are corelations. Given a finite set X, define the

corelation µX : X t X → X such that two elements of X t X t X are equivalent if and

only if they come from the same underlying element of X. Define δX : X → X t X in

the same way, and define ηX : � → X and εX : X → � such that no two elements of

X � � t X � X t � are equivalent.

These maps define a special commutative Frobenius monoid (X, µX , ηX , δX , εX),
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and in fact give Corel the structure of a hypergraph category.

Example 6.65. The prop of linear relations, which we brieflymentioned in Exercise 5.84,

is a hypergraph category. In fact, it is a hypergraph category in two ways, by choosing

either the black ‘copy’ and ‘discard’ generators or the white ‘add’ and ‘zero’ generators

as the Frobenius maps.

We can generalize the construction we gave in Theorem 5.87.

Proposition 6.66. Hypergraph categories are self-dual compact closed categories, if

we define the cup and cap to be

B
and

B

Proof. The proof is a straightforward application of the Frobenius and unitality axioms:

� (definition)

�

Exercise 6.67!

(Frobenius)

� (unitality)

�

Exercise 6.67. Fill in the missing diagram in the proof of Proposition 6.66 using the

equations from Eq. (6.51), their opposites, and Eq. (6.53). ♦

6.4 Decorated cospans

The goal of this section is to show how we can construct a hypergraph category

whose morphisms are electric circuits. To do this, we first must introduce the no-

tion of structure-preserving map for symmetric monoidal categories, a generalization

of monoidal monotones known as symmetric monoidal functors. Then we introduce

a general method—that of decorated cospans—for producing hypergraph categories.

Doing all this will tie up lots of loose ends: colimits, cospans, circuits, and hypergraph

categories.
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6.4.1 Symmetric monoidal functors

Rough Definition 6.68. Let (C, IC , ⊗C) and (D, ID , ⊗D) be symmetric monoidal cate-

gories. To specify a symmetric monoidal functor (F, ϕ) between them,

(i) one specifies a functor F : C→ D;

(ii) one specifies a morphism ϕI : ID → F(IC).
(iii) for each c1 , c2 ∈ Ob(C), one specifies a morphism

ϕc1 ,c2
: F(c1) ⊗D F(c2) → F(c1 ⊗C c2),

natural in c1 and c2.

We call the various maps ϕ coherence maps. We require the coherence maps to obey

bookkeeping axioms that ensure they are well behaved with respect to the symmetric

monoidal structures on C andD. If ϕI and ϕc1 ,c2
are isomorphisms for all c1 , c2, we say

that (F, ϕ) is strong.

Example 6.69. Consider the power set functor P : Set → Set. It acts on objects by

sending a set S ∈ Set to its set of subsets P(S) B {R ⊆ S}. It acts on morphisms by

sending a function f : S → T to the image map im f : P(S) → P(T), which maps R ⊆ S
to { f (r) | r ∈ R} ⊆ T.

Now consider the symmetric monoidal structure ({1},×) on Set from Example 4.49.

To make P a symmetric monoidal functor, we need to specify a function ϕI : {1} →
P({1}) and for all sets S and T, a functor ϕS,T : P(S)×P(T) → P(S×T). One possibility is

to define ϕI(1) to be the maximal subset {1} ⊆ {1}, and given subsets A ⊆ S and B ⊆ T,
to define ϕS,T(A, B) to be the product subset A × B ⊆ S × T. With these definitions,

(P, ϕ) is a symmetric monoidal functor.

Exercise 6.70. Check that the maps ϕS,T defined in Example 6.69 are natural in S and

T. In other words, given f : S → S′ and 1 : T → T′, show that the diagram below

commutes:

P(S) × P(T) P(S × T)

P(S′) × P(T′) P(S′ × T′)

ϕS,T

im f × im1 im f×1

ϕS′ ,T′

♦

6.4.2 Decorated cospans

Now that we have briefly introduced symmetric monoidal functors, we return to the

task at hand: constructing a hypergraph category of circuits. To do so, we introduce

the method of decorated cospans.

Circuits have lots of internal structure, but they also have some external ports—also

called ‘terminals’—by which to interconnect them with others. Decorated cospans are

ways of discussing exactly that: things with external ports and internal structure.
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To see how this works, let us start with the following example circuit:

2Ω

3F
1Ω 1Ω

1H

(6.71)

We might formally consider this as a graph on the set of four ports, where each edge

is labeled by a type of circuit component (for example, the top edge would be labeled

as a resistor of resistance 2Ω). For this circuit to be a morphism in some category, i.e.

in order to allow for interconnection, we must equip the circuit with some notion of

interface. We do this by marking the ports in the interface using functions from finite

sets:

A BN

2Ω

3F
1Ω 1Ω

1H

(6.72)

Let N be the set of nodes of the circuit. Here the finite sets A, B, and N are sets

consisting of one, two, and four elements respectively, drawn as points, and the values

of the functions A → N and B → N are indicated by the grey arrows. This forms a

cospan in the category of finite sets, for which the apex set N has been decorated by our

given circuit.

Suppose given another such decorated cospan with input B

B C

5Ω

8Ω

Since the output of the first equals the input of the second (both are B), we can stick
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them together into a single diagram:

A N B

2Ω

3F
1Ω 1Ω

1H

M C

5Ω

8Ω (6.73)

The composition is given by gluing the circuits along the identifications specified by B,
resulting in the decorated cospan

A N +B M C

2Ω

3F
1Ω 1Ω

1H

5Ω

8Ω

(6.74)

We’ve seen this sort of gluing before when we defined composition of cospans in

Definition 6.45. But now there’s this whole ‘decoration’ thing; our goal is to formalize

it.

Definition 6.75. Let C be a category with finite colimits, and (F, ϕ) : (C,+) −→ (Set,×)
be a symmetric monoidal functor. An F-decorated cospan is a pair consisting of a cospan

A
i→ N

o← B in C together with an element s ∈ F(N).5 We call (F, ϕ) the decoration
functor and s the decoration.

The intuition here is to use C � FinSet, and, for each object N ∈ FinSet, the functor
F assigns the set of all legal decorations on a set N of nodes. When you choose an F-
decorated cospan, you choose a set A of left-hand external ports, a set B of right-hand

external ports, each of which maps to a set N of nodes, and you choose one of the

available decorations on N nodes, taken from the set F(N).
So, in our electrical circuit case, the decoration functor F sends a finite set N to

the set of circuit diagrams—graphs whose edges are labeled by resistors, capacitors,

etc.—that have N vertices.

Our goal is still to be able to compose such diagrams; so howdoes thatwork exactly?

Basically one combines theway cospans are composedwith the structures defining our

decoration functor: namely F and ϕ.

Let (A
f
−→ N

1

←− B, s) and (B h−→ P
k←− C, t) represent decorated cospans. Their

composite is represented by the composite of the cospans A
f
−→ N

1

←− B and B
h−→ P

k←− C,

5
Just like in Definition 6.45, we should technically use equivalence classes of cospans. We will elide

this point to get the bigger idea across. The interested reader should consult Section 6.6.
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paired with the following element of F(N +B P):

F([ιN , ιP])(ϕN,P(s , t)) (6.76)

That’s rather compact! We’ll unpack it, in a concrete case, in just a second. But let’s

record a theorem first.

Theorem 6.77. Given a category Cwith finite colimits and a symmetric monoidal func-

tor (F, ϕ) : (C,+) −→ (Set,×), there is a hypergraph category CospanF whose objects

are the objects of C, and whose morphisms are equivalence classes of F-decorated
cospans.

The symmetric monoidal and hypergraph structures are derived from those on

CospanC.

Exercise 6.78. Suppose you’reworried that the notationCospanC looks like the notation

CospanF, even though they’re very different. An expert tells you “they’re not so

different; one is a special case of the other. Just use the constant functor F(c) B {∗}.”
What does the expert mean? ♦

6.4.3 Electric circuits

In order to work with the above abstractions, we will get a bit more precise about the

circuits example and then have a detailed look at how composition works in decorated

cospan categories.

Let’s build some circuits. To begin, we’ll need to choose which components we want

in our circuit. This is simply a matter of what’s in our electrical toolbox. Let’s say we’re

carrying some lightbulbs, switches, batteries, and resistors of every possible resistance.

That is, define a set

C B {light, switch, battery} t {xΩ | x ∈ R+}.

Tobe clear, theΩare just labels; the above set is isomorphic to {light, switch, battery}t
R+

. But we write C this way to remind us that it consists of circuit components. If we

wanted, we could also add inductors, capacitors, and even elements connecting more

than two ports, like transistors, but let’s keep things simple for now.

Given our set C, a C-circuit is just a graph (V,A, s , t), where s , t : A → V are the

source and target functions, together with a function ` : A→ C labeling each edgewith

a certain circuit component from C.

For example, we might have the simple case of V � {1, 2}, A � {e}, s(e) � 1,

t(e) � 2—so e is an edge from 1 to 2—and `(e) � 3Ω. This represents a resistor with

resistance 3Ω:

3Ω

1 2
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Note that in the formalism we have chosen, we have multiple ways to represent any

circuit, as our representations explicitly choose directions for the edges. The above

resistor could also be represented by the ‘reversed graph’, with dataV � {1, 2}, A � {e},
s(e) � 2, t(e) � 1, and `(e) � 3F.

Exercise 6.79. Write a tuple (V,A, s , t , `) that represents the circuit in Eq. (6.71). ♦

A decoration functor for circuits. We want C-circuits to be our decorations, so let’s

use them to define a decoration functor as in Definition 6.75. We’ll call the functor

(Circ, ψ). We start by defining the functor part

Circ : (FinSet,+) −→ (Set,×)

as follows. On objects, simply send a finite set V to the set of C-circuits:

Circ(V) B {(V,A, s , t , `) | where s , t : A→ V, ` : E→ C}.

On morphisms, Circ sends a function f : V → V′ to the function

Circ( f ) : Circ(V) −→ Circ(V′);
(V,A, s , t , `) 7−→

(
V′,A, (s # f ), (t # f ), `

)
.

This defines a functor; let’s explore it a bit in an exercise.

Exercise 6.80. To understand this functor better, let c ∈ Circ(4) be the circuit

3Ω

1 2 3 4

and let f : 4→ 3 be the function

1 2 3 4

1 2 3

Draw a picture of the circuit Circ( f )(c). ♦

We’re trying to get a decoration functor (Circ, ψ) and so far we have Circ. For the

coherence maps ψV,V′ for finite sets V,V′, we define

ψV,V′ : Circ(V) × Circ(V′) −→ Circ(V + V′);(
(V,A, s , t , `), (V′,A′, s′, t′, `′)

)
7−→ (V + V′,A + A′, s + s′, t + t′, [`, `′]). (6.81)

This is simpler than it may look: it takes a circuit on V and a circuit on V′, and just

considers them together as a circuit on the disjoint union of vertices V + V′.

Exercise 6.82. Suppose we have circuits

b B and s B

in Circ(2). Use the definition of ψV,V′ from (6.81) to figure out what 4-vertex circuit

ψ2,2(b , s) ∈ Circ(2 + 2) � Circ(4) should be, and draw a picture. ♦
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Open circuits using decorated cospans. From the above data, just amonoidal functor

(Circ, ψ) : (FinSet,+) → (Set,×), we can construct our promised hypergraph category

of circuits!

Our notation for this category is CospanCirc. Following Theorem 6.77, the objects

of this category are the same as the objects of FinSet, just finite sets. We’ll reprise

our notation from the introduction and Example 6.42, and draw these finite sets as

collections of white circles ◦. For example, we’ll represent the object 2 of CospanCirc as

two white circles:

These white circles mark interface points of an open circuit.

More interesting than the objects, however, are the morphisms in CospanCirc. These

are open circuits. By Theorem 6.77, a morphism m → n is a Circ-decorated cospan:

that is, cospan m → p ← n together with an element c of Circ(p). As an example,

consider the cospan 1

i1−→ 2

i2←− 1 where i1(1) � 1 and i2(1) � 2, equipped with the

battery element of Circ(2) connecting node 1 and node 2. We’ll depict this as follows:

(6.83)

Exercise 6.84. Morphisms of CospanCirc are Circ-decorated cospans, as defined in

Definition 6.75. This means (6.83) depicts a cospan together with a decoration, which is

some C-circuit (V,A, s , t , `) ∈ Circ(2). What is it? ♦

Let’s now see how the hypergraph operations in CospanCirc can be used to construct

electric circuits.

Composition in CospanCirc. First we’ll consider composition. Consider the following

decorated cospan from 1 to 1:

Since this and the circuit in (6.83) are both morphisms 1→ 1, we may compose them

to get another morphism 1 → 1. How do we do this? There are two parts: to get

the new cospan, we simply compose the cospans of our two circuits, and to get the

new decoration, we use the formula Circ([ιN , ιP])(ψN,P(s , t)) from (6.76). Again, this is

rather compact! Let’s unpack it together.

We’ll start with the cospans. The cospans we wish to compose are

and
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(We simply ignore thedecorations for now.) Ifwepushout over the common set 1 � {◦},
we obtain the pushout square

(6.85)

This means the composite cospan is

In the meantime, we already had you start us off unpacking the formula for the

new decoration. You told us what the map ψ2,2 does in Exercise 6.82. It takes the two

decorations, both circuits in Circ(2), and turns them into the single, disjoint circuit

inCirc(4). So this iswhat theψN,P(s , t)partmeans. What does the [ιN , ιP]mean? Recall

this is the copairing of the pushoutmaps, as described in Examples 6.14 and 6.25. In our

case, the relevant pushout square is given by (6.85), and [ιN , ιP] is in fact the function

f from Exercise 6.80! This means the decoration on the composite cospan is

Putting this all together, the composite circuit is

Exercise 6.86. Refer back to the example at the beginning of Section 6.4.2. In particular,

consider the composition of circuits in Eq. (6.73). Express the two circuits in this

diagram as morphisms in CospanCirc, and compute their composite. Does it match the

picture in Eq. (6.74)? ♦

Monoidal products in CospanCirc. Monoidal products in CospanCirc are much sim-

pler than composition. On objects, we again just work as in FinSet: we take the disjoint

union of finite sets. Morphisms again have a cospan, and a decoration. For cospans,

we again just work in CospanFinSet: given two cospans A→ M ← B and C→ N ← D,

we take their coproduct cospan A + C → M + N ← B + D. And for decorations, we

use the map ψM,N : Circ(M) × Circ(N) → Circ(M + N). So, for example, suppose we

want to take the monoidal product of the open circuits
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and

The result is given by stacking them. In other words, their monoidal product is:

(6.87)

Easy, right?

We leave you to do two compositions of your own.

Exercise 6.88. Write x for the open circuit in (6.87). Also define cospans η : 0→ 2 and

η : 2→ 0 as follows:

η B � � � : ε

where each of these are decorated by the empty circuit (1,�, !, !, !) ∈ Circ(1).6
Compute the composite η # x # ε in CospanCirc. This is a morphism 0 → 0; we call

such things closed circuits. ♦

6.5 Operads and their algebras

In Theorem 6.77 we described how decorating cospans builds a hypergraph category

from a symmetric monoidal functor. We then explored how that works in the case that

the decoration functor is somehow “all circuit graphs on a set of nodes”.

In this book, we have devoted a great deal of attention to different sorts of composi-

tional theories, from monoidal preorders to compact closed categories to hypergraph

categories. Yet for an application you someday have in mind, it may be the case that

none of these theories suffice. You need a different structure, customized to a particular

situation. For example in [VSL15] the authors wanted to compose continuous dynam-

ical systems with control-theoretic properties and realized that in order for feedback

to make sense, the wiring diagrams could not involve what they called ‘passing wires’.

So to close our discussion of compositional structures, we want to quickly sketch

something we can use as a sort of meta-compositional structure, known as an operad.

We saw in Section 6.4.3 that we can build electric circuits from a symmetric monoidal

functor FinSet→ Set. Similarly we’ll see that we can build examples of new algebraic

structures from operad functors O→ Set.

6.5.1 Operads design wiring diagrams

Understanding that circuits aremorphisms in a hypergraph category is useful: itmeans

we can bring the machinery of category theory to bear on understanding electrical



212 CHAPTER 6. CIRCUITS: HYPERGRAPH CATEGORIES AND OPERADS

circuits. For example, we can build functors that express the compositionality of circuit

semantics, i.e. how to derive the functionality of the whole from the functionality and

interaction pattern of the parts. Or we can use the category-theoretic foundation to

relate circuits to other sorts of network systems, such as signal flow graphs. Finally,

the basic coherence theorems for monoidal categories and compact closed categories

tell us that wiring diagrams give sound and complete reasoning in these settings.

However, one perhaps unsatisfying result is that the hypergraph category intro-

duces artifacts like the domain and codomain of a circuit, which are not inherent to the

structure of circuits or their composition. Circuits just have a single boundary inter-

face, not ‘domains’ and ‘codomains’. This is not to say the above model is not useful:

in many applications, a vector space does not have a preferred basis, but it is often

useful to pick one so that we may use matrices (or signal flow graphs!). But it would

be worthwhile to have a category-theoretic model that more directly represents the

compositional structure of circuits. In general, we want the category-theoretic model

to fit our desired application like a glove. Let us quickly sketch how this can be done.

Let’s return to wiring diagrams for a second. We saw that wiring diagrams for

hypergraph categories basically look like this:

f

1

h

k

A

B
C

D

F

E

D

(6.89)

Note that if you had a box with A and B on the left and D on the right, you could plug

the above diagram right inside it, and get a new open circuit. This is the basic move of

operads.

But before we explain this, let’s get where we said we wanted to go: to a model

where there aren’t ports on the left and ports on the right, there are just ports. Wewant

a more succinct model of composition for circuit diagrams; something that looks more

like this:

f

h

1

k

B

C
A

D
E

F

D

(6.90)
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Do you see how diagrams Eq. (6.89) and Eq. (6.90) are actually exactly the same in

terms of interconnection pattern? The only difference is that the latter does not have

left/right distinction: we have lost exactly what we wanted to lose.

The cost is that the ‘boxes’ f , 1 , h , k in Eq. (6.90) no longer have a left/right dis-

tinction; they’re just circles now. That wouldn’t be bad except that it means they can

no longer represent morphisms in a category—like they used to above, in Eq. (6.89)—

because morphisms in a category by definition have a domain and codomain. Our

new circles have no such distinction. So now we need a whole new way to think about

‘boxes’ categorically: if they’re no longer morphisms in a category, what are they? The

answer is found in the theory of operads.

In understanding operads, we will find we need to navigate one of the level shifts

that we first discussed in Section 1.4.5. Notice that for decorated cospans, we define

a hypergraph category using a symmetric monoidal functor. This is reminiscent of

our brief discussion of algebraic theories in Section 5.4.2, where we defined something

called the theory ofmonoids as a propM, and definemonoids using functorsM→ Set;
see Remark 5.74. In the same way, we can view the category CospanFinSet as some sort

of ‘theory of hypergraph categories’, and so define hypergraph categories as functors

CospanFinSet → Set.
So that’s the idea. An operadOwill define a theory or grammar of composition, and

operad functors O → Set, known as O-algebras, will describe particular applications

that obey that grammar.

Rough Definition 6.91. To specify an operad O,
(i) one specifies a collection T, whose elements are called types;
(ii) for each tuple (t1 , . . . , tn , t) of types, one specifies a set O(t1 , . . . , tn ; t), whose

elements are called operations of arity (t1 , . . . , tn ; t);
(iii) for each pair of tuples (s1 , . . . , sm , ti) and (t1 , . . . , tn , t), one specifies a function

◦i : O(s1 , . . . , sm ; ti) × O(t1 , . . . , tn ; t) → O(t1 , . . . , ti−1 , s1 , . . . , sm , ti+1 , . . . , tn ; t);

called substitution; and
(iv) for each type t, one specifies an operation idt ∈ O(t; t) called the identity operation.
These must obey generalized identity and associativity laws.

7

Let’s ignore types for a moment and think about what this structure models. The

intuition is that an operad consists of, for each n, a set of operations of arity n—that is,

all the operations that accept n arguments. If we take an operation f of arity m, and

plug the output into the ith argument of an operation 1 of arity n, we should get an

operation of arity m + n − 1: we have m arguments to fill in m, and the remaining n − 1

6
As usual ! denotes the unique function, in this case from the empty set to the relevant codomain.

7
Often what we call types are called objects or colors, what we call operations are called morphisms,

what we call substitution is called composition, and what we call operads are called multicategories. A

formal definition can be found in [Lei04].
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arguments to fill in 1. Which operation of arity m+n−1 dowe get? This is described by

the substitution function ◦i , which says we obtain the operation f ◦i 1 ∈ O(m + n − 1).
The coherence conditions say that these functions ◦i capture the following intuitive

picture:

{

The types then allow us to specify the, well, types of the arguments—inputs—that

each function takes. So making tea is a 2-ary operation, an operation with arity 2,

because it takes in two things. To make tea you need some warm water, and you need

some tea leaves.

Example 6.92. Context-free grammars are to operads as graphs are to categories. Let’s

sketchwhat thismeans. First, a context-free grammar is away of describing a particular

set of ‘syntactic categories’ that can be formed from a set of symbols. For example, in

English we have syntactic categories like nouns, determiners, adjectives, verbs, noun

phrases, prepositional phrases, sentences, etc. The symbols are words, e.g. cat, dog,

the, chases.

To define a context-free grammar on some alphabet, one specifies some production
rules, which say how to form an entity in some syntactic category from a bunch of

entities in other syntactic categories. For example, we can form a noun phrase from

a determiner (the), an adjective (happy), and a noun (boy). Context free grammars

are important in both linguistics and computer science. In the former, they’re a basic

way to talk about the structure of sentences in natural languages. In the latter, they’re

crucial when designing parsers for programming languages.

So just like graphs present free categories, context-free grammars present free op-

erads. This idea was first noticed in [HMP98].

6.5.2 Operads from symmetric monoidal categories

We will see in Definition 6.97 that a large class of operads come from symmetric

monoidal categories. Before we explain this, we give a couple of examples. Perhaps

the most important operad is that of Set.

Example 6.93. The operad Set of sets has
(i) Sets X as types.

(ii) Functions X1 × · · · × Xn → Y as operations of arity (X1 , . . . ,Xn ; Y).
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(iii) Substitution defined by

(1 ◦i f )(x1 , . . . , xi−1 , w1 , . . . ,wm , xi+1 , . . . , xn)
� 1

(
x1 , . . . , xi−1 , f (w1 , . . . ,wm), xi+1 , . . . , xn

)
where f ∈ Set(W1 , . . . ,Wm ; Xi), 1 ∈ Set(X1 , . . . ,Xn ; Y), and hence 1 ◦i f is a

function

(1 ◦i f ) : X1 × · · · × Xi−1 ×W1 × · · · ×Wm × Xi+1 × · · · × Xn −→ Y

(iv) Identities idX ∈ Set(X; X) are given by the identity function idX : X → X.

Next we give an example that reminds us what all this operad stuff was for: wiring

diagrams.

Example 6.94. The operad Cospan of finite-set cospans has

(i) Natural numbers a ∈ N as types.

(ii) Cospans a1 + · · · + an → p ← b of finite sets as operations of arity (a1 , . . . , an ; b).
(iii) Substitution defined by pushout.

(iv) Identities ida ∈ Set(a; a) just given by the identity cospan a
ida
−−→ a

ida
←−− a.

This is the operadic analogue of the monoidal category (CospanFinSet , 0,+).
We can depict operations in this operad using diagrams like we drew above. For

example, here’s a picture of an operation:

f

h

1

k

(6.95)

This is an operation of arity (3, 3, 4, 2; 3). Why? The circles marked f and 1 have 3

ports, h has 4 ports, k has 2 ports, and the outer circle has 3 ports: 3, 3, 4, 2; 3.

So how exactly is Eq. (6.95) a morphism in this operad? Well a morphism of this

arity is, by (ii), a cospan 3 + 3 + 4 + 2

a−→ p
b←− 3. In the diagram above, the apex p is the

set 7, because there are 7 nodes • in the diagram. The function a sends each port on

one of the small circles to the node it connects to, and the function b sends each port of

the outer circle to the node it connects to.

We are able to depict each operation in the operad Cospan as a wiring diagram.

It is often helpful to think of operads as describing a wiring diagram grammar. The



216 CHAPTER 6. CIRCUITS: HYPERGRAPH CATEGORIES AND OPERADS

substitution operation of the operad signifies inserting onewiring diagram into a circle

or box in another wiring diagram.

Exercise 6.96.
1. Consider the following cospan f ∈ Cospan(2, 2; 2):

Draw it as a wiring diagram with two inner circles, each with two ports, and one

outer circle with two ports.

2. Draw thewiringdiagramcorresponding to the following cospan 1 ∈ Cospan(2, 2, 2; 0):

�

3. Compute the cospan 1 ◦1 f . What is its arity?

4. Draw the cospan 1 ◦1 f . Do you see it as substitution? ♦

We can turn any symmetric monoidal category into an operad in a way that gener-

alizes the above two examples.

Definition 6.97. For any symmetric monoidal category (C, I , ⊗), there is an operad OC,

called the operad underlying C, defined as having:

(i) Ob(C) as types.
(ii) morphisms C1 ⊗ · · · ⊗ Cn → D in C as the operations of arity (C1 , . . . , Cn ; D).
(iii) substitution is defined by

( f ◦i 1) B f ◦ (id, . . . , id, 1 , id, . . . , id)

(iv) identities ida ∈ OC(a; a) defined by ida .

We can also turn any monoidal functor into what’s called an operad functor.

6.5.3 The operad for hypergraph props

Anoperad functor takes the types of one operad to the types of another, and then the op-

erations of the first to the operations of the second in away that respects this.
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Rough Definition 6.98. Suppose given two operads O and P with type collections T
and U respectively. To specify an operad functor F : O→ P,

(i) one specifies a function f : T → U.

(ii) For all arities (t1 , . . . , tn ; t) in O, one specifies a function

F : O(t1 , . . . , tn ; t) → P( f (t1), . . . , f (tn); f (t))

such that composition and identities are preserved.

Just as set-valued functors C→ Set from any category C are of particular interest—

we saw themas database instances inChapter 3—so to areSet-valued functorsO→ Set
from any operad O.

Definition 6.99. An algebra for an operad O is an operad functor F : O→ Set.

We can think of functorsO→ Set as defining a set of possibleways to fill the boxes in

awiring diagram. Indeed, each box in awiring diagram represents a type t of the given
operad O and an algebra F : O → Set will take a type t and return a set F(t) of fillers
for box t. Moreover, given an operation (i.e., a wiring diagram) f ∈ O(t1 , . . . , tn ; t), we

get a function F( f ) that takes an element of each set F(ti), and returns an element of

F(t). For example, it takes n circuits with interface t1 , . . . , tn respectively, and returns

a circuit with boundary t.

Example 6.100. For electric circuits, the types are again finite sets, T � Ob(FinSet),
where each finite set t ∈ T corresponds to a cell with t ports. Just as before, we have a

set Circ(t) of fillers, namely the set of electric circuits with that t-marked terminals. As

an operad algebra, Circ : Cospan→ Set transforms wiring diagrams like this one

ϕ B

into formulas that build a new circuit from a bunch of existing ones. In the above-

drawn case, we would get a morphism Circ(ϕ) ∈ Set(Circ(2),Circ(2),Circ(2); Circ(0)),
i.e. a function

Circ(ϕ) : Circ(2) × Circ(2) × Circ(2) → Circ(0).

We could apply this function to the three elements of Circ(2) shown here



218 CHAPTER 6. CIRCUITS: HYPERGRAPH CATEGORIES AND OPERADS

and the result would be the closed circuit from the beginning of the chapter:

This is reminiscent of the story for decorated cospans: gluing fillers together to form

hypergraph categories. An advantage of the decorated cospan construction is that one

obtains an explicit category (where morphisms have domains and codomains and can

hence be composed associatively), equipped with Frobenius structures that allow us to

get around the strictures of domains and codomains. The operad perspective has other

advantages. First, whereas decorated cospans can produce only some hypergraph

categories, Cospan-algebras can produce any hypergraph category.

Proposition 6.101. There is an equivalence between Cospan-algebras and hypergraph

props.

Another advantage of using operads is that one can vary the operad itself, from

Cospan to something similar (like the operad of ‘cobordisms’), and get slightly different

compositionality rules.

In fact, operads—with the additional complexity in their definition—can be cus-

tomized even more than all compositional structures defined so far. For example, we

can define operads of wiring diagrams where the wiring diagrams must obey precise

conditions far more specific than the constraints of a category, such as requiring that

the diagram itself has no wires that pass straight through it. In fact, operads are strong

enough to define themselves: roughly speaking, there is an operad for operads: the

category of operads is equivalent to the category of algebras for a certain operad [Lei04,

Example 2.2.23]. While operads can, of course, be generalized again, they conclude

our march through an informal hierarchy of compositional structures, from preorders

to categories to monoidal categories to operads.

6.6 Summary and further reading

This chapter began with a detailed exposition of colimits in the category of sets; as we

saw, these colimits describe ways of joining or interconnecting sets. Our second way

of talking about interconnection was the use of Frobenius monoids and hypergraph

categories; we saw these two themes come together in the idea of a decorated cospans.

The decorated cospan construction uses a certain type of structured functor to construct

a certain type of structured category. More generally, we might be interested in other

types of structured category, or other compositional structure. To address this, we

briefly saw how these ideas fit into the theory of operads.
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Colimits are a fundamental concept in category theory. For more on colimits, one

might refer to any of the introductory category theory textbooks we mentioned in

Section 3.6.

Special commutative Frobenius monoids and hypergraph categories were first de-

fined, under thenames ‘separable commutative Frobenius algebra’ and ‘well-supported

compact closed category’, by Carboni and Walters [CW87; Car91]. The use of deco-

rated cospans to construct them is detailed in [Fon15; Fon18; Fon16]. The application

to networks of passive linear systems, such as certain electrical circuits, is discussed in

[BF15], while further applications, such as to Markov processes and chemistry can be

found in [BFP16; BP17]. For another interesting application of hypergraph categories,

we recommend the pixel array method for approximating solutions to nonlinear equa-

tions [Spi+16]. The story of this chapter is fleshed out in a couple of recent, more

technical papers [FS18b; FS18a].

Operads were introduced by May to describe compositional structures arising in

algebraic topology [May72]; Leinster has written a great book on the subject [Lei04].

More recently, with collaborators author-David has discussed using operads in applied

mathematics, to model composition of structures in logic, databases, and dynamical

systems [RS13; Spi13; VSL15].
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