WHAT IS ENGINEERING?

root of the word... ENGINEER

root of the word... ENGINEER

not english french "ingenieur" "ingenuiter"

the SCIENTIST / MATHEMATICIAN VS the ENGINEER

CONFOUNDING FACTS

- Engineering requires thorough mathematical & scientific knowledge
- Engineers study science and math extensively
- Engineers may conduct scientific experiments while doing Engineering
- Scientists use engineering methods
- Some great engineers trained as scientists & mathematicians
- Some great scientists trained as engineers
- All require intensity, passion, creativity & intellectual effort

BUT, THEY ARE DISTINCT

"The scientist seeks to understand what is; the engineer seeks to create what never was" -Von Karmen

ENGINEERING is a human activity aimed at creating new artifacts, algorithms, processes and systems that serve humans

BROAD HUMAN WANTS

- Shelter
- Food
- Transportation
- Communication
- Security
- Longevity, personal and progeny
- Entertainment
- Aesthetic pleasure
- Social, Emotional, Spiritual & Psychological rewards etc.

United States National Academy of Engineering

Greatest Engineering Achievements of the 20th Century

NAE Greatest Engineering Achievements of the 20th Century

- . Electrification
- . Automobile
- . Airplane
- . Water Supply and Distribution
- . Electronics
- . Radio and Television
- . Agricultural Mechanization
- . Computers
- . Telephone
- 10. Air Conditioning and Refrigeration

NAE Greatest Engineering Achievements of the 20th Century

- 11. Highways
- 12. Spacecraft
- 13. Internet
- 14. Imaging
- 15. Household Appliances
- 16. Health Technologies
- 17. Petroleum and Petrochemical Technologies
- 18. Laser and Fiber Optics
- 19. Nuclear Technologies
- 20. High-performance Materials

WHAT SKILLS ARE NEEDED TO BE AN EFFECTIVE ENGINEER?

Continuation of Engineering vs Math and Science

ETHICAL CONSTRAINTS DIFFER

Science and Math: intellectual honesty

• Engineering: far broader...

- economical
- safe
- environmentally sound
- social impact
- etc.

...thus, involving greater tradeoffs and judgement calls

ENGINEERS SCIENTISTS / MATHEMATICIANS ARTISTS / WRITERS

SHARE

The excitement of discovery

• The satisfaction and frustration of creative processes & results

BUT, THE ESSENTIAL DIFFERENCE IS...

Engineering creation almost always requires a <u>TEAM</u> effort

AN ENGINEER SHOULD BE ABLE TO...

- Determine quickly how things work
- Determine what customers want
- Create a concept
- Use abstractions/math models to improve a concept
- Build or create a prototype version
- Quantitatively and <u>robustly test</u> a prototype to improve concept and to predict
- Determine whether customer value and enterprise value are aligned (business sense)
- Communicate all of the above to various audiences
- Much of this requires "domain-specific knowledge" and experience
- Several require systems thinking and statistical thinking
- All require teamwork, leadership, and societal awareness

Boeing List of "Desired Attributes of an Engineer"

- A good understanding of engineering science fundamentals
 - Mathematics (including statistics)
 - Physical and life sciences
 - Information technology (far more than "computer literacy")
- A good understanding of design and manufacturing processes (i.e. understands engineering)
- A multi-disciplinary, systems perspective
- A basic understanding of the context in which engineering is practiced
 - Economics (including business practice)
 - History
 - The environment
 - Customer and societal needs

- Good communication skills
 - Written
 - Oral
 - Graphic
 - Listening
- High ethical standards
- An ability to think both critically and creatively - independently and cooperatively
- Flexibility. The ability and selfconfidence to adapt to rapid or major change
- Curiosity and a desire to learn for life
- A profound understanding of the importance of teamwork.
- This is a list, begun in 1994, of basic durable attributes into which can be mapped specific skills reflecting the diversity of the overall engineering environment in which we in professional practice operate.
- This current version of the list can be viewed on the Boeing web site as a basic message to those seeking advice from the company on the topic. Its contents are also included for the most part in ABET EC 2000.

Quality vs Quantity Undergraduate Engineering Education

- <u>Premise</u>: It is impossible to teach a student everything he or she needs to know as preparation for a professional career in a four or five (or ten) year university program.
- Demonstrate that engineering is practiced within a much broader societal context not as an end in itself.
- Teach students how to learn and make it clear that it is a life-long pleasure.
- Develop a fundamental understanding of the unity of the fundamental tools and concepts needed for engineering practice (rather than providing them a vast bag of tricks for solving selected problems). These basic fundamentals include:
 - Mathematics
 - Information technology
 - Science, including the "engineering sciences"
 - Design and manufacturing
 - Economics and business practices
 - Communication skills (written, oral, graphic and listening)
- Emphasize "design" [Creative thinking and open-ended problem solving in the most general sense] and its close connection with manufacturing (i.e. "If you can't build it, you can't use or sell it".]
- Show students how to get information and how to deal effectively with too much of it (i.e. emphasize critical thinking and evaluation skills)
- Emphasize teamwork (not merely "group work") and communication skills
- Emphasize the "Why" and "What" of theory, and how these basics are then applied in practice. (the "How" in applications can then be gained by experience and subsequent training).

Positions/ Jobs

Types of Work Done Fundamental Materials Research Crash Safety Engineering Weight Reduction CAE **Concept Engineering** Systems Engineering **Business/ Engineering Integration** -Subsystem Quality Global Process Commonality - Reuse Architecture.

RECOMMENDATIONS

have fun AND learn

AND be professional