MIT OpenCourseWare http://ocw.mit.edu

2.007 Design and Manufacturing I Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.007 – Design and Manufacturing I Gears: Strength, Gear Trains,...

Images removed due to copyright restrictions. Please see p. 1 in <u>http://courses.washington.edu/mengr356/daly/Gear_stress.pdf</u> And <u>http://content.answers.com/main/content/img/McGrawHill/Encyclopedia/images/CE064700FG0010.gif</u>

Presented by Dan Frey on 19 MAR 2009

Today's Agenda

- Some discussion of homework #3
- Gears
 - Selection of gears
 - Failure of gears
 - Strength
 - Gear trains
- Springs

4) (25 total) Consider a set of spur gears of 24 pitch and 20° pressure angle and either 12, 24, or 48 teeth.

- A) (10 points) Make a sketch of a of 24 pitch gear with a 1 inch pitch diameter and about a 20° pressure angle. You can use Solidworks and can employ the DXF file on the 2.007 web site (24tooth.dxf) as a starting point.
- B) (5 points) A 12 tooth gear is mated with the 48 tooth gear. Make a drawing of the two gears with their pitch diamters tangent. You can use Solidworks and can employ the DXF files on the 2.007 web site (12tooth.dxf and 48tooth.dxf) A torque of 1 Nm is applied to the 12 tooth gear and the 48 tooth gear is prevented from rotating. Estimate the separation forces between the gears. Indicate on the drawing where the forces are applied and where a reaction force is generated to maintain the gears in static equilibrium.
- C) Using only 24 pitch gears with 12, 24, and 48 teeth and ¼ inch face width, design a compound spur gear train for a ratio of 32:1 Sketch the train to scale. (Note: there are many different solutions possible, you should make design decisions and explain your rationale.)
- D) Imagine the gear train from (part C) is driven by a servo motor with the manufacturer's specifications shown to the right. Estmate the factor of safety for the gear train assuming the largest load applied to it will be the stall torque of the servomotor. You can assume the gears are molded from Delrin.

Image removed due to copyright restrictions. Please see http://www.hitecrcd.com/product_file/file/66/hs805.pdf

Interference

- Contact with the non-involute part of the gear
- In practice, avoided by under-cutting
- Weakens the tooth, esp. on gears with few teeth (pinions)

Figure by MIT OpenCourseWare.

From Shigley and Mischke

Backlash

- There is some space between the driving pair of gears and the next pair behind and ahead
- When gears reverse direction, that space allows relative motion
- Can be eliminated at some cost in parts and efficiency

An "anti-backlash" gear from WM Berg

Courtesy of W. M. Berg, Inc. Used with permission.

Gear Selection

- Pitch
- Face width
- Material
- Pressure angle
- # of teeth
- Hub style, bore, etc.

Courtesy of W. M. Berg, Inc. Used with permission.

You call up the number 1-800-232-BERG and ask that, for a special application, you want a 48 pitch spur gear, but with a pitch dia of 0.32 inches. They will probably say:

- 1. OK, no problem
- 2. OK, but it will cost a lot
- 3. No, this is not technically possible

Courtesy of W. M. Berg, Inc. Used with permission.

Ways Gears Fail

Exceed endurance limit in bending

Exceed static yield stress in bending

Image courtesy of deltaMike at Flickr.

Exceed endurance limit in contact stress

Images removed due to copyright restrictions. Please see http://materials.open.ac.uk/mem/mem_mf6.htm http://www.hghouston.com/x/39_gearpit.html

"pitting"

Stress in Gears

Image removed due to copyright restrictions. Please see p. 1 in http://courses.washington.edu/mengr356/daly/Gear_stress.pdf

A Beam in Bending

Figure by MIT OpenCourseWare.

Concept Question

- In selecting a gear of one inch pitch diameter, we are choosing between 48 and 24 pitch gear teeth. The effect on torque that can be transmitted before bending failure of the teeth is
- 1. Around a factor of 10
- 2. Around a factor of 4
- 3. Around a factor of 2
- 4. Much less than a factor of 2

Strength of Gears

- Any good catalog will have a formula and tables
- What factors must enter the equation?
 - Material properties
 - Geometry

Gear Reference Guide

GEAR TOOTH STRENGTH

Many factors must be considered when designing a gear train. The information listed on this pag should be used as a general guideline for your application. If more critical strength calculation required W.M. Berg suggests that you consult our engineering department or any one of the many gea handbooks that are readily available.

When a gear train is transmitting motion, it is save to assume that all of the load is being carried b one tooth. This is because as the load approaches the end of the tooth, where the bending force would be the greatest, a second tooth comes into mesh to share the load. Simple results can be obtained from the Lewis bending strength equation.

$W_t = \frac{SFY}{D.P.}$

- Wt = Maximum transmitted load (lbs or N)
- S = Maximum bending tooth stress (taken as 1/3 of the tensile strength) See Table C on Page 5
- F = Face width of gear (in. or mm)
- D.P. = Diametral Pitch = 1/module (for equation only) Y = Lewis Factor (See Table)

NOTE: The maximum bending tooth stress (S) is valid for well lubricated, low shock applications. For high shock, poorly lubricated applications, the safe stress could be as low as .025S. If your design calls for an unfriendly environment for gears, you might want to lower S to assure a reasonable amount of gear life.

	NO. OF TEETH	14 1/2" INVOLUTE	20" INVOLUTE
	10	0.176	0.201
	11	0.192	0.226
	12	0.210	0.245
	13	0.223	0.264
	14	0.236	0.276
LEWIS FACTOR - Y	15	0.245	0.289
	16	0.255	0.295
	17	0.264	0.302
	18	0.270	0.308
	19	0.277	0.314
	20	0.283	0.320
	22	0.292	0.330
	24	0.302	0.337
	26	0.308	0.344
	28	0.314	0.352
	30	0.318	0.358
	32	0.322	0.364
	34	0.325	0.370
	36	0.329	0.377
	38	0.332	0.383
	40	0.336	0.389
	45	0.340	0.399
	50	0.346	0.408
	55	0.352	0.415
	60	0.355	0.421
	65	0.358	0.425
	70	0.360	0.429
	75	0.361	0.433
	80	0.363	0.436
	90	0.366	0.442
	100	0.368	0.446
	150	0.375	0.458
	200	0.378	0.463
- 1	300	0.382	0.471
- 1	BACK	0.200	0 494

1-800-232-BERG

Courtesy of W. M. Berg, Inc. Used with permission.

The Lewis Formula

Figure by MIT OpenCourseWare.

Point of max stress due to bending

Or Use a Canned Tool

Please see "Spur Gear Tooth Strength" at http://www.wmberg.com/tools/

http://www.wmberg.com/Tools/

Discussion Questions

- I glued the third stage teeth of this servo together
- Now I will apply a load to the output shaft (up to 10lbs)
- What's going to happen?

Contact Stress (Hertzian Stress)

Contact Stress Quantitative Characterization

Simple Gear Trains

- A "simple" gear train has only one gear on each shaft
- How does this arrangement behave?

Compound Gear Trains

- A "compound" gear train has at least one shaft with multiple gears
- How does this arrangement behave?

Image from Wikimedia Commons, http://commons.wikimedia.org

From Norton "Design of Machinery"

Compound Helical Gears

- Note the difference in the handedness of the gears
- Another book shows the gear with the same handedness
- Which is better?

Figure by MIT OpenCourseWare.

Manual Transmissions

Image from Wikimedia Commons, <u>http://commons.wikimedia.org</u>. Please see <u>http://mossmotors.com/Graphics/Products/Schematics/SPM-025.gif</u>

If you find just two axles in a machine, does that mean there are just two stages?

Discussion Questions

Image from Wikimedia Commons, http://commons.wikimedia.org

- Are there any disadvantage to a helical gear as compared to a spur gear?
- How can the disadvantages be remedied?
- Is a helical gear set stronger than a spur gear of the same diameter, pitch, face width, & material?

Concept Question

A compound gear train is formed of eight gears. As we proceed from the pinion on the electric motor to the gear on the output shaft, how do the pitch and face width vary?

- 1. Pitch rises, face width rises
- 2. Pitch rises, face width falls
- 3. Pitch falls, face width rises
- 4. Pitch falls, face width falls

Discussion Questions

- How many stages in this device?
- How do you suppose this number is chosen?
- Are the reduction ratios typically all nearly the same in all successive stages?

Differentials

- Allows shafts to move at different speeds
- Applies same torque to both
- Slippage problem

Image removed due to copyright restrictions. Please see http://mossmotors.com/Graphics/Products/Schematics/SPM-027.gif

Planetary Gear Trains

- One or more of the gear axes are allowed to rotate
- aka "epicyclic"
- Used in
 - Power tools
 - Automatic transmissions
 - Gear boxes

Courtesy NASA.

Please also see http://commons.wikimedia.org/wiki/File:Epicyclic_carrier_locked.png http://i.i.com.com/cnwk.1d/i/ss/2007/0828_Driving_it/DSG_440.jpg

Analysis of Planetary Gear Trains

Speed of last gear (the ring) (usually fixed)

(teeth on sun / teeth on ring)

Figure by MIT OpenCourseWare.

Types of Springs

- Extension springs place the metal on torsion
- Torsion springs place the metal in bending
- "Constant force" springs also place the metal in bending

Images removed due to copyright restrictions. Please see http://static.howstuffworks.com/flash/differential.swf

Volvo 1800ES

Rubber as a Spring

Image removed due to copyright restrictions. Please see http://www.doitpoms.ac.uk/tlplib/optimisation-biomaterials/modulus_strength.php

Springs to Counterbalance

- Let's say there's a static load tending to force your mechanism away from a desired state
- Springs within your mechanism can be used to counterbalance the load
- Less intertia than a "counterweight"

Gears & Springs in Mechanisms

Courtesy of TRS Inc. Used with permission.

Next Steps

- Begin Homework #3
 - Please don't spend more than 6 hours on it
- Spring break
- Lecture Tuesday 31 March
 - Microcontrollers
- HW#3 due 7 April
- Quiz #2 on 16 April
- Impounding week 29 April to 1 May

Updated Schedule

R 19 MAR	Gears – Strength, gear trains	moutre	
	Spring Break (23-27 Ma	rch)	
T 31 MAR	Microcontrollers	Integration of design	
R 2 APR	Lab time		
T 7 APR	Sensors	Demonstration of integrated machine	
R 9 APR	Lab time		
T 14 APR	Belts / chains / cams	Design iteration	
R 16 APR	Quiz #2		
T 21 APR	No Lecture Patriot's Day	Fabrication of improved machine	
R 23 APR	Lab time		
T 28 APR	Optimization	Demonstration of improved machine	
R 30 APR	Professional ethics		
T 5 MAY	Review of festivity procedures	Final refinements	
R 7 MAY	No Lecture because of design festivity (although the festivity is in the evenings)	IN THE EVENING (6 May is first round, 7 May is finals)	
T 12 MAY	A review of this year's machines	Debriefs with section Locker cleanup and recycling	
R 14 MAY	Course summary / feedback		

Name That Gear

What type of worm gear set is this?

- 1) Single-enveloping, single threaded
- 2) Single-enveloping, multi-threaded
- Double enveloping single threaded worm gear
- 4) Double enveloping multi- threaded

Follow up

What is the reduction ratio of this gear set?

- 1) 10:1
- 2) 20:1
- 3) 40:1

4) 80:1