Today: using MATLAB[®] to model LTI systems

- 2nd order system example:
 - DC motor with inductance
 - derivation of the transfer function
 - transient responses using MATLAB
 - open loop
 - closed loop (with feedback)
 - Effect of feedback gain

DC motor system with non-negligible inductance

Recall combined equations of motion

$$\begin{split} LsI(s) + RI(s) + K_v \Omega(s) &= V_s(s) \\ Js\Omega(s) + b\Omega(s) &= K_m I(s) \end{split} \} \Rightarrow \\ \left[\frac{LJ}{R} s^2 + \left(\frac{Lb}{R} + J \right) s + \left(b + \frac{K_m K_v}{R} \right) \right] \Omega(s) &= \frac{K_m}{R} V_s(s) \\ (Js + b) \Omega(s) &= K_m I(s) \end{split}$$

Including the DC motor's inductance, we find

$$\begin{cases} \frac{\Omega(s)}{V_s(s)} &= \frac{K_m}{LJ} \frac{1}{s^2 + \left(\frac{b}{J} + \frac{R}{L}\right)s + \left(\frac{bR + K_m K_v}{LJ}\right)} \\ \frac{I(s)}{V_s(s)} &= \frac{1}{R} \frac{\left(s + \frac{b}{J}\right)}{s^2 + \left(\frac{b}{J} + \frac{R}{L}\right)s + \left(\frac{bR + K_m K_v}{LJ}\right)} \end{cases} \blacksquare Quadratic polynomial denominator Second-order system$$

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Theoretical tasks

- Derive the values of damping ratio ζ , natural frequency ω_n analytically based on the TF from the previous page

 Express the conditions such that the 2nd order DC motor model would become over/under damped

Select values of R, L, b, J, K_m(=K_v) such that the open-loop (OL) response should be **overdamped**. Calculate the poles of the transfer function based on your choices, and compare the rise time of the response you get from MATLAB with the rise time that you expect from the theory. Make sure to "turn off" the feedback loop by setting the value of the gain to equal zero. Print out the MATLAB plots.

Select values of R, L, b, J, K_m(=K_v) such that the open-loop (OL) response should be **underdamped**. Calculate the poles of the transfer function based on your choices, and compare the rise time, overshoot and damped oscillation frequency of the response you get from MATLAB with the corresponding values that you expect from the theory. Make sure to "turn off" the feedback loop by setting the value of the gain to equal zero. Print out the MATLAB plots.

 Now set the value of the inductance L to zero, and keep the feedback loop "turned off" by setting the value of the gain to equal zero. How does the open-loop (OL) response change in MATLAB?

 Restore the value of the inductance L to non-zero, and select the remaining values such that the open-loop (OL) response is again overdamped. Now "turn on" the feedback loop by gradually cranking up the value of the feedback gain. At some point, you will observe that the response becomes underdamped (oscillatory.) Print out the low-gain response (overdamped) and high-gain response (underdamped) and record the value of gain where the transition happens.

 In the last lab, we also had a second-order system where we observed the response change from over- to underdamped by cranking up the gain in the experimental flywheel system. Comment on the difference(s) between the model for the last lab's experiment and the model used in this lab's numerical exploration.

APPENDIX

MATLAB Control Systems Toolbox

Tutorial

MATLAB Linear Model Representation

• Transfer functions

$$H(s) = \frac{s+2}{s^2 + s + 10}$$

sys = tf ([1, 2] ,[1, 1, 10])

• State-space Models

$$\frac{dx}{dt} = Ax + Bu$$

$$y = cx + Du$$

A, B, C, and D are matrices of appropriate dimensions, x is the state vector, and u and y are the input and output vectors respectively.

• Note: There are also other more complex forms of linear systems

State-space System Representation Example 1

Recall from Lecture 5
 Equation of motion – Electrical

$$\mathrm{KCL}: \quad v_s - v_L - v_R - v_e = 0$$

$$\Rightarrow v_s - L rac{di}{dt} - Ri - K_v \omega = 0$$

Equation of motion – Mechanical

Torque Balance: $T = T_b + T_J$

$$\Rightarrow K_m i - b \omega = J rac{d \omega}{dt}$$

Combined equations of motion

$$Lrac{di}{dt}+Ri+K_v\omega=v_s$$

 $Jrac{d\omega}{dt} + b\omega = K_m i$

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

State-space System Representation Example (2)

• Reorganizing the system and write in matrix form

$$\begin{cases} L\frac{di}{dt} + Ri + K_v\omega = v_s \\ J\frac{d\omega}{dt} + b\omega = K_m i \end{cases} \implies \begin{cases} \frac{di}{dt} = -\frac{R}{L}i - \frac{K_v}{L}\omega + v_s \\ \frac{d\omega}{dt} = \frac{K_m}{J}i - \frac{b}{J}\omega \end{cases}$$
$$\implies \frac{d}{dt} \begin{bmatrix} i \\ \omega \end{bmatrix} = \begin{bmatrix} -\frac{R}{L} & -\frac{K_v}{L} \\ \frac{K_m}{J} & -\frac{b}{J} \end{bmatrix} \begin{bmatrix} i \\ \omega \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} v_s$$

• Here our input is v_s and output is ω ; we also have

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} i \\ \omega \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \cdot v_s(t)$$

• Now we have our A B C D matrices ready

State-space System Representation Example ③

• In MATLAB, we can represent the motor system using following command: (need to define all parameters first)

A = [-R/L -Kv/L; Km/J -b/J]; B = [1/L; 0]; C = [0 1]; D = [0]; sys_dc = ss(A,B,C,D)

• We can also convert this state-space system to transfer function or Pole/zero/gain form:

• NOTE: The state-space representation is **best suited** for numerical computations and is **most accurate** for most cases.

LTI Objects and Manipulation

- Control System Toolbox software uses custom data structures called "LTI objects".
- The state-space model we have created for the DC motor is called an "SS object". There are also TF, ZPK, and FRD objects.
- *"LTI objects"* enable you to manipulate linear systems as single entities using "get" command in MATLAB, we can see the detailed entities.

Creating Multiple Transfer Functions

• Assume the three transfer functions are
$$\frac{s}{s+5}$$
, $\frac{s+1}{s+6}$ and $\frac{s+2}{s^2+s+5}$

• Collect all numerators and denominators in cells; use the following MATLAB command:

Continuous-time transfer function.

Interconnecting Linear Models -- Arithmetic Operations

• <u>Addition</u> (parallel systems):

tf(1, [1 0]) + tf([1 1], [1 2]); Transfer function: $\frac{s^{2} + 2s + 2}{s^{2} + 2s} = \frac{(s+2) + s(s+1)}{s(s+2)}$

• <u>Multiplication</u> (cascaded systems):

2 * tf(1,[1 0])*tf([1 1],[1 2]); This line represents $2 \cdot \frac{1}{s} \cdot \frac{s+1}{s+2}$ Transfer function: $\frac{2s+2}{\frac{s^2+2}{s^2+2s}}$

Interconnecting Linear Models -- Feedback loop

• Example system:

sys_f = feedback(tf(1,[1 0]), tf([1 1],[1 2])

• **NOTE**: You can use the "Ift" function to create more complicated feedback structures.

The LTI Viewer

- "LTI Viewer GUI allows" you to analyze the time- and frequency-domain responses of one or more linear models.
- Syntax:

This syntax opens a step response plot of your models ltiview(model1,model2,...,modelN) Click to add a legend _ 🗆 × LTI Viewer File Edit Window Help ۹ 🖃 + model1 Step Response model2 1.2 Amplitude 0.4 0.2 10 Time (sec)

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

LTI Viewer

General LTI Viewer Menus

Adding More Plots To LTI Viewer

• Select Edit > Plot Configurations.

 You can also designate specific type of plots to view on the right hand side of this window.

Change Plot Type

• To view a different type of response on a plot, right-click and select a plot

Analyze System Performance

• Right-click to select performance characteristics.

• Click on the dot that appears to view the characteristic value.

Importing Models into the LTI Viewer

 Select "Import" under the "File" menu. This opens the Import System Data dialog box

mport nom		Systems in Wo	rkspace	
Workspace	G	lxl	tf	
	Gell	lxl	tf	_
C MAT-file	Gc12	lxl	tf	
	Ge13	lxl	tf	
	Gservo	lxl	zpk	
	clssF8	2x2	SS	
	diskdrive	lxl	zpk	
	frdF8	2x2	frd	
	frdG	lxl	frd	
	gasf	4x6	55	
	hplant	lxl	55	
	m2d	4-D	tf	
	SSF8	2x2	55	
ALC: T. THE MANY OF	sys dc	lxl	SS	
MAN-FILE Name:				
Browse				-

• All the models available in your MATLAB workspace are listed

Alternative Command to Simulate Different Responses

you can open the LTI Viewer and import systems from the MATLAB prompt.

ltiview('step', sys)

This syntax views the step response of our

• More options:

'step'	 Step response
'impulse'	 Impulse response
'initial'	 Initial condition
'lsim'	 Linear simulation
'pzmap'	 Pole/zero map
'bode'	 Bode plot
'nyquist'	 Nyquist plot
'nichols'	 Nichols plot

• Multiple plots are allowed. Example: https://www.tivestepselimbul.com ('step';'impulse'),sys)

Displaying Response Characteristics

- Right-click on the plot
- Example: select Characteristics > Rise Time.

Toggling Model Visibility

 This figure shows how to clear the second of the three models using right-click menu options.

The Linear Simulation Tool

 In the LTI Viewer, right-click the plot area and select Plot Types > Linear Simulation.

File Edit Help Input signals Initial states Timing			The Input signals tab lets you import input signals or design your own.
Start time (sec): 0 to	with an interval	lof	
Number of samples:		Import time	— Specify your simulation times here, or import a time vector
System inputs			
Channels	Data	Variable Dimensions	
1			
			Click Import signal to import data from
			a file
	e de la contra de la contra de		- The.
Use "Import signal" or "	Design signal" buttor	hs to assign data to inputs	
	Import signs	al T Design signal	Click Design signal to create an input
			sig na l.
a reserve and the second se		1	

• You can also use the "Isim" function at the MATLAB prompt: Syntax: Isim(modelname)

Using The Linear Simulation Tool

- Specify the **time duration** you want to simulate:
 - Import the time vector by clicking Import time (From workspace)
 - Enter the end time the time interval in seconds
- Specify the input signal
 - Click Import signal to import it from the MATLAB workspace or a file
 - Click **Design signal** to create your own inputs
- If you have a state-space model, you can specify the initial conditions
 - click the **Initial states** tab
- For a continuous model, select an interpolation method

Functions for Frequency and Time Response

Functions	Description			
bode	Bode plot			
evalfr	Computes the frequency response at a single comple frequency (not for FRD models)			
freqresp	Computes the frequency response for a set of frequencies			
gensig	Input signal generator (for lsim)			
impulse	Impulse response plot			
initial	Initial condition response plot			
iopzmap	Pole-zero map for each I/O pair of an LTI model			
lsim	Simulation of response to arbitrary inputs			
margin	Computes and plots gain and phase margins			
nichols	Nichols plot			
nyquist	Nyquist plot			
pzmap	Pole-zero map			
step	Step response plot			

Using a Response Command

• Example:

•

```
h = tf([1 0],[1 2 10])
impulse(h)
```


Response for Multiple Systems

Command (Collect transfer functions into a vector array):

```
h = [tf(10,[1 2 10]), tf(1,[1 1])]
step(h)
```

• Plot:

Alternative Command for Multiple Systems

• Syntax:

NOTE: Options for plot color and shape are optional (all in blue solid lines)

Example: stepplot(sys1, sys2, sys3, sys4, sysN)

۲

Controller Design -- PID Tuner

• To launch the PID Tuner, use the pidtool command:

- The PID Tuner automatically designs a controller for your plant.
- You can use the **Response time slider** to try to improve the loop performance

The PID Tuner

2.004 Spring '13

The PID Tuner

2.004 Spring '13

Right click on the plot and select Characteristics to mark the characteristic times.

The SISO Design Tool

Open the control design GUIs with the following command

Define The Control Architecture

- In the "Architecture tab", click "Control Architecture"
- Select proper architecture and specify the sign of

Specify sign of summing junctions as + or -

Specifying System Data

 In the Architecture tab, click System Data

 You can select values or transfer functions from MATLAB workspace or a *.mat file

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Browse for model in MATLAB workspace

Compensator Design

- In the **Compensator Editor** tab, you can manually define the compensator form.
- Right click on the "Dynamics" table allows you to add/delete Poles, Zeros, Integrators, Differentiators etc.

6 1 1 1	
Workspace SISO Design Task Design History	Architecture Compensator Editor Graphical Tuning Analysis Plots Automated Tuning Compensator C Image: Second Seco
	Show Architecture Store Design Hele

Graphically Tuning Control Parameters 1

 In the Graphical Tuning tab, you can configure the plots you want to see in the Graphical Tuning Window.

Control and Estimation Too	ls Manager			
file Edit Help				
3 🛃 🤊 (°				
Workspace	Architecture Compensa Design plots configurati	ator Editor Graphical Tuning Analysis Plots Automate	d Tunir	
Er L Design History	Plot	Available Open/Closed Loop to Tune		Plot Type
	Plot 1	Open Loop 1	*	Root Locus
	Plot 2	Open Loop 1	*	Open-Loop Bode 💌
	Plot 3	Open Loop 1	*	Nichols 🔹
	Plot 4	Open Loop 1	-	None
	Plot 5	Open Loop 1	-	None 🔹
	Plot 6	Open Loop 1	-	None
			_	
	Summary of available o	open/closed loops to tune:		
	Loop Name	Loop Description		
	Open Loop 1	Open Loop L		
	Closed Loop 1	Closed Loop - From r to y		
		Select New Open/Closed Loop to Tune	esign P	lot
		Show Architecture Store Design He	lp	
				*
				-

Graphically Tuning Control Parameters 2

- In the Graphical Tuning Window, you can grab and drag the pink squares using the small hand in the toolbar. This changes the constant multiplier value of the compensator.
- You can also add poles and zeros in this window using the "cross" and "circle" in the toolbar.

Viewing Damping Ratios 1

- Right-click on the root locus graph and select Requirements > New to add a design requirement.
- In the New Design Requirement dialog box choose Damping

Viewing Damping Ratios (2)

- Applying damping ratio requirements to the root locus plot results in a pair of shaded rays at the desired slope
- Try moving the complex pair of poles you added to the design so that they are **on the 0.707 damping ratio line**.

Analysis Plot ①

- In the Analysis Plots tab, select a plot type
- Select the type of response for each plot

	Architecture	Co	mp	ensa	tor E	ditor Graphical	Tuning An	alysis Plo	ts Autor	mated Tuning	
	Analysis Plo	ots		Diet	1	Diet 2	Diat 2		Diet 4	Diet 5	Diate
			-	Plot	1	Plot 2	Plot 5		PIOC 4	Plot 5	PIOLO
select plot type -	Plot Ty	pe	Ste	p	•	None 👻	None	▼ No	ne 🔻	None 👻	None
	Contents o	f Plo	ots								
		Plot	ts								
elect type of	1 2 3	4	5	6	All	Responses					
esponse for						Closed Loop r to y					
ach plot			Closed Loop r to u								
aon pior					1	Closed Loop du	to y				
					(PTT)	Closed Loop dy	to y				
					1000	Closed Loop n t	рy				
						Open Loop L					
						Compensator C					
						Prefilter F					
						Plant G					
						Sensor H					

Analysis Plot 2

- Click Show analysis plot in the Analysis plots tab
- This displays the real-time specific performance characteristics for your system. Compare values to design requirements.

Click dot to view value

Storing and Retrieving Intermediate Designs

 Click the Design History node or Store Design, both located on the SISO Design Task node in the Control and Estimation Tools

Exporting the Compensator and Models

After you design the controller, you may want to save your design parameters

for future implementation.

- Select **File > Export** in the Control and Estimation Tools Manager
- Select File > Export in the Graphical Tuning window.

]•]						
ls						
	Export to Workspace					
	Evenet to Dick	Double-click any cell in the Export As				
	Export to Disk	column to edit the name for export.				
	Cancel					
	Hala					
	пер					
		Export to Workspace Export to Disk Cancel Help				

2.04A Systems and Controls Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.