
Matlab Exercises Recitation 12 2.086 Spring 2012
 

Recitation 12: Wednesday, 2 May / Friday, 4 May 
Matlab Exercises Recitation 12 due: Monday, 7 May 2012, at 5 PM by upload to Stellar 

Format for upload: Students should upload to the course Stellar website a folder 

YOURNAME MatlabExercises Rec12 

which contains the completed scripts and functions for the assigned Matlab Exercises Recitation 12: 
all the scripts should be in a single file, with each script preceded by a comment line which indi
cates the exercise number; each function .m file should contain a comment line which indicates the 
exercise number. 

1. In this question we ask you to time the solution of a sparse tri-diagonal system. 

(a) Create a function timer_bslash_sparse as a slight modification to your function 
timer_matvec_sparse of Recitation 11: replace the line v = K*w in the latter with 
u = K\f in the former. 

(b) Write a three-line script which invokes timer_bslash_sparse (three times) to display 
avg_time/n for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 100. (Note 
you will need to make sure you copy your function generate_K from Recitation 11 to 
the directory/folder from which you run timer_bslash_sparse.) 

You should observe that avg_time/n is roughly constant and thus conclude that the 
time required to perform a sparse tridiagonal solve increases only linearly with n. 

2. In this question we ask you to demonstrate the advantage of sparse storage format by re-
performing the timings of Question 1 but now for K converted to (and stored in) non-sparse 
storage format. 

(a) Create a function timer_bslash_full as a slight modification to your function 
timer_matvec_full of Recitation 11: replace the line v = K*w in the latter with u = K\f 
in the former. 

(b) Write a three-line script which invokes timer_bslash_full (three times) to display 
avg_time/n^3 for n = 400, n = 800, and n = 1,600, and numrepeats = 100. (Note you 
will need to make sure you copy your function generate_K from Recitation 11 to the 
directory/folder from which you run timer_bslash_full.) 

You should observe that avg_time/n^3 is roughly constant and thus conclude that if 
your tridiagonal matrix is not stored in sparse format (i.e., recognized by Matlab as 
sparse), the time required to perform a tridiagonal solve increases cubically with n — 
the same operation count we would expect if K was a fully populated (dense) matrix. 

1



3. Consider the spring system shown in Figure 1 in which we take a standard “series” configu
ration of n springs (spring constants ki, 1 ≤ i ≤ n) but then add an additional spring (spring 
constant kspecial) which connects the first and last mass. The equilibrium displacement u for 
given applied forces f is governed by the system of n equations in n unknowns Ku = f . 

wall

ff33

uu33

mm

ff44

uu44

mm

ff55

uu55

mm

ffnn

uunn

mmnn

ff11

uu11

ff22

uu22

mm22mm11 ……
kk11 kk22 kk33 kk44 kk55 kk66 kknn

kkspecialspecial

Figure 1: The spring-mass system for Question 3. 

(a) Create a function 

function [ K ] = generate_special_K(n,kvec,k_special) 

which yields as output (in sparse storage format) the stiffness matrix K (Matlab K) 
for given n, kvec(i) = ki, 1 ≤ i ≤ n, and k_special = kspecial. 

(b) Create a function timer_bslash_special_K as a slight modification to your function 
timer_bslash_sparse of Question 1: replace the call to generate_K(n,kvec) in the 
latter with a call to generate_special_K(n,kvec,1) in the former. 

(c) Write a three-line script which invokes timer_bslash_special_K (three times) to dis
play avg_time/n for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 100. 

You should observe that avg_time/n is roughly constant and thus conclude that the time 
required to perform this sparse solve increases only linearly with n. This is an example 
of a sparse matrix for which Gaussian elimination creates relatively little “fill-in.” 


 
2



MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



