Matlab Exercises_Recitation 12

Recitation 12: Wednesday, 2 May / Friday, 4 May MATLAB Exercises_Recitation 12 due: Monday, 7 May 2012, at 5 PM by upload to Stellar

Format for upload: Students should upload to the course Stellar website a folder

$\verb"YOURNAME_MatlabExercises_Rec12"$

which contains the completed scripts and functions for the assigned MATLAB Exercises_Recitation 12: all the scripts should be in a single file, with each script preceded by a comment line which indicates the exercise number; each function .m file should contain a comment line which indicates the exercise number.

- 1. In this question we ask you to time the solution of a sparse tri-diagonal system.
 - (a) Create a function timer_bslash_sparse as a slight modification to your function timer_matvec_sparse of Recitation 11: replace the line v = K*w in the latter with u = K\f in the former.
 - (b) Write a three-line script which invokes timer_bslash_sparse (three times) to display avg_time/n for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 100. (Note you will need to make sure you copy your function generate_K from Recitation 11 to the directory/folder from which you run timer_bslash_sparse.)
 You should observe that avg_time/n is roughly constant and thus conclude that the

You should observe that avg_time/n is roughly constant and thus conclude that the time required to perform a sparse tridiagonal solve increases only linearly with n.

- 2. In this question we ask you to demonstrate the advantage of sparse storage format by reperforming the timings of Question 1 but now for K converted to (and stored in) non-sparse storage format.
 - (a) Create a function timer_bslash_full as a slight modification to your function timer_matvec_full of Recitation 11: replace the line v = K*w in the latter with u = K\f in the former.
 - (b) Write a three-line script which invokes timer_bslash_full (three times) to display avg_time/n^3 for n = 400, n = 800, and n = 1,600, and numrepeats = 100. (Note you will need to make sure you copy your function generate_K from Recitation 11 to the directory/folder from which you run timer_bslash_full.)

You should observe that avg_time/n^3 is roughly constant and thus conclude that if your tridiagonal matrix is not stored in sparse format (i.e., recognized by MATLAB as sparse), the time required to perform a tridiagonal solve increases cubically with n — the same operation count we would expect if K was a fully populated (dense) matrix.

3. Consider the spring system shown in Figure 1 in which we take a standard "series" configuration of n springs (spring constants k_i , $1 \le i \le n$) but then add an additional spring (spring constant k_{special}) which connects the first and last mass. The equilibrium displacement u for given applied forces f is governed by the system of n equations in n unknowns Ku = f.

Figure 1: The spring-mass system for Question 3.

(a) Create a function

function [K] = generate_special_K(n,kvec,k_special)

which yields as output (in *sparse storage format*) the stiffness matrix K (MATLAB K) for given n, $\texttt{kvec}(i) = k_i$, $1 \le i \le n$, and $\texttt{k_special} = k_{\texttt{special}}$.

- (b) Create a function timer_bslash_special_K as a slight modification to your function timer_bslash_sparse of Question 1: replace the call to generate_K(n,kvec) in the latter with a call to generate_special_K(n,kvec,1) in the former.
- (c) Write a three-line script which invokes timer_bslash_special_K (three times) to display avg_time/n for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 100. You should observe that avg_time/n is roughly constant and thus conclude that the time required to perform this sparse solve increases only linearly with n. This is an example of a sparse matrix for which Gaussian elimination creates relatively little "fill-in."

2.086 Numerical Computation for Mechanical Engineers Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.