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Chapter 1

Motivation

1.1 A Mobile Robot

Robot self-localization, or the ability of a robot to figure out where it is within its environment, is
arguably the most fundamental skill for a mobile robot, such as the one shown in Figure 1.1. We
can divide the robot self-localization problem into two parts: global position estimation and local
position tracking. Global position estimation is the robot’s ability to determine its initial position
and orientation (collectively, pose) within a known map of its environment. Local position tracking
is then the ability of the robot to track changes in its pose over time. In this assignment, we will
consider two basic approaches to global position estimation and local position tracking.

1.2 Global Position Estimation: Infra-red Range-Finding

Many systems exist today for robot global position estimation. Perhaps the most familiar example
is the Global Positioning System (GPS), a network of 24 satellites that can give an absolute po-
sition estimate accurate to within several meters. For smaller scale position estimation, high-end
solutions such as robotic vision and laser range-finding can provide millimeter accuracy distance
measurements, which can then be matched with map data to convert local distance measurements
to global position. As an alternative to these more expensive systems, ultrasonic and infrared dis-
tance sensors can offer similar performance with modest compromises in speed and accuracy. Of
these two, infrared distance sensors often have slightly narrower beam width and faster response.

Figure 1.2(a) shows the Sharp GP2Y0A21YK0F, a popular medium range (10-80 cm), infrared
(IR) distance sensor. The Sharp sensor uses triangulation to calculate distance by measuring the
angle of incidence of a transmitted IR beam reflected from a distant surface onto a receiving posi-
tion sensitive device (PSD). Because the angle is a nonlinear function of the distance to the surface,
the Sharp sensor has the nonlinear calibration curve shown in Figure 1.2(b). Given discrete cali-
bration data, we can linearly interpolate voltage readings taken from the sensor to derive distance
measurements.

1.3 Local Position Tracking: Odometry

Dead reckoning, which tracks location by integrating a moving system’s speed and heading over
time, forms the backbone of many mobile robot navigation systems. The simplest form of dead
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Figure 1.1: A mobile robot with pose (x, y, θ).
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Figure 1.2: Sharp GP2Y0A21YK0F infrared distance sensor and its calibration curve.

reckoning for land-based vehicles is odometry, which derives speed and heading information from
sensed wheel rotations.

Optical encoders like the one shown in Figure 1.3 are often used to derive linear displacements
of the left and right wheels (∆sleft and ∆sright) from incremental wheel rotations. In the optical
encoder design shown, the encoder senses changes in the reflectance of a striped pattern on the
wheels, generating a pulse or “tick” for each passing stripe. Two sensors A and B placed in
quadrature — 90 degrees out of phase with each other (when one is centered on a stripe, the other
is centered on an edge) — permit differentiation between forward and reverse rotation. For wheels
of diameter dwheel with N ticks per rotation, the distance traveled by each wheel in ∆n ticks can
be derived as

∆sleft = πdwheel
∆nleft

N
, (1.1)

∆sright = πdwheel
∆nright

N
. (1.2)
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Figure 1.3: A quadrature rotary encoder and its output for clockwise and counterclockwise rotation.

dwheel 2.71 inches

Lbaseline 5.25 inches

N 60 ticks

Table 1.1: Mobile robot parameters.

By “summing up” the increments, we can compute the total cumulative distances sleft and sright

traveled by the left and right wheels, respectively.
The variables time, LeftTicks, and RightTicks from assignment1.mat contain sample times

tk (in seconds) and cumulative left and right encoder counts nleft and nright, respectively, recorded
during a single test run of a mobile robot. Note that the quadrature decoding for forward and
reverse rotation has already been incorporated in the data, such that cumulative counts increase
for forward rotation and decrease for reverse rotation. The values of the odometry constants for
the mobile robot are given in Table 1.

For a mobile robot with two-wheel differential drive, in which the two (left and right) driven
wheels can be controlled independently, the linear velocities vleft and vright at the two wheels
must (assuming no slippage of the wheels) be both directed in (or opposite to) the direction θ of
the robot’s current heading. The motion of the robot can thus be completely described by the
velocity vcenter of a point lying midway between the two wheels and the angular velocity ω about
an instantaneous center of curvature (ICC) lying somewhere in line with the two wheels, as shown
in Figure 1.4.

We can derive vcenter and ω from vleft and vright as

vcenter =
vleft + vright

2
, (1.3)

ω =
vright − vleft

Lbaseline
, (1.4)

where

vleft =
dsleft

dt
, (1.5)

vright =
dsright

dt
, (1.6)
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Figure 1.4: Robot trajectory.

and Lbaseline is the distance between the points of contact of the two wheels. We can then integrate
these velocities to track the pose [x(t), y(t), θ(t)] of the robot over time as

x(t) =

∫ t

0
vcenter(t) cos[θ(t)] dt , (1.7)

y(t) =

∫ t

0
vcenter(t) sin[θ(t)] dt , (1.8)

θ(t) =

∫ t

0
ω(t) dt . (1.9)

In terms of the sample times tk, we can write these equations as

xk = xk−1 +

∫ tk

tk−1

vcenter(t) cos[θ(t)] dt , (1.10)

yk = yk−1 +

∫ tk

tk−1

vcenter(t) sin[θ(t)] dt , (1.11)

θk = θk−1 +

∫ tk

tk−1

ω(t) dt . (1.12)

1.4 The Numerical Tasks

To calculate distance from our transducer we must be able to interpolate; and to calculate our
position from dead reckoning we must be able to differentiate and integrate. In this unit we
introduce the necessary numerical approaches and also understand the possible sources of error.
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Chapter 2

Interpolation

2.1 Interpolation of Univariate Functions

The objective of interpolation is to approximate the behavior of a true underlying function using
function values at a limited number of points. Interpolation serves two important, distinct purposes
throughout this book. First, it is a mathematical tool that facilitates development and analysis
of numerical techniques for, for example, integrating functions and solving differential equations.
Second, interpolation can be used to estimate or infer the function behavior based on the function
values recorded as a table, for example collected in an experiment (i.e., table lookup).

Let us define the interpolation problem for an univariate function, i.e., a function of single
variable. We discretize the domain [x1, xN ] into N − 1 non-overlapping segments, {S1, . . . , SN−1},
using N points, {x1, . . . , xN}, as shown in Figure 2.1. Each segment is defined by

Si = [xi, xi+1], i = 1, . . . , N − 1 ,

and we denote the length of the segment by h, i.e.

h ≡ xi+1 − xi .

For simplicity, we assume h is constant throughout the domain. Discretization is a concept that
is used throughout numerical analysis to approximate a continuous system (infinite-dimensional
problem) as a discrete system (finite-dimensional problem) so that the solution can be estimated
using a computer. For interpolation, discretization is characterized by the segment size h; smaller
h is generally more accurate but more costly.

Suppose, on segment Si, we are given M interpolation points

x̄m, m = 1, . . . ,M ,

x
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x
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S
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S
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Figure 2.1: Discretization of a 1-D domain into N − 1 segments.
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Figure 2.2: Example of a 1-D domain discretized into four segments, a local segment with M = 3
function evaluation points (i.e., interpolation points), and global function evaluation points (left).
Construction of an interpolant on a segment (right).

and the associated function values

f(x̄m), m = 1, . . . ,M .

We wish to approximate f(x) for any given x in Si. Specifically, we wish to construct an interpolant
If that approximates f in the sense that

(If)(x) ≈ f(x), ∀ x ∈ Si ,

and satisfies

(If)(x̄m) = f(x̄m), m = 1, . . . ,M .

Note that, by definition, the interpolant matches the function value at the interpolation points,
{x̄m}.

The relationship between the discretization, a local segment, and interpolation points is illus-
trated in Figure 2.2(a). The domain [x1, x5] is discretized into four segments, delineated by the
points xi, i = 1, . . . , 5. For instance, the segment S2 is defined by x2 and x3 and has a characteristic
length h = x3−x2. Figure 2.2(b) illustrates construction of an interpolant on the segment S2 using
M = 3 interpolation points. Note that we only use the knowledge of the function evaluated at the
interpolation points to construct the interpolant. In general, the points delineating the segments,
xi, need not be function evaluation points x̃i, as we will see shortly.

We can also use the interpolation technique in the context of table lookup, where a table consists
of function values evaluated at a set of points, i.e., (x̃i, f(x̃i)). Given a point of interest x, we first
find the segment in which the point resides, by identifying Si = [xi, xi+1] with xi ≤ x ≤ xi+1.
Then, we identify on the segment Si the evaluation pairs (x̃j , f(x̃j)), j = . . ., ⇒ (x̄m, f(x̄m)),
m = 1, . . . ,M . Finally, we calculate the interpolant at x to obtain an approximation to f(x),
(If)(x).

(Note that, while we use fixed, non-overlapping segments to construct our interpolant in this
chapter, we can be more flexible in the choice of segments in general. For example, to estimate
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the value of a function at some point x, we can choose a set of M data points in the neighborhood
of x. Using the M points, we construct a local interpolant as in Figure 2.2(b) and infer f(x)
by evaluating the interpolant at x. Note that the local interpolant constructed in this manner
implicitly defines a local segment. The segment “slides” with the target x, i.e., it is adaptively
chosen. In the current chapter on interpolation and in Chapter 7 on integration, we will emphasize
the fixed segment perspective; however, in discussing differentiation in Chapter 3, we will adopt
the sliding segment perspective.)

To assess the quality of the interpolant, we define its error as the maximum difference between
the true function and the interpolant in the segment, i.e.

ei ≡ max
x∈Si
|f(x)− (If)(x)| .

Because the construction of an interpolant on a given segment is independent of that on another
segment1, we can analyze the local interpolation error one segment at a time. The locality of
interpolation construction and error greatly simplifies the error analysis. In addition, we define
the maximum interpolation error, emax, as the maximum error over the entire domain, which is
equivalent to the largest of the segment errors, i.e.

emax ≡ max
i=1,...,N−1

ei .

The interpolation error is a measure we use to assess the quality of different interpolation schemes.
Specifically, for each interpolation scheme, we bound the error in terms of the function f and the
discretization parameter h to understand how the error changes as the discretization is refined.

Let us consider an example of interpolant.

Example 2.1.1 piecewise-constant, left endpoint
The first example we consider uses a piecewise-constant polynomial to approximate the function
f . Because a constant polynomial is parameterized by a single value, this scheme requires one
interpolation point per interval, meaning M = 1. On each segment Si = [xi, xi+1], we choose the
left endpoint as our interpolation point, i.e.

x̄1 = xi .

As shown in Figure 2.3, we can also easily associate the segmentation points, xi, with the global
function evaluation points, x̃i, i.e.

x̃i = xi, i = 1, . . . , N − 1 .

Extending the left-endpoint value to the rest of the segment, we obtain the interpolant of the form

(If)(x) = f(x̄1) = f(x̃i) = f(xi), ∀ x ∈ Si .

Figure 2.4(a) shows the interpolation scheme applied to f(x) = exp(x) over [0, 1] with N =
5. Because f ′ > 0 over each interval, the interpolant If always underestimate the value of f .
Conversely, if f ′ < 0 over an interval, the interpolant overestimates the values of f in the interval.
The interpolant is exact over the interval if f is constant.

If f ′ exists, the error in the interpolant is bounded by

ei ≤ h ·max
x∈Si
|f ′(x)| .

1for the interpolants considered in this chapter
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Figure 2.3: The relationship between the discretization, a local segment, and the function evaluation
points for a piecewise-constant, left-endpoint interpolant.
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Figure 2.4: Piecewise-constant, left-endpoint interpolant.
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Since ei = O(h) and the error scales as the first power of h, the scheme is said to be first-order
accurate. The convergence behavior of the interpolant applied to the exponential function is shown
in Figure 2.4(b), where the maximum value of the interpolation error, emax = maxi ei, is plotted as
a function of the number of intervals, 1/h.

We pause to review two related concepts that characterize asymptotic behavior of a sequence:
the big-O notation (O( · )) and the asymptotic notation (∼). Say that Q and z are scalar quantities
(real numbers) and q is a function of z. Using the big-O notation, when we say that Q is O(q(z))
as z tends to, say, zero (or infinity), we mean that there exist constants C1 and z∗ such that
|Q| < C1|q(z)|, ∀ z < z∗ (or ∀ z > z∗). On the other hand, using the asymptotic notation, when
we say that Q ∼ C2q(z) as z tends to some limit, we mean that there exist a constant C2 (not
necessary equal to C1) such that Q/(C2q(z)) tends to unity as z tends to the limit. We shall use
these notations in two cases in particular: (i) when z is δ, a discretization parameter (h in our
example above) — which tends to zero; (ii) when z is K, an integer related to the number of degrees
of freedom that define a problem (N in our example above) — which tends to infinity. Note we
need not worry about small effects with the O (or the asymptotic) notation: for K tends to infinity,
for example, O(K) = O(K − 1) = O(K +

√
K). Finally, we note that the expression Q = O(1)

means that Q effectively does not depend on some (implicit, or “understood”) parameter, z.2

If f(x) is linear, then the error bound can be shown using a direct argument. Let f(x) = mx+b.
The difference between the function and the interpolant over Si is

f(x)− (If)(x) = [mx− b]− [mx̄1 − b] = m · (x− x̄1) .

Recalling the local error is the maximum difference in the function and interpolant and noting that
Si = [xi, xi+1] = [x̄1, x̄1 + h], we obtain

ei = max
x∈Si

|f(x)− (If)(x)| = max
x∈Si

|m · (x− x̄1)| = |m| · max
x∈[x̄1,x̄1+h]

|x− x̄1| = |m| · h .

Finally, recalling that m = f ′(x) for the linear function, we have ei = |f ′(x)| · h. Now, let us prove
the error bound for a general f .

Proof. The proof follows from the definition of the interpolant and the fundamental theorem of
calculus, i.e.

f(x)− (If)(x) = f(x)− f(x̄1) (by definition of (If))

=

∫ x

x̄1
f ′(ξ)dξ (fundamental theorem of calculus)

≤
∫ x

x̄1
|f ′(ξ)|dξ

≤ max
x∈[x̄1,x]

|f ′(x)|
∣∣∣∣∫ x

x̄1
dξ

∣∣∣∣ (Hölder’s inequality)

≤ max
x∈Si
|f ′(x)| · h, ∀ x ∈ Si = [x̄1, x̄1 + h] .

Substitution of the expression into the definition of the error yields

ei ≡ max
x∈Si
|f(x)− (If)(x)| ≤ max

x∈Si
|f ′(x)| · h .

2The engineering notation Q = O(103) is somewhat different and really just means that the number is roughly
103.
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Figure 2.5: Piecewise-constant, left-endpoint interpolant for a non-smooth function.

It is important to note that the proof relies on the smoothness of f . In fact, if f is discontinuous
and f ′ does not exist, then ei can be O(1). In other words, the interpolant does not converge to
the function (in the sense of maximum error), even if the h is refined. To demonstrate this, let us
consider a function

f(x) =


sin(πx), x ≤ 1

3
1

2
sin(πx), x >

1

3

,

which is discontinuous at x = 1/3. The result of applying the piecewise constant, left-endpoint
rule to the function is shown in Figure 2.5(a). We note that the solution on the third segment is
not approximated well due to the presence of the discontinuity. More importantly, the convergence
plot, Figure 2.5(b), confirms that the maximum interpolation error does not converge even if h
is refined. This reduction in the convergence rate for non-smooth functions is not unique to this
particular interpolation rule; all interpolation rules suffer from this problem. Thus, we must be
careful when we interpolate a non-smooth function.

Finally, we comment on the distinction between the “best fit” (in some norm, or metric) and
the interpolant. The best fit in the “max” or “sup” norm of a constant function ci to f(x) over
Si minimizes |ci − f(x)| over Si and will typically be different and perforce better (in the chosen
norm) than the interpolant. However, the determination of ci in principle requires knowledge of
f(x) at (almost) all points in Si whereas the interpolant only requires knowledge of f(x) at one
point — hence much more useful. We discuss this further in Section 2.1.1.

·
Let us more formally define some of the key concepts visited in the first example. While we

introduce the following concepts in the context of analyzing the interpolation schemes, the concepts
apply more generally to analyzing various numerical schemes.

• Accuracy relates how well the numerical scheme (finite-dimensional) approximates the con-
tinuous system (infinite-dimensional). In the context of interpolation, the accuracy tells how
well the interpolant If approximates f and is measured by the interpolation error, emax.
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• Convergence is the property that the error vanishes as the discretization is refined, i.e.

emax → 0 as h→ 0 .

A convergent scheme can achieve any desired accuracy (error) in infinite prediction arith-
metics by choosing h sufficiently small. The piecewise-constant, left-endpoint interpolant is
a convergent scheme, because emax = O(h), and emax → 0 as h→ 0.

• Convergence rate is the power p such that

emax ≤ Chp as h→ 0 ,

where C is a constant independent of h. The scheme is first-order accurate for p = 1, second-
order accurate for p = 2, and so on. The piecewise-constant, left-endpoint interpolant is
first-order accurate because emax = Ch1. Note here p is fixed and the convergence (with
number of intervals) is thus algebraic.

Note that typically as h→ 0 we obtain not a bound but in fact asymptotic behavior: emax ∼
Chp or equivalently, emax/(Ch

p) → 1, as h → 0. Taking the logarithm of emax ∼ Chp,
we obtain ln(emax) ∼ lnC + p lnh. Thus, a log-log plot is a convenient means of finding p
empirically.

• Resolution is the characteristic length hcrit for any particular problem (described by f) for
which we see the asymptotic convergence rate for h ≤ hcrit. Convergence plot in Figure 2.4(b)
shows that the piecewise-constant, left-endpoint interpolant achieves the asymptotic conver-
gence rate of 1 with respect to h for h ≤ 1/2; note that the slope from h = 1 to h = 1/2
is lower than unity. Thus, hcrit for the interpolation scheme applied to f(x) = exp(x) is
approximately 1/2.

• Computational cost or operation count is the number of floating point operations (FLOPs3) to
compute Ih. As h→ 0, the number of FLOPs approaches∞. The scaling of the computation
cost with the size of the problem is referred to as computational complexity . The actual run-
time of computation is a function of the computational cost and the hardware. The cost of
constructing the piecewise-constant, left end point interpolant is proportional to the number
of segments. Thus, the cost scales linearly with N , and the scheme is said to have linear
complexity.

• Memory or storage is the number of floating point numbers that must be stored at any point
during execution.

We note that the above properties characterize a scheme in infinite precision representation and
arithmetic. Precision is related to machine precision, floating point number truncation, rounding
and arithmetic errors, etc, all of which are absent in infinite-precision arithmetics.

We also note that there are two conflicting demands; the accuracy of the scheme increases
with decreasing h (assuming the scheme is convergent), but the computational cost increases with
decreasing h. Intuitively, this always happen because the dimension of the discrete approximation
must be increased to better approximate the continuous system. However, some schemes produce
lower error for the same computational cost than other schemes. The performance of a numerical
scheme is assessed in terms of the accuracy it delivers for a given computational cost.

We will now visit several other interpolation schemes and characterize the schemes using the
above properties.

3Not to be confused with the FLOPS (floating point operations per second), which is often used to measure the
performance of a computational hardware.
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Figure 2.6: Piecewise-constant, right-endpoint interpolant.

Example 2.1.2 piecewise-constant, right end point
This interpolant also uses a piecewise-constant polynomial to approximate the function f , and thus
requires one interpolation point per interval, i.e., M = 1. This time, the interpolation point is at
the right endpoint, instead of the left endpoint, resulting in

x̄1 = xi+1, (If)(x) = f(x̄1) = f(xi+1), ∀ x ∈ Si = [xi, xi+1] .

The global function evaluation points, x̃i, are related to segmentation points, xi, by

x̃i = xi+1, i = 1, . . . , N − 1 .

Figure 2.6 shows the interpolation applied to the exponential function.
If f ′ exists, the error in the interpolant is bounded by

ei ≤ h ·max
x∈Si
|f ′(x)| ,

and thus the scheme is first-order accurate. The proof is similar to that of the piecewise-constant,
right-endpoint interpolant.

·

Example 2.1.3 piecewise-constant, midpoint
This interpolant uses a piecewise-constant polynomial to approximate the function f , but uses the
midpoint of the segment, Si = [xi, xi+1], as the interpolation point, i.e.

x̄1 =
1

2
(xi + xi+1) .

Denoting the (global) function evaluation point associated with segment Si as x̃i, we have

x̃i =
1

2
(xi + xi+1), i = 1, . . . , N − 1 ,

as illustrated in Figure 2.7. Note that the segmentation points xi do not correspond to the function
evaluation points x̃i unlike in the previous two interpolants. This choice of interpolation point
results in the interpolant

(If)(x) = f(x̄1) = f(x̃i) = f

(
1

2
(xi + xi+1)

)
, x ∈ Si .
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Figure 2.7: The relationship between the discretization, a local segment, and the function evaluation
points for a piecewise-constant, midpoint interpolant.

Figure 2.8(a) shows the interpolant for the exponential function. In the context of table lookup,
this interpolant naturally arises if a value is approximated from a table of data choosing the nearest
data point.

The error of the interpolant is bounded by

ei ≤
h

2
·max
x∈Si
|f ′(x)| ,

where the factor of half comes from the fact that any function evaluation point is less than h/2
distance away from one of the interpolation points. Figure 2.8(a) shows that the midpoint inter-
polant achieves lower error than the left- or right-endpoint interpolant. However, the error still
scales linearly with h, and thus the midpoint interpolant is first-order accurate.

For a linear function f(x) = mx + b, the sharp error bound can be obtained from a direct
argument. The difference between the function and its midpoint interpolant is

f(x)− (If)(x) = [mx+ b]−
[
mx̄1 + b

]
= m · (x− x̄1) .

The difference vanishes at the midpoint, and increases linearly with the distance from the midpoint.
Thus, the difference is maximized at either of the endpoints. Noting that the segment can be

expressed as Si = [xi, xi+1] =
[
x̄1 − h

2 , x̄
1 + h

2

]
, the maximum error is given by

ei ≡ max
x∈Si

(f(x)− (If)(x)) = max
x∈[x̄1−h2 ,x̄1+h

2 ]
|m · (x− x̄1)|

= |m · (x− x̄1)|x=x̄1±h/2 = |m| · h
2
.

Recalling m = f ′(x) for the linear function, we have ei = |f ′(x)|h/2. A sharp proof for a general f
follows essentially that for the piecewise-constant, left-endpoint rule.
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Figure 2.8: Piecewise-constant, mid point interpolant.

Proof. The proof follows from the fundamental theorem of calculus,

f(x)− (If)(x) = f(x)− f
(
x̄1
)

=

∫ x

x̄1
f ′(ξ)dξ ≤

∫ x

x̄1
|f ′(ξ)|dξ ≤ max

x∈[x̄1,x]
|f ′(x)|

∣∣∣∣∫ x

x̄1
dξ

∣∣∣∣
≤ max

x∈[x̄1−h2 ,x̄1+h
2 ]
|f ′(x)| · h

2
, ∀ x ∈ Si =

[
x̄1 − h

2
, x̄1 +

h

2

]
.

Thus, we have

ei = max
x∈Si
|f(x)− (If)(x)| ≤ max

x∈Si
|f ′(x)| · h

2
.

·

Example 2.1.4 piecewise-linear
The three examples we have considered so far used piecewise-constant functions to interpolate the
function of interest, resulting in the interpolants that are first-order accurate. In order to improve
the quality of interpolation, we consider a second-order accurate interpolant in this example. To
achieve this, we choose a piecewise-linear function (i.e., first-degree polynomials) to approximate the
function behavior. Because a linear function has two coefficients, we must choose two interpolation
points per segment to uniquely define the interpolant, i.e., M = 2. In particular, for segment
Si = [xi, xi+1], we choose its endpoints, xi and xi+1, as the interpolation points, i.e.

x̄1 = xi and x̄2 = xi+1 .

The (global) function evaluation points and the segmentation points are trivially related by

x̃i = xi, i = 1, . . . , N ,
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Figure 2.9: The relationship between the discretization, a local segment, and the function evaluation
points for a linear interpolant.

as illustrated in Figure 2.9.
The resulting interpolant, defined using the local coordinate, is of the form

(If)(x) = f(x̄1) +

(
f(x̄2)− f(x̄1)

h

)
(x− x̄1), ∀ x ∈ Si , (2.1)

or, in the global coordinate, is expressed as

(If)(x) = f(xi) +

(
f(xi+1)− f(xi)

hi

)
(x− xi), ∀ x ∈ Si .

Figure 2.10(a) shows the linear interpolant applied to f(x) = exp(x) over [0, 1] with N = 5. Note
that this interpolant is continuous across the segment endpoints, because each piecewise-linear
function matches the true function values at its endpoints. This is in contrast to the piecewise-
constant interpolants considered in the previous three examples, which were discontinuous across
the segment endpoints in general.

If f ′′ exists, the error of the linear interpolant is bounded by

ei ≤
h2

8
·max
x∈Si
|f ′′(x)| .

The error of the linear interpolant converges quadratically with the interval length, h. Because the
error scales with h2, the method is said to be second-order accurate. Figure 2.10(b) shows that
the linear interpolant is significantly more accurate than the piecewise-linear interpolant for the
exponential function. This trend is generally true for sufficient smooth functions. More importantly,
the higher-order convergence means that the linear interpolant approaches the true function at a
faster rate than the piecewise-constant interpolant as the segment length decreases.

Let us provide a sketch of the proof. First, noting that f(x)−(If)(x) vanishes at the endpoints,
we express our error as

f(x)− (If)(x) =

∫ x

x̄1
(f − If)′(t) dt .

Next, by the Mean Value Theorem (MVT), we have a point x∗ ∈ Si = [x̄1, x̄2] such that f ′(x∗) −
(If)′(x∗) = 0. Note the MVT — for a continuously differentiable function f there exists an
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Figure 2.10: Piecewise-linear interpolant.

x∗ ∈ [x̄1, x̄2] such that f ′(x∗) = (f(x̄2) − f(x̄1))/h — follows from Rolle’s Theorem. Rolle’s
Theorem states that, for a continuously differentiable function g that vanishes at x̄1 and x̄2, there
exists a point x∗ for which g′(x∗) = 0. To derive the MVT we take g(x) = f(x) − If(x) for If
given by Eq. (2.1). Applying the fundamental theorem of calculus again, the error can be expressed
as

f(x)− (If)(x) =

∫ x

x̄1
(f − If)′(t) dt =

∫ x

x̄1

∫ t

x∗
(f − If)′′(s) ds dt =

∫ x

x̄1

∫ t

x∗
f ′′(s) ds dt

≤ max
x∈Si
|f ′′(x)|

∫ x

x̄1

∫ t

x∗
ds dt ≤ h2

2
·max
x∈Si
|f ′′(x)| .

This simple sketch shows that the interpolation error is dependent on the second derivative of f
and quadratically varies with the segment length h; however, the constant is not sharp. A sharp
proof is provided below.

Proof. Our objective is to obtain a bound for |f(x̂) − If(x̂)| for an arbitrary x̂ ∈ Si. If x̂ is the
one of the endpoints, the interpolation error vanishes trivially; thus, we assume that x̂ is not one of
the endpoints. The proof follows from a construction of a particular quadratic interpolant and the
application of the Rolle’s theorem. First let us form the quadratic interpolant, q(x), of the form

q(x) ≡ (If)(x) + λw(x) with w(x) = (x− x̄1)(x− x̄2) .

Since (If) matches f at x̄1 and x̄2 and q(x̄1) = q(x̄2) = 0, q(x) matches f at x̄1 and x̄2. We select
λ such that q matches f at x̂, i.e.

q(x̂) = (If)(x̂) + λw(x̂) = f(x̂) ⇒ λ =
f(x̂)− (If)(x̂)

w(x̂)
.

The interpolation error of the quadratic interpolant is given by

φ(x) = f(x)− q(x) .
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Because q is the quadratic interpolant of f defined by the interpolation points x̄1, x̄2, and x̂, φ has
three zeros in Si. By Rolle’s theorem, φ′ has two zeros in Si. Again, by Rolle’s theorem, φ′′ has
one zero in Si. Let this zero be denoted by ξ, i.e., φ′′(ξ) = 0. Evaluation of φ′′(ξ) yields

0 = φ′′(ξ) = f ′′(ξ)− q′′(ξ) = f ′′(ξ)− (If)′′(ξ)− λw′′(ξ) = f ′′(ξ)− 2λ ⇒ λ =
1

2
f ′′(ξ) .

Evaluating φ(x̂), we obtain

0 = φ(x̂) = f(x̂)− (If)(x̂)− 1

2
f ′′(ξ)w(x̂) (2.2)

f(x̂)− (If)(x̂) =
1

2
f ′′(ξ)(x̂− x̄1)(x̂− x̄2) . (2.3)

The function is maximized for x̂∗ = (x̄1 + x̄2)/2, which yields

f(x̂)− (If)(x̂) ≤ 1

8
f ′′(ξ)(x̄2 − x̄1)2 =

1

8
h2f ′′(ξ), ∀ x̂ ∈ [x̄1, x̄2]

Since ξ ∈ Si, it follows that,

ei = max
x∈Si
|f(x)− (If)(x)| ≤ 1

8
h2f ′′(ξ) ≤ 1

8
h2 max

x∈Si
|f ′′(x)| .

·

Example 2.1.5 piecewise-quadratic
Motivated by the higher accuracy provided by the second-order accurate, piecewise-linear inter-
polants, we now consider using a piecewise-quadratic polynomial to construct an interpolant. Be-
cause a quadratic function is characterized by three parameters, we require three interpolation
points per segment (M = 3). For segment Si = [xi, xi+1], a natural choice are the two endpoints
and the midpoint, i.e.

x̄1 = xi, x̄2 =
1

2
(xi + xi+1), and x̄3 = xi+1 .

To construct the interpolant, we first construct Lagrange basis polynomial of the form

φ1(x) =
(x− x̄2)(x− x̄3)

(x̄1 − x̄2)(x̄1 − x̄3)
, φ2(x) =

(x− x̄1)(x− x̄3)

(x̄2 − x̄1)(x̄2 − x̄3)
, and φ3(x) =

(x− x̄1)(x− x̄2)

(x̄3 − x̄1)(x̄3 − x̄2)
.

By construction, φ1 takes the value of 1 at x̄1 and vanishes at x̄2 and x̄3. More generally, the
Lagrange basis has the property

φm(x̄n) =

1, n = m

0, n 6= m
.

Using these basis functions, we can construct the quadratic interpolant as

(If)(x) = f(x̄1)φ1(x) + f(x̄2)φ2(x) + f(x̄3)φ3(x), ∀ x ∈ Si . (2.4)
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Figure 2.11: Piecewise-quadratic interpolant.

We can easily confirm that the quadratic function goes through the interpolation points, (x̄m, f(x̄m)),
m = 1, 2, 3, using the property of the Lagrange basis. Figure 2.11(a) shows the interpolant for the
exponential function.

If f ′′′ exists, the error of the quadratic interpolant is bounded by

ei ≤
h3

72
√

3
max
x∈Si

f ′′′(x) .

The error converges as the cubic power of h, meaning the scheme is third-order accurate. Fig-
ure 2.11(b) confirms the higher-order convergence of the piecewise-quadratic interpolant.

Proof. The proof is an extension of that for the linear interpolant. First, we form a cubic interpolant
of the form

q(x) ≡ (If)(x) + λw(x) with w(x) = (x− x̄1)(x− x̄2)(x− x̄3) .

We select λ such that q matches f at x̂. The interpolation error function,

φ(x) = f(x)− q(x) ,

has four zeros in Si, specifically x̄1, x̄2, x̄3, and x̂. By repeatedly applying the Rolle’s theorem
three times, we note that φ′′′(x) has one zero in Si. Let us denote this zero by ξ, i.e., φ′′′(ξ) = 0.
This implies that

φ′′′(ξ) = f ′′′(ξ)− (cIf)′′′(ξ)− λw′′′(ξ) = f ′′′(ξ)− 6λ = 0 ⇒ λ =
1

6
f ′′′(ξ) .

Rearranging the expression for φ(x̂), we obtain

f(x̂)− (If)(x̂) =
1

6
f ′′′(ξ)w(x̂) .
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Figure 2.12: Piecewise-quadratic interpolant for a non-smooth function.

The maximum value that w takes over Si is h3/(12
√

3). Combined with the fact f ′′′(ξ) ≤
maxx∈Si f

′′′(x), we obtain the error bound

ei = max
x∈Si
|f(x)− (If)(x)| ≤ h3

72
√

3
max
x∈Si

f ′′′(x) .

Note that the extension of this proof to higher-order interpolants is straight forward. In general, a
piecewise pth-degree polynomial interpolant exhibits p+ 1 order convergence.

·
The procedure for constructing the Lagrange polynomials extends to arbitrary degree polyno-

mials. Thus, in principle, we can construct an arbitrarily high-order interpolant by increasing the
number of interpolation points. While the higher-order interpolation yielded a lower interpolation
error for the smooth function considered, a few cautions are in order.

First, higher-order interpolants are more susceptible to modeling errors. If the underlying data
is noisy, the “overfitting” of the noisy data can lead to inaccurate interpolant. This will be discussed
in more details in Unit III on regression.

Second, higher-order interpolants are also typically not advantageous for non-smooth functions.
To see this, we revisit the simple discontinuous function,

f(x) =


sin(πx), x ≤ 1

3
1

2
sin(πx), x >

1

3

.

The result of applying the piecewise-quadratic interpolation rule to the function is shown in Fig-
ure 2.12(a). The quadratic interpolant closely matches the underlying function in the smooth region.
However, in the third segment, which contains the discontinuity, the interpolant differs consider-
ably from the underlying function. Similar to the piecewise-constant interpolation of the function,
we again commit O(1) error measured in the maximum difference. Figure 2.12(b) confirms that
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the higher-order interpolants do not perform any better than the piecewise-constant interpolant
in the presence of discontinuity. Formally, we can show that the maximum-error convergence of
any interpolation scheme can be no better than hr, where r is the highest-order derivative that
is defined everywhere in the domain. In the presence of a discontinuity, r = 0, and we observe
O(hr) = O(1) convergence (i.e., no convergence).

Third, for a very high-order polynomials, the interpolation points must be chosen carefully to
achieve a good result. In particular, the uniform distribution suffers from the behavior known
as Runge’s phenomenon, where the interpolant exhibits excessive oscillation even if the underlying
function is smooth. The spurious oscillation can be minimized by clustering the interpolation points
near the segment endpoints, e.g., Chebyshev nodes.

Advanced Material

2.1.1 Best Fit vs. Interpolation: Polynomials of Degree n

We will study in more details how the choice of interpolation points affect the quality of a polynomial
interpolant. For convenience, let us denote the space of nth-degree polynomials on segment S by
Pn(S). For consistency, we will denote nth-degree polynomial interpolant of f , which is defined
by n + 1 interpolation points {x̄m}n+1

m=1, by Inf . We will compare the quality of the interpolant
with the “best” n+ 1 degree polynomial. We will define “best” in the infinity norm, i.e., the best
polynomial v∗ ∈ Pn(S) satisfies

max
x∈S
|f(x)− v∗(x)| ≤ max

x∈S
|f(x)− v(x)| , ∀ v ∈ Pn(x) .

In some sense, the polynomial v∗ fits the function f as closely as possible. Then, the quality of
a nth-degree interpolant can be assessed by measuring how close it is to v∗. More precisely, we
quantify its quality by comparing the maximum error of the interpolant with that of the best
polynomial, i.e.

max
x∈S
|f(x)− (If)(x)| ≤ (1 + Λ({x̄m}n+1

m=1)) max
x∈S
|f(x)− v∗(x)| ,

where the constant Λ is called the Lebesgue constant. Clearly, a smaller Lebesgue constant implies
smaller error, so higher the quality of the interpolant. At the same time, Λ ≥ 0 because the
maximum error in the interpolant cannot be better than that of the “best” function, which by
definition minimizes the maximum error. In fact, the Lebesgue constant is given by

Λ
(
{x̄m}n+1

m=1

)
= max

x∈S

n+1∑
m=1

|φm(x)| ,

where φm, m = 1, . . . , n+ 1, are the Lagrange bases functions defined by the nodes {x̄m}n+1
m=1.

Proof. We first express the interpolation error in the infinity norm as the sum of two contributions

max
x∈S
|f(x)− (If)(x)| ≤ max

x∈S
|f(x)− v∗(x) + v∗(x)− (If)(x)|

≤ max
x∈S
|f(x)− v∗(x)|+ max

x∈S
|v∗(x)− (If)(x)|.
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Noting that the functions in the second term are polynomial, we express them in terms of the
Lagrange basis φm, m = 1, . . . , n,

max
x∈S
|v∗(x)− (If)(x)| = max

x∈S

∣∣∣∣∣∣
n+1∑
m=1

(v∗(x̄m)− (If)(x̄m))φm(x)

∣∣∣∣∣∣
≤ max

x∈S

∣∣∣∣∣∣ max
m=1,...,n+1

|v∗(x̄m)− (If)(x̄m)| ·
n+1∑
m=1

|φm(x)|

∣∣∣∣∣∣
= max

m=1,...,n+1
|v∗(x̄m)− (If)(x̄m)| ·max

x∈S

n+1∑
m=1

|φm(x)| .

Because If is an interpolant, we have f(x̄m) = (If)(x̄m), m = 1, . . . , n+1. Moreover, we recognize
that the second term is the expression for Lebesgue constant. Thus, we have

max
x∈S
|v∗(x)− (If)(x)| ≤ max

m=1,...,n+1
|v∗(x̄m)− f(x̄m)| · Λ

≤ max
x∈S
|v∗(x)− f(x)|Λ .

where the last inequality follows from recognizing x̄m ∈ S, m = 1, . . . , n+1. Thus, the interpolation
error in the maximum norm is bounded by

max
x∈S
|f(x)− (If)(x)| ≤ max

x∈S
|v∗(x)− f(x)|+ max

x∈S
|v∗(x)− f(x)|Λ

≤ (1 + Λ) max
x∈S
|v∗(x)− f(x)| ,

which is the desired result.

In the previous section, we noted that equally spaced points can produce unstable interpolants
for a large n. In fact, the Lebesgue constant for the equally spaced node distribution varies as

Λ ∼ 2n

en log(n)
,

i.e., the Lebesgue constant increases exponentially with n. Thus, increasing n does not necessary
results in a smaller interpolation error.

A more stable interpolant can be formed using the Chebyshev node distribution. The node
distribution is given (on [−1, 1]) by

x̄m = cos

(
2m− 1

2(n+ 1)
π

)
, m = 1, . . . , n+ 1 .

Note that the nodes are clustered toward the endpoints. The Lebesgue constant for Chebyshev
node distribution is

Λ = 1 +
2

π
log(n+ 1) ,

i.e., the constant grows much more slowly. The variation in the Lebesgue constant for the equally-
spaced and Chebyshev node distributions are shown in Figure 2.13.
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Figure 2.14: High-order interpolants for f = 1/(x+ 25x2) over [−1, 1].

Example 2.1.6 Runge’s phenomenon
To demonstrate the instability of interpolants based on equally-spaced nodes, let us consider inter-
polation of

f(x) =
1

1 + 25x2
.

The resulting interpolants for p = 5, 7, and 11 are shown in Figure 2.14. Note that equally-spaced
nodes produce spurious oscillation near the end of the intervals. On the other hand, the clustering
of the nodes toward the endpoints allow the Chebyshev node distribution to control the error in
the region.

·

End Advanced Material
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Figure 2.15: Triangulation of a 2-D domain.

2.2 Interpolation of Bivariate Functions

This section considers interpolation of bivariate functions, i.e., functions of two variables. Following
the approach taken in constructing interpolants for univariate functions, we first discretize the
domain into smaller regions, namely triangles. The process of decomposing a domain, D ⊂ R2,
into a set of non-overlapping triangles {Ri}Ni=1 is called triangulation. An example of triangulation
is shown in Figure 2.15. By construction, the triangles fill the domain in the sense that

D =
N⋃
i=1

Ri ,

where ∪ denotes the union of the triangles. The triangulation is characterized by the size h, which
is the maximum diameter of the circumscribed circles for the triangles.

We will construct the interpolant over triangle R. Let us assume that we are given M interpo-
lation points,

x̄m = (x̄m, ȳm) ∈ R, m = 1, . . . ,M ,

and the function values evaluated at the interpolation points,

f(x̄m), m = 1, . . . ,M .

Our objective is to construct the interpolant If that approximates f at any point x ∈ R,

If(x) ≈ f(x), ∀ x ∈ R ,

while matching the function value at the interpolations points,

(If)(x̄m) = f(x̄m), m = 1, . . . ,M .

As before, we assess the quality of the interpolant in terms of the error

e = max
x∈R
|f(x)− (If)(x)| .
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Figure 2.16: Function f(x, y) = sin(πx) sin(πy)

For the next two examples, we consider interpolation of bivariate function

f(x, y) = sin(πx) sin(πy), (x, y) ∈ [0, 1]2 .

The function is shown in Figure 2.16.

Example 2.2.1 Piecewise-constant, centroid
The first interpolant approximates function f by a piecewise-constant function. To construct a
constant function on R, we need just one interpolation point, i.e., M = 1. Let us choose the
centroid of the triangle to be the interpolation point,

x̄1 =
1

3
(x1 + x2 + x3) .

The constant interpolant is given by

If(x) = f(x̄1), ∀ x ∈ R .

An example of piecewise-constant interpolant is shown in Figure 2.17(a). Note that the interpolant
is discontinuous across the triangle interfaces in general.

The error in the interpolant is bounded by

e ≤ hmax
x∈R
‖∇f(x)‖2 ,

where ‖∇f(x)‖2 is the two-norm of the gradient, i.e.

‖∇f‖2 =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

.

The interpolant is first-order accurate and is exact if f is constant. Figure 2.17(b) confirms the h1

convergence of the error.

·

Example 2.2.2 Piecewise-linear, vertices
This interpolant approximates function f by a piecewise-linear function. Note that a linear function
in two dimension is characterized by three parameters. Thus, to construct a linear function on a
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Figure 2.17: Piecewise-constant interpolation

triangular patch R, we need to choose three interpolation points, i.e., M = 3. Let us choose the
vertices of the triangle to be the interpolation point,

x̄1 = x1, x̄2 = x2, and x̄3 = x3 .

The linear interpolant is of the form

(If)(x) = a+ bx+ cy .

To find the three parameters, a, b, and c, we impose the constraint that the interpolant matches
the function value at the three vertices. The constraint results in a system of three linear equations

(If)(x̄1) = a+ bx̄1 + cȳ1 = f(x̄1) ,

(If)(x̄2) = a+ bx̄2 + cȳ2 = f(x̄2) ,

(If)(x̄3) = a+ bx̄3 + cȳ3 = f(x̄3) ,

which can be also be written concisely in the matrix form
1 x̄1 ȳ1

1 x̄2 ȳ2

1 x̄3 ȳ3




a

b

c

 =


f(x̄1)

f(x̄2)

f(x̄3)

 .

The resulting interpolant is shown in Figure 2.18(a). Unlike the piecewise-constant interpolant, the
piecewise-linear interpolant is continuous across the triangle interfaces.

The approach for constructing the linear interpolation requires solving a system of three linear
equations. An alternative more efficient approach is to consider a different form of the interpolant.
Namely, we consider the form

(If)(x) = f(x̄1) + b′(x− x̄1) + c′(y − ȳ1) .
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Figure 2.18: Piecewise-linear interpolation

Note that the interpolant is still linear, but it already satisfies the interpolation condition at
(x̄1, f(x̄1)) because

(If)(x̄1) = f(x̄1) + b′(x̄1 − x̄1) + c′(ȳ1 − ȳ1) = f(x̄1) .

Thus, our task has been simplified to that of finding the two coefficients b′ and c′, as oppose to the
three coefficients a, b, and c. We choose the two coefficients such that the interpolant satisfies the
interpolaion condition at x̄2 and x̄3, i.e.

(If)(x̄2) = f(x̄1) + b′(x̄2 − x̄1) + c′(ȳ2 − ȳ1) = f(x̄2) ,

(If)(x̄3) = f(x̄1) + b′(x̄3 − x̄1) + c′(ȳ3 − ȳ1) = f(x̄3) .

Or, more compactly, we can write the equations in matrix form as x̄2 − x̄1 ȳ2 − ȳ1

x̄3 − x̄1 ȳ3 − ȳ1

 b′

c′

 =

 f(x̄2)− f(x̄1)

f(x̄3)− f(x̄1)

 .

With some arithmetics, we can find an explicit form of the coefficients,

b′ =
1

A

[
(f(x̄2)− f(x̄1))(ȳ3 − ȳ1)− (f(x̄3)− f(x̄1))(ȳ2 − ȳ1)

]
,

c′ =
1

A

[
(f(x̄3)− f(x̄1))(x̄2 − x̄1)− (f(x̄2)− f(x̄1))(x̄3 − x̄1)

]
,

with

A = (x̄2 − x̄1)(ȳ3 − ȳ1)− (x̄3 − x̄1)(ȳ2 − ȳ1) .

Note that A is twice the area of the triangle. It is important to note that this second form of the
linear interpolant is identical to the first form; the interpolant is just expressed in a different form.
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The error in the interpolant is governed by the Hessian of the function, i.e.

e ≤ Ch2‖∇2f‖F ,

where ‖∇2f‖F is the Frobenius norm of the Hessian matrix, i.e.

‖∇2f‖F =

√(
∂2f

∂x2

)2

+

(
∂2f

∂y2

)2

+ 2

(
∂2f

∂x∂y

)2

.

Thus, the piecewise-linear interpolant is second-order accurate and is exact if f is linear. The
convergence result shown in Figure 2.18(b) confirms the h2 convergence of the error.

·
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Chapter 3

Differentiation

3.1 Differentiation of Univariate Functions

Our objective is to approximate the value of the first derivative, f ′, for some arbitrary univariate
function f . In particular, we assume the values of the function is provided at a set of uniformly
spaced points1 as shown in Figure 3.1. The spacing between any two function evaluation points is
denoted by h̃.

Our approach to estimating the derivative is to approximate function f by its interpolant
If constructed from the sampled points and then differentiate the interpolant. Note that the
interpolation rules based on piecewise-constant representation do not provide meaningful results,
as they cannot represent nonzero derivatives. Thus, we will only consider linear and higher order
interpolation rules.

To construct an interpolant If in the neighborhood of x̃i, we can first choose M interpolation
points, x̃j , j = s(i), . . . , s(i) + M − 1 in the neighborhood of x̃i, where s(i) is the global function
evaluation index of the left most interpolation point. Then, we can construct an interpolant If
from the pairs (x̃j , If(x̃j)), j = s(i), . . . , s(i) + M − 1; note that If depends linearly on the

1The uniform spacing is not necessary, but it simplifies the analysis

h̃

(̃x1 , f(̃x1))

(̃x2 , f(̃x2))
(̃x3 , f(̃x3))

x̃ix̃i−1 x̃i+1

Figure 3.1: Stencil for one-dimensional numerical differentiation.
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function values, as we know from the Lagrange basis construction. As a result, the derivative of the
interpolant is also a linear function of f(x̃j), j = s(i), . . . , s(i) +M − 1. Specifically, our numerical
approximation to the derivative, f ′h(x̃i), is of the form

f ′h(x̃i) ≈
s(i)+M−1∑
j=s(i)

ωj(i)f(x̃j) ,

where ωj(i), j = 1, . . . ,M , are weights that are dependent on the choice of interpolant.
These formulas for approximating the derivative are called finite difference formulas. In the

context of numerical differentiation, the set of function evaluation points used to approximate the
derivative at x̃i is called numerical stencil . A scheme requiring M points to approximate the
derivative has an M -point stencil. The scheme is said to be one-sided , if the derivative estimate
only involves the function values for either x̃ ≥ x̃i or x̃ ≤ x̃i. The computational cost of numerical
differentiation is related to the size of stencil, M .

Throughout this chapter, we assess the quality of finite difference formulas in terms of the error

e ≡ |f ′(x̃i)− f ′h(x̃i)| .

Specifically, we are interested in analyzing the behavior of the error as our discretization is refined,
i.e., as h̃ decreases. Note that, because the interpolant, If , from which f ′h(x̃i) is constructed
approaches f as h̃ → 0 for smooth functions, we also expect f ′h(x̃i) to approach f ′(x̃i) as h̃ → 0.
Thus, our goal is not just to verify that f ′(x̃i) approaches f(x̃i), but also to quantify how fast it
converges to the true value.

Let us provide a few examples of the differentiation rules.

Example 3.1.1 forward difference
The first example is based on the linear interpolation. To estimate the derivative at x̃i, let us
first construct the linear interpolant over segment [x̃i, x̃i+1]. Substituting the interpolation points
x̄1 = x̃i and x̄2 = x̃i+1 into the expression for linear interpolant, Eq. (2.1), we obtain

(If)(x) = f(x̃i) +
1

h̃
(f(x̃i+1)− f(x̃i))(x− x̃i) .

The derivative of the interpolant evaluated at x = x̃i (approaching from x > x̃i) is

f ′h(x̃i) = (If)′(x̃i) =
1

h̃
(f(x̃i+1)− f(x̃i)) .

The forward difference scheme has a one-sided, 2-point stencil. The differentiation rule applied to
f(x) = exp(x) about x = 0 is shown in Figure 3.2(a). Note that the linear interpolant matches the
function at x̃i and x̃i + h̃ and approximates derivative at x = 0.

The error in the derivative is bounded by

ei = |f ′(x̃i)− f ′h(x̃i)| ≤
h̃

2
max

x∈[x̃i,x̃i+1]
|f ′′(x)| .

The convergence plot in Figure 3.2(b) of the error with respect to h confirms the first-order con-
vergence of the scheme.
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Figure 3.2: Forward difference.

Proof. The proof of the error bound follows from Taylor expansion. Recall, assuming f ′′(x) is
bounded in [x̃i, x̃i+1],

f(x̃i+1) = f(x̃i + h̃) = f(x̃i) + f ′(x̃i)h̃+
1

2
f ′′(ξ)h̃2 ,

for some ξ ∈ [x̃i, x̃i+1]. The derivative of the interpolant evaluated at x = x̃i can be expressed as

(If)′(x̃i) =
1

h̃

(
f(x̃i) + f ′(x̃i)h̃+

1

2
f ′′(ξ)h̃2 − f(x̃i)

)
= f ′(x̃i) +

1

2
f ′′(ξ)h̃ ,

and the error in the derivative is

|f ′(x̃i)− (If)′(x̃i)| =
∣∣∣∣12f ′′(ξ)h̃

∣∣∣∣ ≤ 1

2
h̃ max
x∈[x̃i,x̃i+1]

|f ′′(x)| .

·

Example 3.1.2 backward difference
The second example is also based on the piecewise linear interpolation; however, instead of con-
structing the interpolant over segment [x̃i, x̃i+1], we construct the interpolant over segment [x̃i−1, x̃i].
Substituting the interpolation points x̄1 = x̃i−1 and x̄2 = x̃i into the linear interpolant expression,
Eq. (2.1), we obtain

(If)(x) = f(x̃i−1) +
1

h̃
(f(x̃i)− f(x̃i−1))(x− x̃i−1) .

The derivative of the interpolant evaluated at x = x̃i (approaching from x < x̃i) is

f ′h(x̃i) = (If)′(x̃i) =
1

h̃
(f(x̃i)− f(x̃i−1)) .
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Figure 3.3: Backward difference.

The backward difference scheme has a one-sided, 2-point stencil. The differentiation rule applied
to f(x) = exp(x) about x = 0 is shown in Figure 3.3(a). The construction is similar to that of the
forward difference, except that the interpolant matches the function at x̃i − h̃ and x̃i.

The error in the derivative is bounded by

ei = |f ′(x̃i)− f ′h(x̃i)| ≤
h̃

2
max

x∈[x̃i−1,x̃i]
|f ′′(x)| .

The proof is similar to the proof for the error bound of the forward difference formula. The
convergence plot for f(x) = exp(x) is shown in Figure 3.3(b).

·

Example 3.1.3 centered difference
To develop a more accurate estimate of the derivative at x̃i, let us construct a quadratic interpolant
over segment [x̃i−1, x̃i+1] using the function values at x̃i−1, x̃i, and x̃i+1, and then differentiate the
interpolant. To form the interpolant, we first construct the quadratic Lagrange basis functions on
[x̃i−1, x̃i+1] using the interpolation points x̄1 = x̃i−1, x̄2 = x̃i, and x̄3 = x̃i+1, i.e.

φ1(x) =
(x− x̄2)(x− x̄3)

(x̄1 − x̄2)(x̄1 − x̄3)
=

(x− x̃i)(x− x̃i+1)

(x̃i−1 − x̃i)(x̃i−1 − x̃i+1)
=

1

2h̃2
(x− x̃i)(x− x̃i+1) ,

φ2(x) =
(x− x̄1)(x− x̄3)

(x̄2 − x̄1)(x̄2 − x̄3)
=

(x− x̃i−1)(x− x̃i+1)

(x̃i − x̃i−1)(x̃i − x̃i+1)
= − 1

h̃2
(x− x̃i)(x− x̃i+1) ,

φ3(x) =
(x− x̄1)(x− x̄2)

(x̄3 − x̄1)(x̄3 − x̄2)
=

(x− x̃i−1)(x− x̃i)
(x̃i+1 − x̃i−1)(x̃i+1 − x̃i)

=
1

2h̃2
(x− x̃i−1)(x− x̃i) ,

where h̃ = x̃i+1 − x̃i = x̃i − x̃i−1.2 Substitution of the basis functions into the expression for a

2Note that, for the quadratic interpolant, h̃ is half of the h defined in the previous chapter based on the length of
the segment.
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Figure 3.4: Centered difference.

quadratic interpolant, Eq. (2.4), yields

(If)(x) = f(x̄1)φ1(x) + f(x̄2)φ2(x) + f(x̄3)φ3(x)

=
1

2h̃2
f(x̃i−1)(x− x̃i)(x− x̃i+1)− 1

h̃2
f(x̃i)(x− x̃i−1)(x− x̃i+1)

+
1

2h̃2
f(x̃i+1)(x− x̃i−1)(x− x̃i) .

Differentiation of the interpolant yields

(If)′(x) =
1

2h̃2
f(x̃i−1)(2x− x̃i − x̃i+1)− 1

h̃2
f(x̃i)(2x− x̃i−1 − x̃i+1) +

1

2h̃2
f(x̃i+1)(2x− x̃i−1 − x̃i) .

Evaluating the interpolant at x = x̃i, we obtain

f ′h(x̃i) = (If)′(x̃i) =
1

2h̃2
f(x̃i−1)(x̃i − x̃i+1) +

1

2h̃2
f(x̃i+1)(x̃i − x̃i−1)

=
1

2h̃2
f(x̃i−1)(−h̃) +

1

2h̃2
f(x̃i+1)(h̃)

=
1

2h̃
(f(x̃i+1)− f(x̃i−1)) .

Note that even though the quadratic interpolant is constructed from the three interpolation points,
only two of the three points are used in estimating the derivative. The approximation procedure is
illustrated in Figure 3.4(a).

The error bound for the centered difference is given by

ei = |f(x̃i)− f ′h(x̃i)| ≤
h̃2

6
max

x∈[x̃i−1,x̃i+1]
|f ′′′(x)| .

The centered difference formula is second-order accurate, as confirmed by the convergence plot in
Figure 3.4(b).
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Proof. The proof of the error bound follows from Taylor expansion. Recall, assuming f ′′′(x) is
bounded in [x̃i−1, x̃i+1],

f(x̃i+1) = f(x̃i + h̃) = f(x̃i) + f ′(x̃i)h̃+
1

2
f ′′(x̃i)h̃

2 +
1

6
f ′′′(ξ+)h̃3 ,

f(x̃i−1) = f(x̃i − h̃) = f(x̃i)− f ′(x̃i)h̃+
1

2
f ′′(x̃i)h̃

2 − 1

6
f ′′′(ξ−)h̃3 ,

for some ξ+ ∈ [x̃i, x̃i+1] and ξ− ∈ [x̃i−1, x̃i]. The centered difference formula gives

(If)′(x̃i) =
1

2h̃
(f(xi+1)− f(x̃i−1))

=
1

2h̃

[(
f(x̃i) + f ′(x̃i)h̃+

1

2
f ′′(x̃i)h̃

2 +
1

6
f ′′′(ξ+)h̃3

)

−
(
f(x̃i)− f ′(x̃i)h̃+

1

2
f ′′(x̃i)h̃

2 − 1

6
f ′′′(ξ−)h̃3

)]

= f ′(x̃i) +
1

12
h̃2
(
f ′′′(ξ+)− f ′′′(ξ−)

)
.

The error in the derivative estimate is∣∣f ′(x̃i)− (If)′(x̃i)
∣∣ =

∣∣∣∣ 1

12
h̃2
(
f ′′′(ξ+)− f ′′′(ξ−)

)∣∣∣∣ =
1

6
h̃2 max

x∈[x̃i−1,x̃i+1]
|f ′′′(x)| .

Using a higher-order interpolation scheme, we can develop higher-order accurate numerical
differentiation rules. However, the numerical stencil extends with the approximation order, because
the number of interpolation points increases with the interpolation order.

·
We would also like to make some remarks about how noise affects the quality of numerical

differentiation. Let us consider approximating a derivative of f(x) = exp(x) at x = 0. However,
assume that we do not have access to f itself, but rather a function f with some small noise added
to it. In particular, let us consider

g(x) = f(x) + ε sin(kx) ,

with ε = 0.04 and k = 1/ε. We can think of ε sin(kx) as noise added, for example, in a measuring
process. Considering f(0) = 1, this is a relatively small noise in terms of amplitude.

The result of applying the finite difference formulas to g in an attempt to approximate f ′(0)
is shown in Figure 3.5. Comparing the approximations obtained for h̃ = 1/2 and 1/16, we see
that the approximation in fact gets worse as h̃ is refined. Figure 3.6 confirms that all numerical
differentiation formulas considered in this section fail to converge. In fact, they all asymptotically
commit O(1) error as h̃→ 0, even though the error decreases to less than 10−2 for a certain choice
of h̃.
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Figure 3.5: The centered difference formula applied to a noisy function.
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As essentially any data taken in real life is inherently noisy, we must be careful when differ-
entiating the data. For example, let us say that our objective is to estimate the acceleration of
an object by differentiating a velocity measurement. Due to the presence of measurement noise,
we in general cannot expect the quality of our acceleration estimate to improve as we improve the
sampling rate and decreasing the discretization scale, h̃.

One strategy to effectively differentiate a noisy data is to first filter the noisy data. Filtering is a
technique to clean a signal by removing frequency content above a certain frequency3 For example,
if a user is only interested in estimating the behavior of a signal below a certain frequency, all
content above that threshold can be deemed noise. The cleaned data is essentially smooth with
respect to the scale of interest, and thus can be safely differentiated. Another alternative, discussed
in Unit III, is to first fit a smooth function to many data points and then differentiate this smooth
fit.

3.1.1 Second Derivatives

Following the same interpolation-based template, we can develop a numerical approximation to
higher-order derivatives. In general, to estimate the pth-derivative, we must use an interpolation
rule based on pth- or higher-degree polynomial reconstruction. As an example, we demonstrate how
to estimate the second derivative from a quadratic interpolation.

Example 3.1.4 second-order centered difference
We can use the quadratic interpolant considered in the previous case to estimate the second deriva-
tive of the function. Again, choosing x̄1 = x̃i−1, x̄2 = x̃i, x̄

3 = x̃i+1 as the interpolation points, the
quadratic reconstruction is given by

(If)(x) = f(x̃i−1)φ1(x) + f(x̃i)φ2(x) + f(x̃i+1)φ3(x) ,

where the Lagrange basis function are given by

φ1(x) =
(x− x̃i)(x− x̃i+1)

(x̃i−1 − x̃i)(x̃i−1 − x̃i+1)
,

φ2(x) =
(x− x̃i−1)(x− x̃i+1)

(x̃i − x̃i−1)(x̃i − x̃i+1)
,

φ3(x) =
(x− x̃i−1)(x− x̃i)

(x̃i+1 − x̃i−1)(x̃i+1 − x̃i)
.

Computing the second derivative of the quadratic interpolant can be proceeded as

(If)′′(x) = f(x̃i−1)φ′′1(x) + f(x̃i)φ
′′
2(x) + f(x̃i+1)φ′′3(x) .

In particular, note that once the second derivatives of the Lagrange basis are evaluated, we can
express the second derivative of the interpolant as a sum of the functions evaluated at three points.

3Sometimes signals below a certain frequency is filtered to eliminate the bias.
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The derivatives of the Lagrange basis are given by

φ′′1(x) =
2

(x̃i−1 − x̃i)(x̃i−1 − x̃i+1)
=

2

(−h̃)(−2h̃)
=

1

h̃2
,

φ′′2(x) =
2

(x̃i − x̃i−1)(x̃i − x̃i+1)
=

2

(h̃)(−h̃)
= − 2

h̃2
,

φ′′3(x) =
2

(x̃i+1 − x̃i−1)(x̃i+1 − x̃i)
=

2

(2h̃)(h̃)
=

1

h̃2
.

Substitution of the derivatives to the second derivative of the quadratic interpolant yields

(If)′′(x̃i) = f(x̃i−1)

(
1

h̃2

)
+ f(x̃i)

(−2

h̃2

)
+ f(x̃i+1)

(
1

h̃2

)
=

1

h̃2

(
f(x̃i−1)− 2f(x̃i) + f(x̃i+1)

)
.

The error in the second-derivative approximation is bounded by

ei ≡ |f ′′(x̃i)− (If)′′(x̃i)| ≤
h̃2

12
max

x∈[x̃i−1,x̃i+1]
|f (4)(x)| .

Thus, the scheme is second-order accurate.

Proof. The proof of the error bound again follows from Taylor expansion. Recall, assuming f (4)(x)
is bounded in [x̃i−1, x̃i+1],

f(x̃i+1) = f(x̃i + h̃) = f(x̃i) + f ′(x̃i)h̃+
1

2
f ′′(x̃i)h̃

2 +
1

6
f ′′′(x̃i)h̃

3 +
1

24
f (4)(ξ+)h̃4 ,

f(x̃i−1) = f(x̃i − h̃) = f(x̃i)− f ′(x̃i)h̃+
1

2
f ′′(x̃i)h̃

2 − 1

6
f ′′′(x̃i)h̃

3 +
1

24
f (4)(ξ−)h̃4 .

The second derivative estimation gives

(If)′′(x̃i) =
1

h̃2

[(
f(x̃i) + f ′(x̃i)h̃+

1

2
f ′′(x̃i)h̃

2 +
1

6
f ′′′(x̃i)h̃

3 +
1

24
f (4)(ξ+)h̃4

)

− 2f(x̃i)

+

(
f(x̃i)− f ′(x̃i)h̃+

1

2
f ′′(x̃i)h̃

2 − 1

6
f ′′′(x̃i)h̃

3 +
1

24
f (4)(ξ−)h̃4

)]

= f ′′(x̃i) +
1

24
h̃2
(
f (4)(ξ+) + f (4)(ξ−)

)
.

The error in the second derivative is

|f ′′(x̃i)− (If)′′(x̃i)| =
∣∣∣∣ 1

24
h̃2
(
f (4)(ξ+) + f (4)(ξ−)

)∣∣∣∣ ≤ 1

12
h̃2 max

x∈[x̃i−1,x̃i+1]
|f (4)(x)| .
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Let us demonstrate that the second-order derivative formula works for constant, linear, and
quadratic function. First, we consider f(x) = c. Clearly, the second derivative is f ′′(x) = 0. Using
the approximation formula, we obtain

(If)′′(x̃i) =
1

h̃2

(
f(x̃i−1)− 2f(x̃i) + f(x̃i+1)

)
=

1

h̃2
(c− 2c+ c) = 0 .

Thus, the approximation provides the exact second derivative for the constant function. This is
not surprising, as the error is bounded by the fourth derivative of f , and the fourth derivative of
the constant function is zero.

Second, we consider f(x) = bx+c. The second derivative is again f ′′(x) = 0. The approximation
formula gives

(If)′′(x̃i) =
1

h̃2

(
f(x̃i−1)− 2f(x̃i) + f(x̃i+1)

)
=

1

h̃2
[(bx̃i−1 + c)− 2(bx̃i + c) + (bx̃i+1 + c)]

=
1

h̃2
[(b(x̃i − h̃) + c)− 2(bx̃i + c) + (b(x̃i + h̃) + c)] = 0 .

Thus, the approximation also works correctly for a linear function.
Finally, let us consider f(x) = ax2 + bx+ c. The second derivative for this case is f ′′(x) = 2a.

The approximation formula gives

(If)′′(x̃i) =
1

h̃2
[(ax̃2

i−1 + bx̃i−1 + c)− 2(ax̃2
i + bx̃i + c) + (ax̃2

i+1 + bx̃i+1 + c)]

=
1

h̃2
[(a(x̃i − h̃)2 + b(x̃i − h̃) + c)− 2(ax̃2

i + bx̃i + c) + (a(x̃i + h̃)2 + b(x̃i + h̃) + c)]

=
1

h̃2

[
a(x̃2

i − 2h̃x̃i + h̃2)− 2ax̃2
i + a(x̃2

i + 2h̃x̃i + h̃2)
]

=
1

h̃2

[
2ah̃2

]
= 2a .

Thus, the formula also yields the exact derivative for the quadratic function.

·
The numerical differentiation rules covered in this section form the basis for the finite difference

method — a framework for numerically approximating the solution to differential equations. In
the framework, the infinite-dimensional solution on a domain is approximated by a finite number
of nodal values on a discretization of the domain. This allows us to approximate the solution to
complex differential equations — particularly partial differential equations — that do not have
closed form solutions. We will study in detail these numerical methods for differential equations in
Unit IV, and we will revisit the differential rules covered in this section at the time.

We briefly note another application of our finite difference formulas: they may be used (say)
to approximately evaluate our (say) interpolation error bounds to provide an a posteriori estimate
for the error.

3.2 Differentiation of Bivariate Functions

Let us briefly consider differentiation of bivariate functions. For simplicity, we restrict ourselves to
estimation of the first derivative, i.e., the gradient.
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Example 3.2.1 first-order gradient
Following the procedure for estimating the first derivative of univariate functions, we first construct
a polynomial interpolant and then evaluate its derivative. In particular, we consider a linear
interpolant on a triangle. Recall the second form of linear interpolant,

(If)(x) = f(x̄1) + b′(x− x̄1) + c′(y − ȳ1) .

The partial derivative in the x-direction is

∂(If)

∂x
= b′ =

1

A

[
(f(x̄2)− f(x̄1))(ȳ3 − ȳ1)− (f(x̄3)− f(x̄1))(ȳ2 − ȳ1)

]
,

where we recall that A is twice the area of the triangle, i.e., A = (x2−x1)(y3−y1)−(x3−x1)(y2−y1).
Similarly, the derivative in the y-direction is

∂(If)

∂y
= c′ =

1

A

[
(f(x̄3)− f(x̄1))(x̄2 − x̄1)− (f(x̄2)− f(x̄1))(x̄3 − x̄1)

]
.

In general, a directional derivative in the direction s = (sx, sy) is

∂(If)

∂s
= sx

∂(If)

∂x
+ sy

∂(If)

∂y
= sxb

′ + syc
′ .

Because the gradient approximation is constructed from a linear function, the gradient estimate is
constant over the triangle. The approximation is first-order accurate.

·
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Chapter 4

Elements of a Program and Matlab
Basics

4.1 Computer Architecture and Computer Programming

4.1.1 Virtual Processor

It is convenient when programming a computer to have a mental model of the underlying architec-
ture: the components or “units,” functions, and interconnections which ultimately implement the
program. It is not important that the mental model directly correspond to the actual hardware of
any real computer. But it is important that the mental model lead to the right decisions as regards
how to write correct and efficient programs.

We show in Figure 4.1 the architecture for a “virtual computer.” There are many ways in
which we can extend or refine our model to more accurately represent either particular processes or
particular computers of interest: we might break down each unit into smaller units — for example, a
memory hierarchy; we might consider additional, special-purpose, units — for example for graphics
and visualization; and we might replicate our virtual computer many times to represent (a system
of) many interacting processes. We emphasize that if you put a screwdriver to computer case, you
would not find a one-to-one mapping from our virtual entities to corresponding hardware elements.
But you might come close.

We now describe the different elements. On the far left we indicate the memory. This memory
is often hierarchical: faster and more expensive memory in a “cache”; slower and much more ex-
tensive “RAM.” (Note also there will be archival memory outside the processor accessed through
I/O functions, as described shortly.) Next there is the arithmetic unit which performs the various
“basic” operations on data — for example, assignment, addition, multiplication, and comparison.
(The adjective “arithmetic” for this unit is overly restrictive, but since in this course we are primar-
ily focused on numerical methods the key operations are indeed arithmetic.) We also identify the
“instruction stack” which contains the instructions necessary to implement the desired program.
And finally there is the I/O (Input/Output) unit which controls communication between our pro-
cessor and external devices and other processes; the latter may take the form of files on archival
media (such as disks), keyboards and other user input devices, sensors and actuators (say, on a
robot), and displays.

We note that all the components — memory, arithmetic unit, instruction stack, I/O unit —
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Figure 4.1: Virtual Processor

are interconnected through buses which shuttle the necessary data between the different elements.
The arithmetic unit may receive instructions from the instruction stack and read and write data
from memory; similarly, the instruction stack may ask the I/O unit to read data from a file to the
memory unit or say write data from memory to a display. And the arithmetic unit may effectively
communicate directly with the instruction stack to control the flow of the program. These data
buses are of course a model for wires (or optical communication paths) in an actual hardware
computer.

The “I” in Figure 4.1 stands for interpreter. The Interpreter takes a line or lines of a program
written in a high-level programming or “scripting” language — such as Matlab or Python — from
the instruction stack, translates these instructions into machine code, and then passes these now
machine-actionable directives to the arithmetic unit for execution. (Some languages, such as C, are
not interpreted but rather compiled: the program is translated en masse into machine code prior
to execution. As you might imagine, compiled codes will typically execute faster than interpreted
codes.)

There are typically two ways in which an interpreter can feed the arithmetic unit. The first
way, more interactive with the user, is “command-line” mode: here a user enters each line, or small
batch of lines, from the keyboard to the I/O unit; the I/O unit in turn passes these lines to the
interpreter for processing. The second way, much more convenient for anything but the simplest of
tasks, is “script” mode: the I/O unit transfers the entire program from a file prepared by the user
to the instruction stack; the program is then executed proceeding from the first line to the last.
(The latter is in fact a simplification, as we shall see when we discuss flow control and functions.)
Script mode permits much faster execution, since the user is out of the loop; script mode also
permits much faster development/adaptation, since the user can re-use the same script many times
— only changing data, or perhaps making incremental corrections/improvements or modifications.

54



4.1.2 The Matlab Environment

In Matlab the user interface is the command window. The command window provides the prompt
>> to let the user know that Matlab is ready to accept inputs. The user can either directly enter
lines of Matlab code after the >> prompt in command-line mode; alternatively, in script mode,
the user can enter >> myscript.m to execute the entire program myscript.m. The suffix .m indicates
that the file contains a Matlab program; files with the .m suffix are affectionately known as “m
files.” (We will later encounter Matlab data files, which take the .mat suffix.) Note that most
easily we run Matlab programs and subprograms (such as functions, discussed shortly) from the
folder which contains these programs; however we can also set “paths” which Matlab will search
to find (say) myscript.m.

Matlab in fact provides an entire environment of which the command window is just one
(albeit the most important) part. In addition to the command window, there is a “current folder”
window which displays the contents of the current directory — typically .m files and .mat files, but
perhaps also other “non-Matlab ” (say, document) files — and provides tools for navigation within
the file system of the computer. The Matlab environment also includes an editor — invoked by
the “Edit” pull-down menu — which permits the user to create and modify .m files. Matlab also
provides several forms of “manual”: doc invokes an extensive documentation facility window and
search capability; and, even more useful, within the command window >>help keyword will bring
up a short description of keyword (which typically but not always will be a Matlab “built–in”
function). Similar environments, more or less graphical, exist for other (interpreted) programming
languages such as Python.

We note that in actual practice we execute programs within programs within programs. We boot
the system to start the Operating System program; we launch Matlab from within in Operating
System to enter the Matlab environment; and then within the Matlab environment we run a
script to execute our particular (numerical) program. It is the latter on which we have focused
in our description above, though the other layers of the hierarchy are much better known to the
“general computer user.” It is of course a major and complicated task to orchestrate these different
programs at different levels both as regards process control and also memory and file management.
We will illustrate how this is done at a much smaller scale when we discuss functions within the
particular Matlab context.

4.2 Data Types (and Classes)

All data in the computer is stored as 0’s and 1’s — binary digits. This is most convenient as
binary operations are very efficiently effected in terms of the necessary nonlinear circuit elements.
The basic unit of memory is the “word-length” of the machine — the number of binary digits, or
“bits,” which are used to represent data. Most machines these days are based on 32-bit or 64-bit
words (which are 4 Bytes and 8 Bytes, respectively); in some cases particular data types might be
represented by two words (or more).

But obviously we will need to interpret these 0’s and 1’s in different ways: in some cases the
0’s and 1’s might represent machines codes (instructions) which tell the arithmetic unit what to
execute; in other cases, the 0’s and 1’s might represent data on which the the instructions will
operate (the “operands”). Furthermore, there are many different type of data: any piece of data is
defined not just by the 0’s and 1’s that make up the word, but also by the “data type” which tells
the computer how to interpret and operate upon the data. As regards the latter, we note that the
same set of 0’s and 1’s can mean something very different — and be operated on in very different
ways — depending on the data type associated with these 0’s and 1’s.
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There are several important types within Matlab (and homologous types within other pro-
gramming languages). There are logical variables which are either 0 or 1 which correspond respec-
tively to (and in fact the data may be entered as) false or true . There is integer data — a
signed whole number. There is character data, in which the 0’s and 1’s encode particular characters
such as letters in the alphabet or numerals — the famous ASCII code and recent extensions. And
particularly important for us, there are floating point numbers, which in Matlab are 64 bits and
are called (for largely historical reasons) simply double. Representation of floating point numbers
(FPNs) by a 64 bits is probably less obvious than representation of a whole number, and hence
we will discuss representation of FPNs, and also floating point operations, in a separate section.
Matlab also supports a complex floating point type. These types are “atomic” in that they are
part of the core Matlab scripting language.

In some programming languages the user is required upon creation of a variable to specify the
data type. (We define variables in the next section — for now, think of a variable as the name
of a particular piece of data.) Each variable must be an instance of one of the available (in our
case, Matlab ) data types. Matlab is much less picky than other programming languages — a
blessing and a curse — and typically if no type is specified Matlab will simply assume a (double)
floating point number, which is hence the “default.”

It is, however, possible to specify that any particular variable is logical, with the logical

function, an integer, with the (say) int32 command, a character, with the char command (or
more simply with quotes), and a floating point number, with the double command. We can also
determine what type of data a particular variable is with the islogical, isinteger, ischar, and
isfloat functions.

We already above and will frequently below refer to functions. We do not fully define functions
until a later chapter, in which we learn how to create our own functions. For now, think of a function
as a program which takes some (zero, one, two, or many) input arguments and yields some output;
we provide illustrations in the next section. All of the functions we describe in the preceding
paragraph are “built-in” functions that are part of the core Matlab scripting language; we shall
exercise these functions in the next section once we are armed with the assignment operation.
(In fact, false (and true) are also built-in Matlab functions: false takes no arguments and
returns a logical zero.) Note the Matlab “core” is quite large compared to other languages such
as Python, in which most functions must be explicitly brought in as modules. There are, however,
official Matlab extensions to the core, known as “toolkits.” In actual practice, functions can yield
many outputs, not just a single output; we discuss this extension in a later chapter.

We note that often we might perform operations on data of different types. In that case we
might effect “conversion” before proceeding with the operation, or we might let the programming
language automatically perform “coercion” — conversion to a common data type based on rules
of precedence. For example, in Matlab , if we attempt to add an integer and a floating point
number, Matlab will (effectively) first convert the integer variable to a floating point variable.
(Note that even when we invoke the various round, fix, floor, and ceil Matlab functions to
round a floating point number (the input) to an integer ( the output), the output is of data type
double.) In most cases Matlab makes reasonable choices, though on occasion more direct control
is warranted.

Finally we note that there is another term used to describe the proper specification and inter-
pretation of given data: “class.” Typically data type is part of the language whereas data classes
are created by the user. And typically data type would refer to a word or maybe two words whereas
class would refer to a compound type of many words (each of which might be specified as a different
data type). Class also has a special significance in object-oriented programming: a class defines
not just a compound data type (an instance of which is known as an “object”), but also functions
or “methods” on members of this class. Matlab supports object-oriented programming both ex-
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plicitly and implicitly, however we will only briefly touch on object-oriented programming in this
course, and primarily for purposes of interpretation of various operators.

This section is rather abstract simply because we do not yet know how to create data and
hence we can not demonstrate any of the concepts. As already indicated, we shall illustrate the
notion of data types, the matlab functions used to define variables of a particular data type, and
the functions used to query variables as to their data type, once we learn how to create variables
— in the next section.

4.3 Variables and Assignment

The assignment statement is the most basic operation. We proceed by example (using the command-
line input mode):

>> pi_approx = 3.14159

pi_approx =

3.1416

>>

where we enter the material after the prompt >> and Matlab responds as indicated in the lines
below the prompt line. In general, Matlab will display the result of an operation in the command
window unless we put a semi-colon at the end of the instruction.

It is important to understand what this statement actually does. The variable pi_approx is a
name to which Matlab will associate a unique address — a location in memory; hence the variable
pi_approx is in fact an address (a name), not a value. The assignment statement puts the value
3.14159 at the address pi_approx. Again, pi_approx is the address, or reference, or pointer, or
box, which contains the value. If we change the value

>>pi_approx = 3.14

pi_approx =

3.14

>>

we are simply replacing the earlier value 3.14159 at address pi_approx with the new value 3.14 at
the same address pi_approx.

In the above assignment statement the = is an operator (and an operator which is part of the core
Matlab functionality). An operator is a function which takes one or two arguments and produces
an output; operators, given the few operands, can be conveniently represented as a symbol. In the
next few sections we will introduce a number of useful operators. In terms of an operator, = looks
to the right for the value and then places this value in the address indicated to the left.

In our assignment for pi_approx the way in which we have entered the number ensures that
pi_approx is of type floating point double. But we can be more explicit as in
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>> pi_approx = double(3.14159)

pi_approx =

3.1416

>> floatcheck = isfloat(pi_approx)

floatcheck =

1

>>

which confirms that the double function indeed produces a variable of data type double.
We emphasize that both double and isfloat are functions. The general syntax for a function

is simple: the input or inputs are included in parentheses following the function name, and the
output (later, many outputs) — the evaluation of the function — is assigned to the variable to the
left of the =. For example, isfloat takes as input a variable — here the input is pi_approx — and
returns as output a logical variable which indicates whether the input is a floating point number —
here the output is a 1 (true), since pi_approx is indeed a floating point number (or more precisely,
an instance of the floating point double data type).

It is worth dissecting the above example a bit further. In fact, the statement

>> floatcheck = isfloat(pi_approx)

floatcheck = 1

>>

is a very simple example of a very powerful capability — composition. In particular, in this case
when = looks to the right it finds not a value but a function, isfloat; the function isfloat is
then evaluated and the output of isfloat ( a logical 1) is then taken as the (right) input to the =

(assignment) operator; the = then looks to the left, floatcheck, to know where in memory to write
this value (a logical 1) (or to create a memory location with the “name” floatcheck, as needed).

We invite the reader to input a logical with logical and check that the result is logical with
islogical, and an integer with int32 and check that the result is integer with isinteger. We will
discuss characters and strings later in a separate section. Most often we will use the double data
type, which is the Matlab default and requires no special attention — we just enter the number
as 3.14159. We will also make extensive use of the logical data type.

4.4 The Workspace and Saving/Loading Data

In the previous section, we created variables such as pi_approx and floatcheck. Where do these
variables go? These variables — and all variables we, or the programs we launch from the command
window, create — go to what is known as the “workspace.” In some sense, the workspace is the
part of the memory in Figure 4.1 (interpreted as the Matlab environment) which has already been
allocated. In order to see all the variables in our workspace we can do >> who. Note that >> who
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does not evaluate the variables and hence does not provide the values; rather, it provides a list of
all the variable names to which we have assigned data. (To determine the value of a particular
variable we would simply type >>variable.) Note that whos is the same as who but with additional
information about size and data type (or “class”) of each variable.

If we wish to delete all the variables in the workspace, and start anew, we would do clear. (This
of course only affects the Matlab variables you have created, with no effect on the file system —
such as the .m files you might have created.) Alternatively, you might wish to just delete certain
variables, say variable 1 and variable 2 , in which case we would do >> clear variable 1 variable 2 .
For smaller programs memory management is not an issue, but for larger programs it is important
to clear or more generally allocate and de-allocate memory carefully.

It is often the case that we wish to save the results of our calculations for future use — rather
than re-compute. This is done very simply in Matlab : to save variables variable 1 and variable 2
to a data file save_for_later.mat we do save save_for_later variable 1 variable 2 . To reload
this data we simply do load save_for_later which will include the contents of save_for_later,
in our case variable 1 and variable 2 , in the current workspace — that is, in addition to the current
contents of your workspace. Note the .mat file is a Matlab specific data file which is the most
convenient within Matlab , but there are also many other (and more universal) formats in which
data can be saved.

4.5 Arithmetic Operations

We now turn to arithmetic operations, typically performed in Matlab on floating point numbers
(though the operators also work on integers and indeed logicals through coercion, as discussed
above).

As already indicated, an operator is a function, syntactically represented by a symbol, which
takes one or two input arguments, or parameters, or operands, and returns a result. The arithmetic
operators are ^ (exponentiation), / (division), * (multiplication), + (addition), and - (subtraction).
These operations do the obvious thing, applied either to data or variables.

We consider addition: for data,

>> 2 + 3

ans =

5

or for variables

>> x = 2; y = 3;

>> x + y

ans =

5

>>
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(Note the semi-colons suppress display of x and y; if we wish to confirm the value, we need only do
(say) >> x without a semi-colon to evaluate x.) In more detail, the + operator takes the two values
to the left and right and outputs as the answer (ans) the sum. The other arithmetic operators ^,
/, *, and -, perform in a similar obvious fashion.

We note that in the above x + y is an expression — here a single function, but more generally
a composition of many operations — which is evaluated to yield the result ans. Note when we do
an evaluation of an expression expr , Matlab “finishes” the statement for us as ans = expr — in
other words, Matlab assigns the result of the evaluation to a variable ans. We can in fact use this
variable ans subsequently, but this is highly frowned upon since, as you can imagine, it is quite
easy for the generic ans to be changed in unanticipated or unnoticed ways.

Rather, if we wish to subsequently use the result of an evaluation, we should explicitly assign
the output to a variable, say z: we need only do

>> z = x + y

z = 5

>>

which is a composition of the addition ( +) operator with the assignment ( =) operator: we evaluate
the expression (or operation, or function) x + y and then assign the result of this evaluation to a
variable z.

We repeatedly above refer to the addition “function.” In fact, for most operators there is an
“output = function name (inputs)” syntax which is equivalent to the operator syntax. For instance,
we may compute the sum of x and y as plus(x,y). Obviously the operator form is much easier
and more readable, however the plus contains the actual code which implements addition and
furthermore provides a mechanism by which to change what we mean by addition for different data
types (and in the object-oriented context, different classes). We do not recommend that you change
the definition of plus for double data types — but in fact, it is quite easy to do, and could prove
an effective form of industrial numerical sabotage.

It is instructive to consider the statement

>> z = z + 1

z = 6

>>

which in fact serves quite often in iterative procedures (typically for z an integer, even if represented
in Matlab by a double). What does this statement do? First Matlab evaluates the expression
z + 1 to obtain the value 6; then operator = assigns this value 6 to the address (variable) z.
Although mathematically z = z + 1 appears nonsensical, it is important to remember that in
z = z + 1 the = is the assignment operator and not an equal sign. (Of course, Matlab contributes
to the confusion in very next line, z = 6, by using the = sign in the convention mathematical sense
of equality.)

Up to this point we have composed operators for which we did not need to worry about the
order in which we performed the operations. For example, 3 + 4 + 5 can be evaluated either as
(3 + 4) + 5 (i.e., 3 + 4 first, then + 5). (In fact, this is not quite true in finite precision, as we
discuss in the next section.) On the other hand, 3*2^4 gives quite different results if we perform
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either the * first or the ^ first. Matlab thus provides rules of precedence for the order in which
operators are evaluated: first the items in parentheses, from the inside out; then ^; then / and *;
then + and -. The mnemonic is PEDMAS (not very mnemonic, in fact). If the rules of precedence
do not not dictate a unique order then Matlab operates from left to right.

The easiest way to avoid misinterpretation of your intentions is to liberally use parentheses,
and for readability to always include ample spaces within and between your parentheses. The
evaluation of 3*2^4 gives us opportunity to introduce the notion of a bug. If you intended (3*2)^4

but simply wrote 3*2^4 Matlab would do something different from your intentions. This is not
Matlab ’s fault, but your fault. There are many kinds of bugs: a statement may in fact not
correspond to valid Matlab syntax and the statement will not even be interpreted; a statement
may correspond to valid Matlab syntax but may do something other than intended by the user
— as in our 3*2^4 example; the statement may do what the users intends but in fact to achieve
the desired end the user’s intentions are not correct — this occurs quite frequently in the context
of numerical computation.

4.6 Floating Point Numbers (FPNs): Representation and Opera-
tions

4.6.1 FPN Truncation and Representation

Floating point numbers represent a challenge both in how we represent these numbers and in how
we perform arithmetic operations on these numbers. To begin, we express a number x in base 2 as

x = σ1

 ∞∑
k=0

bk2
−k

× 2σ2E ,

in which the bk are binary numbers — 0 or 1, E is an integer, and σ1 and σ2 are signs — ±1. We
assume that we have normalized the expansion such that b0 = 1. (In fact, we may express x in say
base 10 rather than base 2; this in turn will lead to a different floating point format.)

In some cases, we may only require a finite sum — a sum with a finite number of nonzero terms
— to represent x. For example, x = 2 may be expressed by the single non-zero term b0 = 1 (and
E = +1). However more generally a finite number of non-zero bk will not suffice — even 1/10
leads to a repeating binary fraction. We thus must truncate the series to develop the floating point
number (FPN) approximation of x:

xFPN = σ1

 K∑
k=0

b′k2
−k

× 2σ2E
′
.

Here b′k = bk, 1 ≤ k ≤ K — we perform truncation of our series — and E′ is the minimum of E
and Emax — we truncate the range of the exponent.

We now represent or encode xFPN in terms of (a finite number of) 0’s and 1’s. Towards this
end we assign one bit each to the signs σ1 and σ2; we assign p = K bits for the binary numbers b′k,
1 ≤ k ≤ K, to represent the mantissa (or significand); we assign pE bits to represent the exponent
E (and hence Emax = 2pE). (Our choice of base 2 makes the encoding of our approximation in 0’s
and 1’s particularly simple.) In the 64-bit IEEE 754 binary double (now called binary64) floating
point format, p = 52 and pE = 10 (corresponding to Emax = 310 such that in total — including the
sign bits — we require 2+52+10 = 64 bits. (The storage scheme actually implemented in practice
is slightly different: we need not store the leading unity bit and hence we effectively realize p = 53;
the exponent sign σ2 is in fact represented as a shift.)
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There are two primary sources or types of error in the approximation of x by xFPN: the first
is FPN truncation of the mantissa to p bits; the second is the FPN truncation of the exponent to
pE bits. The former, FPN mantissa truncation, is generally rather benign given the rather large
value of p. However, in some cases, FPN mantissa truncation errors can be seriously amplified by
arithmetic operations. The latter, FPN exponent truncation, takes the form of either overflow —
exponents larger than 310, represented in Matlab as plus or minus Inf — which is typically an
indication of ill-posedness, or underflow — exponents smaller than −310, represented in Matlab
as 0 — which is typically less of a concern.

We note that the word “precision” is typically reserved to indicate the number of bits or dig-
its with which a floating point number is approximated on any particular hardware (and IEEE
format); typically we focus on the mantissa. For example, 64-bit precision, or “double-precision,”
corresponds to 52 (or 53) binary digits of precision — roughly 16 decimal digits of precision —
in the mantissa. Precision can also be characterized in term of “machine precision” or “machine
epsilon” which is essentially the (relative) magnitude of the FPN truncation error in the worst case:
we can find machine epsilon from the Matlab built-in function eps, as we will illustrate below.
We will define machine epsilon more precisely, and later construct a code to find an approximation
to machine epsilon, once we have understood floating point arithmetic.

Oftentimes we will analyze a numerical scheme in hypothetical “infinite-precision” arithmetic
in order to understand the errors due to numerical approximation and solution in the absence of
finite-precision FPN truncation effects. But we must always bear in mind that in finite precision
arithmetic additional errors will be incurred due to the amplification of FPN truncation errors by
various arithmetic operations. We shortly discuss the latter in particular to identify the kinds of
operations which we should, if possible, avoid.

Finally, we remark that there are many ways in which we may choose to display a number say
in the command window. How we display the number will not affect how the number is stored in
memory or how it is approximated in various operations. The reader can do >> help format to
understand the different ways to control the length of the mantissa and the form of the exponent in
displayed floating point numbers. (Confusingly, format in the context of how we display a number
carries a different meaning from format in the context of (IEEE) FPN protocol.)

4.6.2 Arithmetic Operations

We shall focus on addition since in fact this particular (simple) operation is the cause of most
difficulties. We shall consider two numbers x1 and x2 which we wish to add: the first number
has mantissa m1 and exponent E1 and the second number has mantissa m2 and exponent E2. We
presume that E1 > E2 (if not, we simply re-define “first” and “second”).

First, we divide the first mantissa by 2E1−E2 to obtain m′2 = m22−(E1−E2): in this form, x1 now
has mantissa m′2 and exponent E1 . (Note this division corresponds to a shift of the mantissa: to
obtain m′2 we shift m1 by E1−E2 places to the right — and pad with leading zeros.) At this stage
we have lost no precision. However, in actual practice we can only retain the first p bits of m′2
(since we only have p bits available for a mantissa): we denote by m′′1 the truncation of m1 to fit
within our p-bit restriction. Finally, we perform our FPN sum z = x1 +x2: z has mantissa m1 +m′′2
and exponent E1. (Our procedure here is a simplification of the actual procedure — but we retain
most of the key features.)

We can immediately see the difficulty: as we shift m2 to the right we are losing E1 −E2 bits of
precision. If the two exponents E1 and E2 are very different, we could lost all the significant digits
in x2. Armed with FPN we can in fact develop a simple definition of machine epsilon: the smallest
epsilon such that 1 + epsilon = 1, where of course by + we now mean finite precision FPN
addition. Later we will take advantage of this definition to write a short program which computes
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machine epsilon; for our purposes here, we shall simply use the Matlab built-in function eps.
It is clear that finite-precision and infinite-precision arithmetic are different and will yield dif-

ferent results — the difference is commonly referred to as “round-off” error. Indeed, finite-precision
arthmetic does not even honor all the usual (e.g., commutative, associative) rules. We consider the
example (recall that in Matlab operations are performed from left to right in the absence of any
precedence rules):

>> mach_eps = eps

mach_eps =

2.2204e-16

>> (mach_eps/2 + 1 + mach_eps/2 - 1)/mach_eps

ans =

0

>> (mach_eps/2 + mach_eps/2 + 1 - 1)/mach_eps

ans =

1

>>

Clearly, in infinite precision arithmetic both expressions should evaluate to unity. However, in finite
precision the order matters: in the first expression by definition mach_eps/2 + 1 evaluates to 1; in
the second expression, mach_eps/2 + mach_eps/2 adds two numbers of identical exponent — no
loss in precision — which are then large enough (just!) to survive addition to 1. This anomaly is
a “bug” but can also be a feature: we can sometimes order our operations to reduce the effect of
round-off errors.

But there are situations which are rather difficult to salvage. In the following example we
approximate the derivative of sin(x) by a forward first-order difference with increment dx which is
increasingly small:

>> cos(pi/4)

ans =

0.707106781186548

>> dx = .01;

>> deriv_dx = (sin(pi/4 + dx) - sin(pi/4))/dx

deriv_dx =

0.703559491689210
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>> dx = 1e-8;

>> deriv_dx = (sin(pi/4 + dx) - sin(pi/4))/dx

deriv_dx =

0.707106784236800

>> dx = 1e-20;

>> deriv_dx = (sin(pi/4 + dx) - sin(pi/4))/dx

deriv_dx =

0

>>

We observe that what Newton intended — and the error bound we presented in Chapter 3 — is
indeed honored: as dx tends to zero the finite difference (slope) approaches the derivative (cos(π/4)).
But not quite: as dx falls below machine precision, the numerator can no longer see the difference,
and we obtain an O(1) error — precisely in the limit in which we should see a more and more
accurate answer. (As the reader can no doubt guess, pi, sin, and cos are all Matlab built-in
functions.)

This is in fact very typical behavior. In order to make numerical errors small we must take
smaller increments or many degrees-of-freedom, however if we go “too far” then finite-precision
effects unfortunately “kick in.” This trade-off could in fact be debilitating if machine precision
were not sufficiently small, and indeed in the early days of computing with only a relatively few
bits to represent FPNs it was a struggle to balance numerical accuracy with finite precision round-
off effects. These days, with the luxury of 64-bit precision, round-off errors are somewhat less of a
concern. However, there are situations in which round-off effects can become important.

In particular, we note that the problem is our derivative example is not just the numerator but
also the dx in the denominator. As a general rule, we wish to avoid — where possible — division
by small numbers, which tends to amplify the effects of finite-precision truncation. (This relates
to stability , which is an important theme which we will encounter in many, often related, guises
in subsequent chapters.) We will see that even in much more sophisticated examples — solution
of large linear systems — “avoid division by small numbers” remains an important guideline and
often a feature (by construction) of good algorithms. The problem of course is aggravated when
we must perform many operations as opposed to just a few operations.

We have focused our attention on addition since, as indicated, this operation is often the prox-
imal cause of the round-off difficulties. Other operations are performed in the “obvious” way. For
example, to multiply two numbers, we multiply the mantissas and add the exponents and then
re-adjust to conform to the necessary representation. Division and exponentiation follow similar
recipes. Obviously underflow and overflow can be undesired byproducts but these are typically
easier to avoid and not “fundamental.”
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4.7 Relational and Logical Operations

4.7.1 Relational Operations

A relational operator performs some kind of comparison between two variables (typically floating
point double) and then returns a logical variable to indicate the outcome of the comparison. The
relational operators are equal, ==; not equal, ~=; less than, <; greater than, >; less than or equal, <=;
greater than or equal, >=. Note that the equal operator, ==, is now interpreted in the mathematical
sense of = (vs. the Matlab assignment operator = which of course serves a different function).

As an example, we consider

>> x = 4.6; y = 4.7;

>> isless = x < y

isless =

1

>>

Here Matlab first evaluates the expression x < y — which, since x is less than y, is a true
statement, and hence returns a logical 1 — and then assigns this value of 1 to the (logical) variable
isless. (As we know, floating point numbers are truncated in finite precision arithmetic; since the
< operates on the truncated form, of course the comparison is only good to machine precision.)

We can of course consider composition. Typically, composition of relational operations is by
logical operations, as we now discuss. (In fact, we can apply usual arithmetic to logical variables,
which are converted to floating point for the purpose. This is often convenient, but must be used
with some care.)

4.7.2 Logical Operations

It would be possible to hi-jack operations such as + to perform Boolean operations on logical
variables, however Matlab prefers to reserve the usual arithmetic functions for these operators
applied to logical variables. Hence we introduce new operators.

The three key logical operators are AND, indicated as &, OR, indicated as |, and NOT, indicated
as ~. (There are also other options, such as the exclusive or, or XOR.) The AND and OR operators
take as (the two) operands logical variables and the result is of course also a logical variable. The
NOT takes a single logical operand and the result is also a logical variable. As already indicated,
these logical operators are often composed with relational operators.

The AND, OR, and NOT behave in the expected fashion. The statement L3 = L1 & L2 yields
L3 = 1 (true) only if both L1 and L2 are both == 1 (true), otherwise L3 = 0. The statement
L3 = L1 | L2 yields L3 = 1 if either L1 == 1 or L2 == 1, otherwise L3 = 0 (note that if both
L1 == 1 and L2 == 1, then L3 = 1); conversely, L3 = 0 only if both L1 == 0 and L2 == 0. Fi-
nally, the NOT: L3 = ~L1 yields L3 = 1 if L1 == 0 and L3 = 0 if L1 == 1.

As an example, we consider the AND and NOT:

>> x = 4.6; y = 4.7;

>> u = 3.1; v = 3.2;

>> z = (x < y) & ~(u < v)
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z =

0

>>

which of course yields the correct result. Note the Matlab precedence convention is to evaluate
relational operators before logical operators and hence our parentheses in the above are redundant
— but better too many parentheses than too few. And another example,

>> x = 4.6; y = 4.7;

>> u = 3.1; v = 3.2;

>> z = (x < y) | ~(u < v)

z =

1

>>

now with the OR and NOT.
Finally, we mention that Matlab provides “short-circuit” versions of AND and OR, the oper-

ators for which are given by && and ||, respectively. These short-circuit operators will not evaluate
the second operand (i.e., to the right) if the first operand (i.e., to the left) suffices to make the de-
cision. For example, in our OR example above, since x < y, z = (x < y) || ~(u < v) will only
evaluate (x < y). This can lead to efficiencies — if the second operand is much more expensive
and or ensure that a (second) operand is only evaluated when it exists and is well-defined.

Logical (and relational) operations play a key role in flow control — in controlling the flow (or
“direction”) of the program based on the results generated by the program itself. In some sense it
is these logical and relations operations and the enabled flow control which distinguishes a program
executed by a computer from arithmetic performed on a calculator.

4.8 Flow Control

4.8.1 The if Statement

The if statement is very simple. The general syntax is given by

if logical expression 1
BLOCK 1

elseif logical expression 2
BLOCK 2

else

BLOCK 3
end

which is interpreted by Matlab as follows:
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if logical expression 1 evaluates to true, execute BLOCK 1 and go to end (and continue on
with the next line in the program);

if logical expression 1 evaluates to false, but logical expression 2 evaluates to true, execute
BLOCK 2 and go to end (and continue);

if logical expression 1 is false and logical expression 2 is false, execute BLOCK 3 and go
to end (and continue).

Note several variants are possible: we may include multiple elseif statements between the
BLOCK 1 and else; and we may omit the else and BLOCK 3 statements.

In the event that in fact there are many cases there is another Matlab statement which is no
doubt preferable to the if statement: the switch statement. We do not discuss the switch state-
ment here, but rather use this opportunity to recall the very helpful help function: >> help switch

will provide you with a quick (but sufficient) description of the syntax and functionality of the
switch statement.

4.8.2 The while Statement

The syntax of the while statement is

initialize var 1, var 2,. . .
while relational or logical expression while (var 1, var 2,. . . )

BLOCK % new values assigned to var 1, var 2, ...

end

This statement is a loop which is controlled by the value of the logical variable which is the result of
evaluation of relational_or_logical_expression_while. What makes the statement powerful
is that relational_or_logical_expression_while may depend on var 1, var 2, . . . , the values
of which are changed at each pass through the loop. In particular, the while is executed as follows:
if relational or logical expression while (var 1, var 2, . . . ) is true, execute (the instruction lines
in) BLOCK , otherwise go to end and continue with next line of program of which the while is
part; repeat. Note that var 1, var 2, . . . must be initialized prior to entering the while loop.

As an example, we consider

>> i = 0;

>> sum_of_integers = 0;

>> while i <= 3

sum_of_integers = sum_of_integers + i;

i = i + 1;

end

>> sum

sum_of_integers =

6

>>
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Here, relational or logical expression while (var 1) is the simple expression i <= 3, where i plays
the role of var 1. In fact, this particular sum is more easily performed with a for statement, as we
describe shortly. The true value of the while is when the relational or logical expression is a more
complicated function of the variables which are changed by the BLOCK and in particular when we
do not know a priori how many iterations through the loop will be required.

For example, we create the script machine eps.m

% script to calculate machine epsilon

mach_eps = 1;

while (1 + mach_eps ~= 1)

mach_eps = mach_eps/2.;

end

mach_eps

in the editor. Note that as we start to construct slightly longer programs we will start to use script
mode rather than command-line mode. The input is easier, as are debugging and modification, and
of course re-use. In addition, the editor within Matlab recognizes various keywords and automat-
ically formats statements for improved readability. Note also the comment line: any material on a
line which follows a % will be ignored by the interpreter and serves only to educate the author and
user’s as to the intent of the program or particular lines of the program.

We then enter in the command window

>> machine_eps

mach_eps =

1.1102e-16

>>

which runs our script. Of course this code is just calculating for us machine precision, which agrees
with the Matlab eps to within the factor of two related to our stopping tolerance.

Finally, we note that you may include a break in a BLOCK statement

if (relational or logical expression break) break

which will directly go to the end statement of the while loop quite independent of whether
relational_or_logical_expression_while (for the current values of var 1, var 2, . . . ) is true

or false. Purists often try to avoid break statements, but pragmatists tolerate the occasional
break statement. Too many break statements may be a symptom of poor program design or more
generally passive-aggressive tendencies.

4.8.3 The for Statement

The syntax for the for statement is

for VARCOUNTER = LIM 1 : INCREMENT : LIM 2
BLOCK % no reassignment of VARCOUNTER

end
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Typically LIM 1, INCREMENT, LIM 2 would be integers (even if of data type double), however
there are also many instances in which these variables could be (mathematically) non-integer. Note
also that INCREMENT can be positive or negative, and that if INCREMENT is not specified then
Matlab chooses the default value INCREMENT = 1.

The execution of the for loop is simple: we execute BLOCK for VARCOUNTER = LIM 1 ; we
update VARCOUNTER = VARCOUNTER + INCREMENT ; then, if VARCOUNTER <= LIM 2 ,
repeat. As for a while statement, we can interrupt the usual flow of the for loop with a break

statement. Note that if LIM 1 + INCREMENT is less than LIM 2 then BLOCK will never be
executed.

We repeat our earlier example:

>> sum_of_integers = 0;

>> for i = 1:3

sum_of_integers = sum_of_integers + 1;

end

>> sum_of_integers

sum_of_integers =

3

>>

There are many situations in numerical methods in which the for loop is the ideal construct. How-
ever, it is also true that in Matlab there are a number of functions related to array manipulation
that, although implicitly built upon a for construction, are typically more efficient than an explicit
for loop. We introduce some of these functions in the next section.

Finally, we note that our for syntax here is not as general as provided for by Matlab .
However, the more general syntax requires the notions of single-index or multi-index arrays, which
we have not yet introduced. Following the treatment of arrays the reader should do >> help for

to understand the generalization: in effect, we can require VARCOUNTER to cycle through any
particular set of scalars (defined in a single-index array) or VARCOUNTER itself may even be a
single-index array which cycles through a particular set of single-index arrays (defined in a double-
index array).
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Chapter 5

Matlab Arrays

5.1 Single-Index Floating Point Arrays

5.1.1 The Concept

It is often the case that we have an ordered set of, say n, “elements” of data which are somehow
related. The index could represent directions in three space dimensions (k = 1, 2, 3 for x, y, z,
respectively) — at which we store, in each array location, the corresponding coordinate of a point
(an array of length 3); or the index could represent 15 different times — at which we store, in
each location, the time of the measurement, or perhaps the measurement itself (an array of length
15). Note the index plays the role of independent variable and the array value plays the role of
dependent variable. In all these cases we will often wish to operate on all n “related elements” in
a similar fashion. We would thus like a way to reference all the elements with a common name,
and an easy way to reference different elements through this common name, in order to develop
succinct, readable, and efficient code for implementing common operations on all the elements. In
particular, we would not want to write n lines of code each time we wished, say, to square each of
the n elements.

A single-index array — in this section, a floating point single-index array — is the simplest
“class” which achieves these objectives. We first introduce a variable name, array name, which
shall be associated to all n elements of the array. We then index this array name in order to access
any particular element of the array: in particular, array name(i) is the pointer to element i of the
array. We emphasize that, as in the scalar case, array name(i) is not the value of element i of
the array but rather the location in memory at which we shall store the value of element i. For
example, array name(2) = 3.14159 would assign the value 3.14159 to the second element of the
array. (We discuss more efficient assignment methods below.)

Conceptually, you may think of the array as stored at n contiguous locations in memory. Ele-
ment 1 of the array is stored in array name(1), element 2 of the array is stored in array name(2),
. . . , and element n of the array is stored in array name(n). In this (virtual) sense, it suffices to
(say) pass to a function simply the variable array name — which you may view as the address
of the first element — as the addresses of all the other elements of the array can then be readily
deduced from array name. (In actual practice, there is also some header information associated
with the array — for example, in our single-index case, the length n.) Since many common array
operations can be performed in Matlab with simple function calls — or user-defined function
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calls — at a high-level we can often deal exclusively with array name without explicit reference to
particular indices. (Of course, under the hood. . . )

5.1.2 Assignment and Access

The most explicit way to create a single-index array is by hand: X = [1,3,4] creates a single-
index array of length 3, with entries X(1) = 1, X(2) = 3, and X(3) = 4. To determine the
length of an array Matlab provides a function length. In our example

>> X = [1,3,4]

X =

1 3 4

>> X(1)

ans = 1

>> length(X)

ans =

3

>>

Note that this single-index array is a row single-index array. (We can also consider column single-
index arrays, in which the commas above are replaced by semi-colons: X = [1;3;4]. We reserve
treatment of rows and columns to our discussion of double-index arrays.)

The input process is facilitated by the colon operator. In particular, Z = [J:D:K] creates
the single-index array J, J+ D,...,J + m*D] for m = fix((K-J)/D), where fix is a Matlab
function which rounds to the nearest integer towards zero. (Note that J:D:K is empty if D == 0,
if D > 0 & J > K, or if D < 0 & J < K.) The default value of D is 1 and hence J:K is equivalent
to J:1:K, as in the example

>> firstfive = [1:5]

firstfive =

1 2 3 4 5

>>

You will in fact recognize this colon construction from the for statement; and indeed the for

statement may take the form for VARCOUNTER = S where S is any single-index array; we will
revisit this construction of the for statement shortly.

We may assign an entire array,
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>> Y = X

Y =

1 3 4

>>

or we may assign or re-assign a particular element as, say,

>> X(3) = 10;

>> X

X =

1 3 10

>>

which we see modifies X accordingly.
Of course the point of an array is that we have a systematic numerical approach to indexing,

and we may thus easily assign values with a for statement. We present two approaches. In the
first, we zero out to initialize:

>> Z = zeros(1,10);

>> for i = 1:length(Z)

Z(i) = i^2;

end

>> Z

Z =

1 4 9 16 25 36 49 64 81 100

>>

Note that zeros(1,n) is a Matlab function which provides a (row) single-index array of all zeros
of length n. (Note the first argument of zeros indicates that we wish to form a row single-index
array; zeros(n, 1) would create a column single-index array of all zeros. We will understand
zeros better once we discuss multi-index arrays.) This approach, of initialization, is preferred
whenever possible: it permits Matlab to be more efficient in memory allocation and management.

In the second approach, we concatenate:

>> Z = [];

>> for i = 1:10

Z = [Z,i^2];

end

>> Z
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Z =

1 4 9 16 25 36 49 64 81 100

>>

Here Z = [] defines an array but the array is initially empty: we do this because we can not
“add to” (append to, or concatenate to) an array which does not exist. Note that the expression
[Z, i^2] evaluates to an array in which the first length(Z) elements are the elements of Z and the
last element is i^2. Thus at each iteration the length of Z grows. The above is less efficient than
the initialization approach, but very convenient in particular (for example, in a while statement)
when we do not a priori know the number of elements in our (ultimate) array.

As our last point on assignment and access, we note that Matlab supports a very convenient
form of indirect addressing. In particular, if we create a single-index array of integers indvec then
we can extract from (say) Z just those elements with indices in indvec:

>> indvec = [1,3,5,9];

>> U = Z(indvec)

U =

1 9 25 81

>>

Note you may also apply indirect addressing on the left-hand side of the assignment statement, but
some care must be exercised as regards the “shape” (row vs. column) of the resulting single-index
array.

Note that in all these shortcuts there is always an equivalent underlying program (which is more
or less how these shortcuts are implemented). For example, in the above, an array index argument
tells Matlab to execute, effectively:

>> U_too = zeros(1,length(indvec))

>> for inew = 1:length(indvec)

U_too(inew) = Z(indvec(inew));

end

>> U_too

U_too =

1 9 25 81

>>

But of course much better to encapsulate and re-use this feature within the Matlab syntax than
to re-write this little loop on each occasion.
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5.1.3 (Dotted) Arithmetic Operations

It is one of the major advantages of programming languages that as we develop more convenient data
structures (or types, or classes), in particular with many elements, we may also suitably define our
operations to deal directly with these new entities — as a whole, rather than explicitly manipulating
each element. In this section we define for the case of single-index arrays the corresponding array
arithmetic operators.

We first discuss element-by-element operations. In these operations, we consider two arrays of
the same length and we apply the same arithmetic operation on each pair of elements which share
the same index. We begin with addition/subtraction (and multiplication by a scalar):

>> P = [1, 4, 7]; Q = [2, -1, 1];

>> R = P + 3.0*Q

R =

7 1 10

>>

which is simply shorthand for the loop

>> for i = 1:length(P)

R_too(i) = P(i) + 3.0*Q(i);

end

>> R_too

R_too =

7 1 10

>>

The loop makes clear the interpretation of “element by element,” but obviously the one-line state-
ment is much preferred.

Note 3.0 is not an array, it is scalar , which scales all elements of the array Q in our above
example. This simple scaling feature can be very convenient in defining arrays of grid points or data
points (for example, in interpolation, differentiation, and integration). To wit, if we have an interval
of length L and wish to createN segments of length L/N , we need only do >> xpts = (L/N)*[0:N].
Note that xpts is of length (in the sense of number of elements in the array) N+1 since include both
endpoints: xpts(1) = 0 and xpts(N+1) = L/N.

Finally, we note one additional shortcut: if q is a scalar, then element-by-element addition to
our vector P will add q to each element of P. To wit,

>> q = 3;

>> P + q

ans =
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4 7 10

>>

We might write the above more properly as

>> P + q*ones(1,length(P))

ans =

4 7 10

>>

but there is no need given Matlab ’s automatic expansion of q when encountered in array addition.
Note ones(1,n) is a Matlab function which creates a (row) single-index array of length n with
all elements set to unity.

To implement element-by-element multiplication, division, and exponentiation we do

>> PdotmultQ = P.*Q

PdotmultQ =

2 -4 7

>> PdotdivideQ = P./Q

PdotdivideQ =

0.5000 -4.0000 7.0000

>> PdotexpQ = P.^Q

PdotexpQ =

1.0000 0.2500 7.0000

>>

which is equivalent to

>> for i = 1:length(P)

PdotmultQ_too(i) = P(i)*Q(i);

PdotdivideQ_too(i) = P(i)/Q(i);

PdotexpQ_too(i) = P(i)^Q(i);

end

>> PdotmultQ_too

PdotmultQ_too =
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2 -4 7

>> PdotdivideQ_too

PdotdivideQ_too =

0.5000 -4.0000 7.0000

>> PdotexpQ_too

PdotexpQ_too =

1.0000 0.2500 7.0000

>>

As for addition, if we replace one of our vectors by a scalar, Matlab will expand out with a “ones”
vector.

Why do we need the “dot” before the *, /, and ^ operators — so-called “dotted” (or element-by-
element) operators: dotted multiplication, dotted division, and dotted exponentiation? It turns out
that there are two types of entities which look very similar, respectively arrays and vectors (later
multi-index arrays and matrices): both are ordered sets of n floating point numbers. However, the
arithmetic operations are defined very differently for these two entities, respectively element-by-
element operations for arrays and linear algebraic operations (e.g., inner products) for vectors. We
could easily define say * to perform element-by-element multiplication for objects which are defined
as arrays, and to perform an inner product for objects defined as vectors. Unfortunately, although
conceptually quite clean, this would be very cumbersome since often in one line we wish to treat a
set of numbers as an array and in the next line we wish to treat the same set of numbers as a vector:
there would be much conversion and bookkeeping. Hence Matlab prefers a kind of “superclass”
of array-and-vector (and matrix) entities, and hence perforce some new syntax to indicate whether
we wish to treat the array-and-vector as an array (with dotted element-by-element operators) or a
vector (with undotted linear algebra operators). Note that we do not require dotted + (or dotted
-) since element-by-element addition and vector addition in fact are equivalent. So there.

We note that there are many arithmetic operations on arrays in addition to element-by-element
operations, many of which are available as Matlab functions. For example, we can easily perform
the sum of the first three integers (as we did earlier with a for loop) as

>> ints = [1:3];

>> sum(ints)

ans =

6

>> mean(ints)

ans =
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2

>>

where sum performs the sum of all the elements in an array (here ints) and mean calculates the
arithmetic mean of all the element in an array.

Finally, we note here that the many Matlab built-in mathematical functions — we have already
encountered sin and cos, but there are many many more — look for “math function” and “special
functions” in the doc — which also accept single-index (and in fact, double–index) arguments. For
example,

>> xpts = (pi/4)*0.5*[0:2];

>> sin_values = sin(xpts)

sin_values =

0 0.3827 0.7071

>>

with a single call provides the values of sin for all elements of xpts.

5.1.4 Relational and Logical (Array) Operations

For relational and logical operations we do not have the complication of array/vector conflation and
hence we need no dots. In effect, when we apply any of our scalar relational/ logical operations to
pairs of vectors of the same length, Matlab returns a vector (of the same length as the operands)
which is the result of the scalar relational/logical operation element-by-element.

As an example,

>> x = [1.2, 3.3, 2.2]; y = [-0.1, 15.6, 2.0];

>> z_1 = (x < y)

z_1 =

0 1 0

>> z_2 = (x > y)

z_2 =

1 0 1

>> z_3 = z_1 | ~z_2

z_3 =

0 1 0
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>>

Similar example can be constructed for all of our relational operators and logical operators. Note
that z_1, z_2 and z_3 are logical arrays: each element is an instance of the logical data type.

For completeness, we indicate the implementation of the above as a for loop:

>> for i = 1:length(x)

z_1_too(i) = (x(i) < y(i));

z_2_too(i) = (x(i) > y(i));

z_3_too(i) = z_1_too(i) | ~ z_2_too(i) ;

end

>> z_1_too

z_1_too =

0 1 0

>> z_2_too

z_2_too =

1 0 1

>> z_3_too

z_3_too =

0 1 0

>>

which is indeed equivalent, but tedious.

5.1.5 “Data” Operations

There are also a number of operations which albeit numerical are focused as much on the indices
as the data — and hence we include these under the heading “data” operations.

A number of Matlab functions are available to reorder the elements or to identify distinguished
elements: sort, min, and max are perhaps the most useful in this regard. We illustrate just one of
these functions, min:

>> T = [4.5, -2.2, 6.3, 4.4];

>> [minimum, minimizer] = min(T)

minimum =

-2.2000
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minimizer =

2

>> minimum_too = min(T)

minimum_too =

-2.2000

>>

which yields the obvious result. This is our first example of a function with two outputs: minimum
is the minimum of the array, and minimizer is the index of the minimizing element. Note also that
if we just wish to obtain the first output we can abbreviate the call.

Perhaps one of the most useful array data functions is the find function. Given a logical vector
L, find(L) will return a vector which contains (in increasing order) the indices of all the elements
of L which are nonzero (and are hence unity, since L is a logical array). (In fact, find can also be
applied to a double array, but one must be careful about round-off effects.) As an example:

>> L = logical([0,1,1,0,0,1]);

>> islogical(L)

ans =

1

>> ind_of_nonzero = find(L)

ind_of_nonzero =

2 3 6

>>

where we have also illustrated the construction of a logical vector. Note that the find function
effectively implements the for loop

>> ind_of_nonzero_too = [];

>> for i = 1:length(L)

if( L(i) ~= 0 )

ind_of_nonzero_too = [ind_of_nonzero_too,i];

end

end

>> ind_of_nonzero_too

ind_of_nonzero_too =

2 3 6
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>>

which demonstrates also an application of concatenation.
The function find is very useful in the context of comparisons. For example, we may wish to

extract just those values of vector greater than some threshold:

>> H = [0.2, 1.4, 6.7, -3.4, 4.2];

>> log_H_thresh = (H > 1.2)

log_H_thresh =

0 1 1 0 1

>> inds_H_thresh = find(log_H_thresh)

inds_H_thresh =

2 3 5

>> H(inds_H_thresh)

ans =

1.4000 6.7000 4.2000

>>

We can of course replace H > 1.2 in the above with any more complicated composition of relational
and logical operators.

We could of course combine this as

>> H ( find ( H > 1.2 ) )

ans =

1.4000 6.7000 4.2000

>>

In fact, Matlab accepts a further abbreviation as

>> H ( H > 1.2 )

ans =

1.4000 6.7000 4.2000

>>
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in which a find is automatically applied to a logical index vector. Apparently this somewhat
syntactically sloppy approach is in fact the most efficient.

We take this opportunity to revisit the for statement. We initially introduced the for statement
of the form for VARCOUNTER = LIM_1:INC:LIM_2 and later noted that the for statement may take
a more general form for VARCOUNTER = S where S is any single-index array. We now present an
example of this general form of the for statement. Our objective is to find a number of entries in a
(row) single-index array that are positive. As before, we can write the for loop based on an index
as

>> scalars = [1,-3,1,2,-5];

>> num_pos = 0;

>> for i = 1:length(scalars)

if (scalars(i) > 0)

num_pos = num_pos + 1;

end

end

>> num_pos

num_pos =

3

>>

which gives the expected result. Alternatively, we may use our set of scalars directly as the argument
to the for loop. That is

>> scalars = [1,-3,1,2,-5];

>> num_pos = 0;

>> for sca = scalars

if (sca > 0)

num_pos = num_pos + 1;

end

end

>> num_pos

num_pos =

3

>>

which also gives the correct result. In this second form, within the for loop, the loop argument
sca is first set to the first element of scalars, 1, sca is then set to the second element of scalars,
-3, and so on.

We may interpret the (restrictive) form of the for statement for VARCOUNTER = LIM_1:INC

:LIM_2 within this general form: LIM_1:INC:LIM_2 first yields an single-index array [LIM_1,

LIM_1+INC, ..., LIM_2] (assuming LIM_2 = LIM_1 + m*INC for some integer m); then the for

loop successively assigns an element of the array to VARCOUNTER. (We note that the argument of
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the for loop must be a row single-index array, not a column single-index array. We revisit this
point in our discussion of the for statement using double-index arrays.)

5.2 Characters and Character Single-Index Arrays (Strings)

Our focus is on numerical methods and hence we will not have too much demand for character
and string processing. However, it is good to know the basics, and there are instances — typically
related to more sophisticated applications of software system management, “codes that write codes”
(or less dramatically, codes some lines of which can be modified from case to case), and also
symbolic manipulation — in which character concepts can play an important role. Note that
character manipulation and symbolic manipulation are very different: the former does not attribute
any mathematical significance to characters; the latter is built upon the former but now adds
mathematical rules of engagement. We consider here only character manipulation.

A character variable (an instance of the character data type), say c, must represent a letter
of numeral. As always, c ultimately must be stored (ultimately) by 0’s and 1’s. We thus need —
as part of the data type definition — an encoding of different characters in terms of 0’s and 1’s.
The most common such encoding, the original ASCII code, is a mapping from 8-bit words (binary
numbers) to the set of letters in the alphabet, numerals, punctuation marks, as well as some special
or control characters. (There are now many “extended” ASCII codes which include symbols from
languages other than English.)

We can create and assign a character variable as

>> c = '3'

c =

3

>> c_ascii = int8(c)

c_ascii =

51

>> c_too = char(c_ascii)

c_too =

3

>>

In the first statment, we enter the single-character data with quotes — which tells Matlab that
3 is to be interpreted as a character and not a number. We can then obtain the ASCII code
for the number 3 — which happens to be 51. We can then recreate the character variable c by
directly appealing to the ASCII code with the char command. Obviously, quotes are easier than
memorizing the ASCII code.

A “string” is simply a single-index array of character elements. We can input a string most
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easily with the quote feature:

>> pi_approx_str = '3.1416'

pi_approx_str =

3.1416

>> pi_approx_str(2)

ans =

.

>> pi_approx_str + 1

ans =

52 47 50 53 50 55

>>

We emphasize that pi_approx_str is not of type double and if we attempt to (say) add 1 to
pi_approx_str we get (effectively) nonsense: Matlab adds 1 to each element of the ASCII-
translation of the our string according to the rules of single–index array addition.

We can readily concatenate strings, for example:

>> leader = 'The value is '

leader =

The value is

>> printstatement = [leader,pi_approx_str,' .']

printstatement =

The value is 3.1416 .

>>

However, this is of limited use since typically we would know an approximation to π not as a string
but as double.

Fortunately, there are some simple conversion functions available in Matlab (and other pro-
gramming languages as well). The Matlab function num2str will take a floating point number
and convert it to the corresponding string of characters; conversely, str2num will take a string (pre-
sumably of ASCII codes for numerals) and convert it to the corresponding floating point (double)
data type. So for example,
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>> pi_approx_double = str2num(pi_approx_str)

pi_approx_double =

3.1416

>> pi_approx_str_too = num2str(pi_approx_double)

pi_approx_str_too =

3.1416

>>

This can then be used to create a print statement based on a floating point value (e.g., obtained
as part of our numerical calculations):

>> printstatement_too = [leader,num2str(pi_approx_double),' .']

printstatement_too =

The value is 3.1416 .

>>

In actual practice there are higher level printing functions (such as fprintf and sprintf) in
Matlab built on the concepts described here. However, the above rather low-level constructs can
also serve, for example in developing a title for a figure which must change as (say) the time to
which the plot corresponds changes.

5.3 Double-Index Arrays

5.3.1 Concept

Double-index arrays (and more generally, multi-index arrays), are extremely important in the
implementation of numerical methods. However, conceptually, they are quite similar to single-
index arrays, and inasmuch this section can be rather short: we just consider the “differential
innovation.” In fact, as we will see shortly, a double-index array really is a single-index array as
far as internal representation in memory or “address space”: the two indices are just a convenient
way to access a single-index array.

Reference by two indices (or three indices,. . . ) can be convenient for a variety of reasons: in
a 10× 10 structured rectilinear mesh, the two indices might represent the location of a point in a
“Cartesian” grid — at which we store, in each array location, say the value of the temperature field
(a 10× 10 array); in an unstructured three-dimensional mesh (or a Monte Carlo random sample),
the first index might represent the label/order of a point within a sample of say length 1000, and the
second index might represent the spatial coordinate direction (e.g., 1, 2, 3 for the x, y, z directions)
— at which we store, in the array locations, the coordinate of the point (a 1000 × 3 array); and
most notably, the two indices might represent the rows and columns of an m×n matrix — at which
we store the matrix values (an m × n array). (We discuss matrices in depth later.) Recall that
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the indices play the role of the independent variable and the array values the role of the dependent
variable.

For a double-index array, just as for a single-index array, we first introduce a variable name,
array name, but now this double-index array is associated to m × n elements: we may think of
a double-index arrays as m rows by n columns, as we shall visualize shortly. We then index this
array name to access any particular element of the array: in particular, array name(i,j) is the
pointer to element i, j of the array. As always, the pointer is the location in memory at which we
store the value of the array.

In fact, even this double-index array is stored at contiguous locations in memory. (It is in
this sense that a double-index array is internally equivalent to a single-index array; we shall take
advantage of this equivalence later.) Matlab stores a double-index array as “first address fastest”:
array name(1,1),...,array name(m,1),array name(1,2),...,array name(m,2),...,
array name(m,n). As for the single-index case, it suffices to to pass to a function simply the
variable array name — the address of the first element — as the addresses of all other elements can
then be readily deduced (in practice, thanks to appropriate header information). And of course,
as for a single-index array, we will endeavor to similarly define operations on the entire array, as
represented by array name, rather than treat each index separately.

A note on nomenclature: we can also think of single-index and double-index arrays as “one-
dimensional” and “two-dimensional” arrays. However, we will reserve “dimension” for the linear
algebra sense: a vector with n entries is a member of n-dimensional space. Hence the linear algebra
“dimension” is analogous to the Matlab length. (And just to make sure this paragraph, in
attempting to avoid confusion, is sufficiently confusing: to avoid confusion of Matlab length

with the linear algebra “length” of a vector we shall refer to the latter as the “norm” of the vector.
We return to this point in Unit 3.)

5.3.2 Assignment and Access

We start with a simple example and then explain the syntax.

>> A = [1,2,3;4,5,6]

A =

1 2 3

4 5 6

>> size_of_A = size(A)

size_of_A =

2 3

>> A(2,2)

ans =

5

>>
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We see that a comma separates elements within a row, and a semicolon separates different rows.
The size function returns a single-index array of length 2: the first element is the number of rows
— the limit for the first index — and the second element is the number of columns — the limit for
the second index. Finally, we see that we can access individual elements of A as (say) A(2,2). Of
course our interpretation as rows and columns is just an artifice — but a very useful artifice which
we invoke on many many occasions — for visualization and interpretation.

Our row single-index array is special case of double-index array:

>> X = [1,3,4]

X =

1 3 4

>> size(X)

ans =

1 3

>> X(1,3)

ans =

4

>>

And we can now systematically introduce a column single-index array as

>> X_col = [1;3;4]

X_col =

1

3

4

>> size(X_col)

ans =

3 1

>> X_col(3,1)

ans =

4
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>>

Note in this case each row is of length 1 so we require no comma delimiters. Note operations in
Matlab require arrays of similar size, so always make sure that pairs of single-index array operands
are both row arrays or both column arrays. This is best ensured by initialization of the array with
zeros and consistent assignment.

The transpose operation is very convenient: it “flips” the two indices. Hence

>> A_transp = A'

A_transp =

1 4

2 5

3 6

>> X'

ans =

1

3

4

>> size(X')

ans =

3 1

>>

Rows become columns and columns become rows. (In fact, the transpose operator is a special case
of a more general Matlab function reshape which allows us to “resize” an array.)

As always, the reader should mentally note the more expanded code which effects any particular
operation to make sure the operation is well understood: in this case

>> for i = 1:size(A,1)

for j = 1:size(A,2)

A_transp_too(j,i) = A(i,j);

end

end

>> A_transp_too

A_transp_too =

1 4

2 5
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3 6

>>

Note that size(A,1) and size(A,2) conveniently return the first element and second element of
size(A).

As for single-index arrays, we can directly assign an entire double-index array: B = A creates a
new array B identical to A in terms of size as well as values; we may also assign or re-assign any
particular element of the array as selected by the index — for example, B(1,1) = 0. Oftentimes
we can create the desired array as an assignment plus modification of an existing array.

We may also create an array with a “double” for loop:

>> m = 2;n = 3;

>> A = zeros(m,n);

>> for i = 1:size(A,1)

for j = 1:size(A,2)

A_too(i,j) = j + (i-1)*size(A,2);

end

end

>> A_too

A_too =

1 2 3

4 5 6

>>

Note initialization of multi-index arrays is particularly important since these arrays tend to be
larger and memory management even more of an issue.

However, concatenation also works for multi-index arrays and can be very effective.

>> R1 = [1,2,3]; R2 = [4,5,6];

>> C1 = [1;4]; C2 = [2;5]; C3 = [3;6];

>> A_too_too = [R1; R2]

A_too_too =

1 2 3

4 5 6

>> A_too_too_too = [C1,C2,C3]

A_too_too_too =

1 2 3

4 5 6

>> A_four_times = [A_too, A_too; A_too, A_too]
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A_four_times =

1 2 3 1 2 3

4 5 6 4 5 6

1 2 3 1 2 3

4 5 6 4 5 6

>> A_four_times_also = [[A_too;A_too],[A_too;A_too]]

A_four_times_also =

1 2 3 1 2 3

4 5 6 4 5 6

1 2 3 1 2 3

4 5 6 4 5 6

>> A_four_times_expand_by_one = [A_four_times,[C1;C2]; [R1,R2],0]

A_four_times_expand_by_one =

1 2 3 1 2 3 1

4 5 6 4 5 6 4

1 2 3 1 2 3 2

4 5 6 4 5 6 5

1 2 3 4 5 6 0

>>

The general procedures for concatenation are somewhat difficult to succinctly describe — we must
always combine entities that “match” in the direction in which we concatenate — but the cases
above include most instances relevant in numerical methods.

We can also do indirect addressing for double-index arrays, as we illustrate on our array
A_four_times. In particular, let ind1vec and ind2vec be single-index arrays given by (say)

>> ind1vec = [2,3]

ind1vec =

2 3

>> ind2vec = [2:4]

ind2vec =

2 3 4

>>
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Then

>> extracted = A_four_times(ind1vec,ind2vec)

extracted =

5 6 4

2 3 1

>>

which in fact is implemented as

>> for i = 1:length(ind1vec)

for j = 1:length(ind2vec)

extracted_too(i,j) = A_four_times(ind1vec(i),ind2vec(j));

end

end

>> extracted_too

extracted_too =

5 6 4

2 3 1

>>

This can be very useful for extracting rows and columns, as we now describe.
In particular, to extract say row 1 or column 2 of A, we need only do

>> R1_too = A(1,1:size(A,2))

R1_too =

1 2 3

>> C2_too = A(1:size(A,1),2)

C2_too =

2

5

>>

In fact, Matlab conveniently provides a function end which, when it appears in the place of kth

index (k = 1 or k = 2), evaluates to (say for our array A) size(A,k). We then can write more
succinctly
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>> R1_too_too = A(1,1:end)

R1_too_too =

1 2 3

>> R1_too_too_too = A(1,:)

R1_too_too_too =

1 2 3

>>

where in the last line we see that Matlab admits even further abbreviation: a colon in the place
of an index is interpreted as 1:end for that index.

Finally, there is simple way to create a single-index array from a multi-index array:

>> A_single_index = A(:)

A_single_index =

1

4

2

5

3

6

>>

Note that it is probably not a good idea to take advantage of the single-index form above as the
shape of this single-index array is rather sensitive to how we specify the index argument. (The
colon translation is not unique for a single-index array and in fact is interpreted as a particular
choice of reshape.) We introduce the above just to illustrate the concept of “all arrays are really
single-index arrays” and “first index fastest (or column major)” ordering, and also because the
single-index reshape is convenient sometimes for certain global operations (see below).

5.3.3 Operations

As regards arithmetic operations, multi-index arrays “behave” in exactly the same fashion as single-
index arrays: -, +, .*, ./, .^ all perform the necessary element-by-element operations. Indeed,
in these operations, the double-index array is essentially treated as a single-index array. (Note that
for example 3.2*A multiplies each element of A by 3.2.)The same is true for relational and logical
operations (as well as find): the operations are performed element by element and the output is a
multi-index array of the same size as the two operands.

For data operations, there are more options. Whenever possible, the easiest is to effect the
operation in terms of single-index arrays. The colon operator permits us to find the minimum over
(say) the first row as
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>> min(A(1,:))

ans =

1

>>

or in a similar fashion the minimum over any given column.
If we wish to find the minimum over all elements of the entire array, we can interpret the

multi-index array in its “underlying” single-index form: for example,

>> A = [1,2,3;4,5,6]

A =

1 2 3

4 5 6

>> min(A(:))

ans =

1

>>

In most cases, the above simple constructs suffice.
However, it is also easy to apply (say) the min function over the first index to yield a row array

which contains the minimum over each column, or to perform the min function over the second
index to yield a column array which contains the minimum over each row:

>> min(A,[],1)

ans =

1 2 3

>> min(A,[],2)

ans =

1

4

>>

Note the second null argument in min above will be explained shortly, when we discuss functions
in greater detail. Essentially, min takes three arguments, but the second argument is optional and
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hence if it is not set then Matlab will not complain. Nulls are useful for optional inputs or for
inputs which can be set to default values.

In general the default with Matlab — when “single-index” functions are applied to multi-index
arrays — is to perform the operation over columns to yield a row:

>> min(A)

ans =

1 2 3

>>

Note that min(A) is not the same as min(A(:)) in that A is of size [2,3] whereas A(:) is auto-
matically “reshaped” to be a single-index array.

We take this opportunity to revisit the for loop. Let’s say that we wish to find the number of
two-vectors in an 2×m array which reside in the first quadrant. We can write the for loop based
on an index as

twovecs = [[1;-1],[1;1],[-3;1],[.2;.5]];

num_in_quad_1 = 0;

for j = 1:size(twovecs,2)

if( twovecs(1,j) >=0 && twovecs(2,j) >=0 )

num_in_quad_1 = num_in_quad_1 + 1;

end

end

num_in_quad_1

which will work just fine. However, we can also use for our “counter” not an index but rather the
data itself, as in

twovecs = [[1;-1],[1;1],[-3;1],[.2;.5]];

num_in_quad_1 = 0;

for vec = twovecs;

if( vec(1) >= 0 && vec(2) >= 0)

num_in_quad_1 = num_in_quad_1 + 1;

end

end

num_in_quad_1

which also works just fine. In this second form, within the for loop, the loop argument vec is
first set to the first column of twovecs, [1;-1], vec is then set to the second columns of twovecs,
[1;1], and so on. It is important to note that, for any double-index array, the loop argument
is set to each column of the array and the loop is executed the number of column times. (In
particular, the behavior is independent of the column-grouped assignment of twovecs used in this
example.) This also implies that, if a column single-index array is used for the loop construction as
in for i = [1:10]', then i would be set to the vector [1:10]' and the loop is executed just one
time. Note that the behavior is completely different from the case of providing a row single-index
array, as in for i = 1:10.
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Finally, this seems a good place to note that there are many thousands of Matlab functions
and for each oftentimes quite a few options and optional arguments. If you find that you are doing
a particular relatively simple operation many times — or a rather complicated operation perhaps
only a few times — it is perhaps worthwhile to search for a syntactically succinct and efficient
Matlab built-in function which might do the trick. However, in many other cases it will be more
effective to write your own code. Matlab built-in functions are a means and not an end.

5.4 Line Plotting

We include line plotting in this chapter as we now have the necessary pieces: single-index arrays,
and characters. We do not present all the various options since these can readily be found by
>> help plot or the documentation. However, we do provide a template which you can use and
adapt accordingly.

%A sample plotting script - by Justin Miller

%----------- linear-linear plotting, sine and cosines ---------------

L = 2*pi; %Define the ending angle

N = 100; %Define number of angle segments

xpts = (L/N)*[0:N]; %Define a set of angles for plotting (in radians)

%This could also be done using

%xpts = linspace(0,L,N+1);

sin_values = sin(xpts); %Sine vector of each angle

cos_values = cos(xpts); %Cosine vector of each angle

figure %Create a figure window to draw the plots

plot(xpts,sin_values,'b-') %Plot the sine values in a blue line

hold on %Hold the current figure when plotting

%the next figure

plot(xpts,cos_values,'r--') %Plot the cosine values in a red dashed line

h_sincos_plot = gcf; %Get the handle of the current figure

ha_sincos_axis = gca; %Get the handle of the current axis

axis([0,xpts(end),-1.1,1.1]) %Set the x and y axes [xmin,xmax,ymin,ymax]

set(ha_sincos_axis,'XTick',0:pi/2:2*pi) %Set the location of the x tick marks

set(ha_sincos_axis,'YTick',-1:0.2:1) %Set the location of the y tick marks

set(ha_sincos_axis,'XTickLabel',{'0','pi/2','pi','3*pi/2','2*pi'})
%Set the names of each x tick mark
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xlabel('Angle (radians)') %Give a label name to the x axis

ylabel('Trigonomic output') %Give a label name to the y axis

title(['Plot of sin and cos from x = ',num2str(xpts(1)), ...

' to x = ',num2str(xpts(end))])
%Give the figure a title

legend('sin','cos','location','best') %Provide a legend and tell matlab to place

%it in the best location

saveas(h_sincos_plot,'sin_cos.fig') %Take the figure specified by handle

%"h_sincos_plot" and save it

%as "sin_cos.fig" in the working directory

%----------- log-linear plotting, exponential ---------------

clear all

L = 5;

N = 100;

x = (L/N)*[0:N];

y = 2*exp(x);

figure

semilogy(x,y,'b-') %Create a plot where only the y axis is in log scale

%semilogx would plot only the x axis in log scale

xlabel('x')
ylabel('y')

title(['Log-Linear plot of y = 2*exp(x) from x = ',num2str(x(1)), ...

' to x = ',num2str(x(end))])

saveas(gcf,'exp.fig')

%----------- log-log plotting, polynomials ---------------

clear all

L = 10^2;

N = 100;

x= (L/N)*[0:N];

y = 2*(x.^3);

figure
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loglog(x,y,'b-') %Create a plot where both axes are in log scale

xlabel('x')
ylabel('y')

title(['Log-Log plot of y = 2x^3 from x = ',num2str(x(1)), ...

' to x = ',num2str(x(end))])

saveas(gcf,'poly.fig')

Matlab also has extensive “3-D” plotting capabilities.
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Chapter 6

Functions in Matlab

6.1 The Advantage: Encapsulation and Re-Use

As you know, a mathematical function is a “rule” which given some inputs (or arguments), returns
an output or outputs. A Matlab function (or a function in any programming language), is very
similar: the function, given some inputs/arguments, returns an output or outputs. There are two
main reasons that functions are so important and useful as a programming construct: re-use and
encapsulation. First, re-use: if we perform a particular set of operations — for example, calculation
of sin(x) for given x — we prefer not to re-write this same code over and over again. Rather, we
write it once and then use it over and over again, with enormous savings. Second, encapsulation: a
user can take advantage of the function, and the “function” it performs — from inputs to outputs —
without knowing how this function has been implemented or what is “inside” the code; from another
perspective, what happens inside the function does not affect the user’s higher level objectives —
the output is the entire “effect” (we discuss this further below).

We have already taken extensive advantage of both re-use and encapsulation: we have used
many Matlab built-in functions in all of our examples above; and we have used these functions
not only without knowing “what is inside” but in fact without even knowing how a function is
defined syntactically. In actual practice, it would not be good to proceed in quite such a trusting
fashion.

6.2 Always Test a Function

Functions have serious implications as regards the correctness of results and the control of errors.
From the positive side, the fact that the program is re-used many times, and developed once
intentionally for re-use, means that typically most bugs will have been identified and fixed. From
the negative side, encapsulation means that the user typically will not know what is inside, and
hence can not personally vouch for correctness. The latter is, fortunately, quite easy to address in
a reasonable if not rigorous fashion: confronted with any new function, it is alway worthwhile to
consider several test cases — for which you know the answer — to confirm correct behavior; the
more authoritative the source, the more the function has been used, the simpler the task, perhaps
the less tests required. But remember that you are not just testing the code, you are also testing
your understanding of the inputs and outputs.
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Note that is often difficult to find a test case in which we know the answer. In particular in
the numerical context there is an artifice by which to side-step this issue. In particular, it is often
possible to posit the answer and then easily determine the question (which yields this answer).
For example, if we wish to test a code which finds the roots of a fourth-order polynomial, for any
particular fourth-order polynomial it is not easy to deduce the correct answer (or we would not
need the code in the first place). However, it is easy to posit the four roots — the answer — and
multiply out to obtain the polynomial with these roots — the question. We then test the code by
going backwards (in fact forwards), and verifying that the question leads to the answer. Note such
a test does not confirm that the code works in all cases; in fact, we have only confirmed one case.
The numerical approach (or even the logic of the code) could thus be flawed in certain or even many
instances. However, we have confirmed that we are using the code correctly, that we understand
what in principle should happen, and that in at least one (or several) nontrivial cases that what
should happen does indeed happen. You should always test a new function in this fashion.

We emphasize that our discussion here applies both to the many Matlab “built-in” functions
— functions bundled with the Matlab core — and any third-party of user-defined function. Also
in the remainder of this chapter many of the details are relevant both to built-in and user functions
— for example, how to call a multi-output, multi-input function; however some details, such as
how to create a function, are obviously only important for user-defined functions.

6.3 What Happens in a Function Stays in a Function

When we launch a script (or a function) from the command window we may view this program
as the “main” program (to use a somewhat archaic term). The (command-window) workspace of
this main program is the set of variables of which the main program is aware (and which have
been assigned at some point during the execution). When this main program calls a function, say
function name, we can view the process as the creation of a second virtual processor, as shown
in Figure 6.1 2. In particular, it is critical to note that the two workspaces — the variables
assigned by the main program and by function name — are distinct: the main program is unaware
of the variables in workspace function name and function name is unaware of the variables in
workspace command-window. The only connection between these two virtual processes are the
inputs and outputs: function name receives the inputs from the main program, and the main
program receives the outputs from function name; note the direction of the arrows — inputs are not
affected by function name. Furthermore, workspace function name will disappear when execution
of function name is completed and there will be no permanent record of workspace function name
(unless of course you have written data to a file).

We make several comments. First, there are in fact ways to share variables between the
workspaces (global variables), however it is best to avoid global variables if possible since with
proliferation they become a sort of programming duct tape. Second, although our picture is for a
main program and a function, the same picture applies when one function calls another function
(which may call another function, . . . ). In such a case the left virtual processor is associated to
the “calling program” more generally (e.g., a calling function) and the right virtual processor is
associated to the “called function.” Again, the critical point is that the workspaces of these two
functions are distinct. Third, our picture of Figure 6.1 2 is a good mental model, but not necessarily
representative of actual implementation. It is perhaps more realistic to envision an operation in
which the “state” of the calling program is saved, the called function “takes over” the processor,
and then the calling program is moved back in when the called function has returned control. This
picture suggests that it is rather expensive to call a function, and that is indeed the case in partic-
ular in Matlab ; for this reason, it is good to construct functions which, within their designated
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Figure 6.1: Two Virtual Processors

task, compute as much data as possible with each call — for example, operate on arrays rather
than scalars — so as to minimize the number of calls. (Note this is not a recommendation to put
many different unrelated tasks or many lines of instructions within a single function since obviously
this compromises re-use, encapsulation, and efficiency. You do not want to do too much; you just
want to operate on as much data as possible.) We discuss this further below.

6.4 Syntax: Inputs (Parameters) and Outputs

Different languages require different syntax for the definition and use (call) of a function. We
first consider the former and then the latter. By way of example, we present below the function
x_to_the_2p which given x evaluates the function (in this case, literally a mathematical function)
x2p.

function [ value ] = x_to_the_2p( x, p )

value = x.^(2*p);

end

The first line declares that this script is a function, that the output will be returned in a variable
value, that the function name — and also the name of the .m file in which the function is stored
— is x_to_the_2p, and that the function takes two arguments, x and p. Next follows the body of
the function which produces the output, value. The function closes with an end statement.

We note that our little function takes a single-index (or even multi-index) array as input. In
general, as described above, function calls can be expensive, and hence it is best to generate as
much data as possible with each call so as to minimize the number of calls required. For that
reason, it is often advantageous to define functions such that the (appropriate) inputs and outputs
are arrays rather than scalars. (In our example above, value will be of the same size as x. This is
realized automatically through the assignment statement.) Of course scalars will be a special case
of arrays and hence the function may still be called with scalar arguments.
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More generally the syntax for a function with J inputs and K outputs is

function [output 1, output 2, . . . , output K] = function name(input 1, input 2, ..., input J)
BODY of FUNCTION
end

Note that we may have not only multiple inputs but also multiple outputs. All outputs must
be defined within the BODY of FUNCTION or Matlab will complain.

The operation of the function is fairly clear. First our little example (which we call here from the
command window, but of course could also be called from a “main” program or another function
program):

>> clear all

>> y = x_to_the_2p( [1,2], 2)

y =

1 16

>> value

??? Undefined function or variable 'value'.
>>

Note in the above our function is evaluated and the output assigned to the variable y. The variable
value is internal to the function and the calling program — in this case the function is called from
the command-line mode and hence the calling program variables are simply the workspace — has
no knowledge of this “dummy” variable.

More generally, we call a function with J outputs and K inputs as [output 1, output 2, . . . ,
output J] = function name(input 1, input 2, . . . , input J); . (Note that if we omit the semi-
colon then our outputs will all be displayed in the command window.) Upon being called by
the calling program, function name executes BODY of FUNCTION for the values of the input
arguments passed to function name and then upon reaching the end statement function name
returns the outputs — and control — to the calling program. Note is possible to force an early
return of a function (to the calling program) before the end statement is encountered with a return

statement within the BODY of FUNCTION .
It is possible to request only the first K ′ outputs as [output 1, output 2, . . . , output K′] =

function name(input 1, input 2, . . . , input J);. Particularly useful is the case in which you only
require the first output, as in this case you can directly use the function through composition within
a larger expression with the intermediary of assignment. Up to this point, with the exception of min,
we have considered only single-output functions (or in any event only asked for the first output) in
our examples — and for precisely this composition reason. Another example here:

>> z = x_to_the_2p( [1,2], 2) + [2,3]

z =

3 19

>>
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Note it is important to distinguish between multiple outputs and arrays. An array corresponds to
a particular output, not multiple outputs; in our example above, there is a single output, which
happens to be a single-index array of length 2.

It is also possible to call a function without all inputs specified, either with [] (null) entries or
simply with a truncated list — the first J ′ inputs. However, in this case, it is important that within
the function all inputs that will be encountered are defined. In this regard, the Matlab function
isempty is useful (for nulls) and the Matlab nargin is useful (for truncated argument lists)
in order to detect any “unset” inputs which must be assigned to default values. (Note different
programming languages have different mechanisms for dealing with defaults.) There is also an
nargout Matlab function useful in tailoring the outputs provided.

6.5 Functions of Functions: Handles

It is often the case that we wish to pass a function to a function: in other words, we wish a called
function to be able to operate not just on different data but also on different “input functions.” To
make matters more concrete (and avoid using the word function too many times with reference to
different entities), consider the function f_o_diff:

function [ value ] = f_o_diff ( func, x, delta_x )

value = (func (x + delta_x) - func (x))./delta_x;

end

This little function calculates the first-order finite difference approximation to a function func
at the point x for a given segment-length delta_x. Obviously we could include the definition of
func within f_o_diff, but then we would need to have a different derivative function for each
function we wished to differentiate. In contrast, f_o_diff can be re-used for any function func
— clearly much preferred. (Note we could now perform a much more systematic investigation of
round-off error; in our earlier discussion we were not yet armed with functions, or arrays.)

To call f_o_diff from a calling program is quite simple with only one wrinkle within the
Matlab syntax. In particular, to pass the input function func from the calling program to the
called function (f_o_diff) we do not wish to actually pass the function but rather a kind of
pointer — or handle — to where these instructions are stored for use by any (calling) program.
(The description here is virtual — a mental model which provides the right intuition. In general,
what and how a programming language passes within a function call can be a rather complicated
issue.) To create a handle for the function func — in other words, to find the pointer to (say) the
beginning of the set of instructions which define func — we put an “at sign” (@) in front of func
as in @func. So for example, to apply f_o_diff to the Matlab function sin we can either do

>> sin_handle = @sin;

>> fprime = f_o_diff( sin_handle, [pi/4, pi/2], .01)

fprime =

0.7036 -0.0050

>>
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of more directly

>> fprime_too = f_o_diff( @sin, [pi/4, pi/2], .01)

fprime_too = 0.7036 -0.0050

>>

Note handles can also be created for other kinds of objects, for example (graphics) figures.
It is often the case that a function func we wish to pass to (say) function name is somehow

more general — defined with respect to more inputs — than the functions which function name
expects. In Matlab there is an easy way to deal with this common occurrence, which we now
discuss.

6.6 Anonymous (or In-Line) Functions

A Matlab “anonymous” (or in-line) function is a one-liner with a single output and multiple
inputs that can be defined directly in the command window or indeed on the fly in any program
(possibly another function). An anonymous function has a very important property: any variables
not defined as inputs will be assigned the current values — at the time the anonymous function
is created — within the “variable space” (e.g., workspace) of the calling program (e.g., command
window).

We provide a concrete example. In particular, we define an anonymous function

p = 2;

x_to_the_2p_anon = @(x) x_to_the_2p(x,p);

which is identical to x_to_the_2p but now a function of single variable, x, rather than two variables.
The value of p is frozen to 2, though of course more generally we can replace p = 2 with any
expression by which to evaluate p in terms of other variables.

To call our anonymous function, we do (following the definition above):

>> x_to_the_2p_anon([1,2])

ans =

1 16

>>

The above appears rather pointless, but it serves an important role in passing functions to other
functions — in particular in the context of Matlab in which there are many built-in’s that require
function inputs of a particular form.

Let’s say that we wish to apply our function f_o_diff to our function x_to_the_2p. But
f_o_diff is expecting a function of a single input, x, whereas x_to_the_2p has two inputs — and
two necessary inputs, since without p we can not evaluate x_to_the_2p. This conundrum is easily
resolved with inline functions:
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>> p = 2;

>> x_to_the_2p_anon = @(x) x_to_the_2p(x,p);

>> z = f_o_diff( x_to_the_2p_anon, [1,2], .01 )

z =

4.0604 32.2408

>>

Note that for an in-line function the function “name” is in fact the function handle (hence we need
no @ in front of the x_to_the_2p_anon in the above) — the name and handle for a single-line
function coalesce.

6.7 String Inputs and the eval Function

We note that on occasion we do want the actual function to change — the instructions to be
evaluated to change — as we change the inputs. This can be done with the eval function. The
function eval takes as input a string and returns the evaluation of this string given current values
for the various variables present in the string; in essence, eval is in the interpreter.

For example, we can create the function

function [ value ] = f_o_diff_eval ( fstring, x, delta_x )

z = x;

f_x = eval(fstring);

z = x + delta_x;

f_x_plus = eval(fstring);

value = (f_x_plus - f_x)./delta_x;

end

which is our finite difference function but now with a string input fstring to specify the function
to be differentiated. Note that eval(fstring) will simply evaluate the expression fstring given
the current values of the workspace f o diff eval.

We now call f_o_diff_eval:

>> fstring = 'z.^4';
>> f_o_diff_eval(fstring,[1,2],.01)

ans =

4.0604 32.2408

>>

which gives us the same result as previously. Note that f_x = eval(fstring) in f_o_diff_eval
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for fstring as given is equivalent to f_x = z.^4 but since in the previous line we set z = x then
f_x is assigned x.^4 as desired. Similarly, two lines down, f_x_plus is assigned the appropriate
value since we have changed z to be z = x + delta_x. The user can now specify any desired
function (expressed in terms of z) without creating a Matlab function (or anonymous function).

In actual practice there are certainly better ways to accomplish these goals. The purpose of
this little section is only to illustrate that on occasions in which we would like to adapt the actual
code there are some simple ways to implement this feature.
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Chapter 7

Integration

7.1 Integration of Univariate Functions

Our objective is to approximate the value of the integral

I =

∫ b

a
f(x) dx ,

for some arbitrary univariate function f(x). Our approach to this integration problem is to ap-
proximate function f by an interpolant If and to exactly integrate the interpolant, i.e.

I =
N−1∑
i=1

∫
Si

f(x) dx ≈
N−1∑
i=1

∫
Si

(If)(x) dx ≡ Ih . (7.1)

Recall that in constructing an interpolant, we discretize the domain [a, b] into N−1 non-overlapping
segments, delineated by segmentation points xi, i = 1, . . . , N , as illustrated in Figure 7.11 Then,
we construct a polynomial interpolant on each segment using the function values at the local
interpolation points, x̄m, m = 1, . . . ,M . These local interpolation points can be mapped to global
function evaluation points, x̃i, i = 1, . . . , Neval. The quality of the interpolant is dictated by its type
and the segment length h, which in turn governs the quality of the integral approximation, Ih. The
subscript h on Ih signifies that the integration is performed on a discretization with a segment length
h. This integration process takes advantage of the ease of integrating the polynomial interpolant
on each segment.

Recalling that the error in the interpolation decreases with h, we can expect the approximation
of the integral Ih to approach the true integral I as h goes to 0. Let us formally establish the
relationship between the interpolation error bound, emax = maxi ei, and the integration error,

1For simplicity, we assume h is constant throughout the domain.
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Figure 7.1: Discretization of a 1d domain into N − 1 (here N = 5) segments of length h.

|I − Ih|.

|I − Ih| =

∣∣∣∣∣∣
N−1∑
i=1

∫
Si

(f(x)− (If)(x)) dx

∣∣∣∣∣∣ (7.2)

≤

∣∣∣∣∣∣
N−1∑
i=1

∫
Si

|f(x)− (If)(x)| dx

∣∣∣∣∣∣ (7.3)

≤

∣∣∣∣∣∣
N−1∑
i=1

∫
Si

ei dx

∣∣∣∣∣∣ (local interpolation error bound on Si) (7.4)

≤
N−1∑
i=1

ei h (definition of h) (7.5)

≤ emax

N−1∑
i=1

h (definition of emax) (7.6)

= (b− a)emax . (7.7)

We make a few observations. First, the global error in the integral is a sum of the local error
contributions. Second, since all interpolation schemes considered in Section 2.1 are convergent
(emax → 0 as h → 0), the integration error also vanishes as h goes to zero. Third, while this
bound applies to any integration scheme based on interpolation, the bound is not sharp; i.e., some
integration schemes would display better convergence with h than what is predicted by the theory.

Recall that the construction of a particular interpolant is only dependent on the location of the
interpolation points and the associated function values, (x̃i, f(x̃i)), i = 1, . . . , Neval, where Neval is
the number of the (global) function evaluation points. As a result, the integration rules based on
the interpolant is also only dependent on the function values at these Neval points. Specifically, all
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integration rules considered in this chapter are of the form

Ih =

Neval∑
i=1

wif(x̃i) ,

where wi are the weights associated with each point and are dependent on the interpolant from
which the integration rules are constructed. In the context of numerical integration, the function
evaluation points are called quadrature points and the associated weights are called quadrature
weights. The quadrature points and weights together constitute a quadrature rule. Not too sur-
prisingly considering the Riemann integration theory, the integral is approximated as a linear
combination of the function values at the quadrature points.

Let us provide several examples of integration rules.

Example 7.1.1 rectangle rule, left
The first integration rule considered is a rectangle rule based on the piecewise-constant, left-
endpoint interpolation rule considered in Example 2.1.1. Recall the interpolant over each segment
is obtained by approximating the value of the function by a constant function that matches the
value of the function at the left endpoint, i.e., the interpolation point is x̄1 = xi on segment
Si = [xi, xi+1]. The resulting integration formula is

Ih =
N−1∑
i=1

∫
Si

(If)(x) dx =
N−1∑
i=1

∫
Si

f(xi) dx =
N−1∑
i=1

hf(xi) ,

where the piecewise-constant function results in a trivial integration. Recalling that the global
function evaluation points, x̃i, are related to the segmentation points, xi, by

x̃i = xi, i = 1, . . . , N − 1 ,

we can also express the integration rule as

Ih =

N−1∑
i=1

hf(x̃i) .

Figure 7.2(a) illustrates the integration rule applied to f(x) = exp(x) over [0, 1] with N = 5. Recall
that for simplicity we assume that all intervals are of the same length, h ≡ xi+1−xi, i = 1, . . . , N−1.

Let us now analyze the error associated with this integration rule. From the figure, it is clear
that the error in the integrand is a sum of the local errors committed on each segment. The local
error on each segment is the triangular gap between the interpolant and the function, which has
the length of h and the height proportional to f ′h. Thus, the local error scales as f ′h2. Since there
are (b− a)/h segments, we expect the global integration error to scale as

|I − Ih| ∼ f ′h2(b− a)/h ∼ hf ′ .

More formally, we can apply the general integration error bound, Eq. (7.7), to obtain

|I − Ih| ≤ (b− a)emax = (b− a)h max
x∈[a,b]

|f ′(x)| .

In fact, this bound can be tightened by a constant factor, yielding

|I − Ih| ≤ (b− a)
h

2
max
x∈[a,b]

|f ′(x)| .
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Figure 7.2: Rectangle, left-endpoint rule.

Figure 7.2(b) captures the convergence behavior of the scheme applied to the exponential function.
As predicted by the theory, this integration rule is first-order accurate and the error scales as O(h).
Note also that the approximation Ih underestimates the value of I if f ′ > 0 over the domain.

Before we proceed to a proof of the sharp error bound for a general f , let us analyze the
integration error directly for a linear function f(x) = mx + c. In this case, the error can be
expressed as

|I − Ih| =
N−1∑
i=1

∫
Si

f(x)− (If)(x) dx =
N−1∑
i=1

∫ xi+1

xi

(mx− c)− (mxi − c) dx

=
N−1∑
i=1

∫ xi+1

xi

m · (x− xi) dx =
N−1∑
i=1

1

2
m(xi+1 − xi)2

=
1

2
mh

N−1∑
i=1

h =
1

2
mh(b− a) ,

Note that the integral of m · (x− xi) over Si is precisely equal to the area of the missing triangle,
with the base h and the height mh. Because m = f ′(x), ∀x ∈ [a, b], we confirm that the general
error bound is correct, and in fact sharp, for the linear function. Let us now prove the result for a
general f .

Proof. By the fundamental theorem of calculus, we have

f(x)− (If)(x) =

∫ x

xi

f ′(ξ) dξ, x ∈ Si = [xi, xi+1] .
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Integrating the expression over segment Si and using the Mean Value Theorem,∫
Si

f(x)− (If)(x) dx =

∫ xi+1

xi

∫ x

xi

f ′(ξ) dξ dx

=

∫ xi+1

xi

(x− xi) f ′(z) dx (Mean Value Theorem, for some z ∈ [xi, x])

≤
∫ xi+1

xi

|(x− xi) f ′(z)| dx

≤
(∫ xi+1

xi

|x− xi| dx
)

max
z∈[xi,xi+1]

|f ′(z)|

=
1

2
(xi+1 − xi)2 max

z∈[xi,xi+1]
|f ′(z)|

≤ 1

2
h2 max

x∈[xi,xi+1]
|f ′(x)| .

Summing the local contributions to the integral error,

|I − Ih| =

∣∣∣∣∣∣
N−1∑
i=1

∫
Si

f(x)− (If)(x) dx

∣∣∣∣∣∣ ≤
N−1∑
i=1

1

2
h2 max

x∈[xi,xi+1]
|f ′(x)| ≤ (b− a)

h

2
max
x∈[a,b]

|f ′(x)| .

·

Example 7.1.2 rectangle rule, right
This integration rule is based on the piecewise-constant, right-endpoint interpolation rule considered
in Example 2.1.2, in which the interpolation point is chosen as x̄1 = xi+1 on segment Si = [xi, xi+1].
This results in the integration formula

Ih =

N−1∑
i=1

∫
Si

(If)(x) dx =

N−1∑
i=1

∫
Si

f(xi+1) dx =

N−1∑
i=1

hf(xi+1) .

Recalling that global function evaluation points are related to the segmentation points by x̃i = xi+1,
i = 1, . . . , N − 1, we also have

Ih =

N−1∑
i=1

hf(x̃i) .

While the form of the equation is similar to the rectangle rule, left, note that the location of
the quadrature points x̃i, i = 1, . . . , N − 1 are different. The integration process is illustrated in
Figure 7.1.2
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Figure 7.3: Rectangle, right-endpoint rule.

This rule is very similar to the rectangle rule, left. In particular, the integration error is bounded
by

|I − Ih| ≤ (b− a)
h

2
max
x∈[a,b]

|f ′(x)| .

The expression shows that the scheme is first-order accurate, and the rule integrates constant
function exactly. Even though the error bounds are identical, the left- and right-rectangle rules
in general give different approximations. In particular, the right-endpoint rule overestimates I if
f ′ > 0 over the domain. The proof of the error bound identical to that of the left-rectangle rule.

While the left- and right-rectangle rule are similar for integrating a static function, they exhibit
fundamentally different properties when used to integrate an ordinary differential equations. In
particular, the left- and right-integration rules result in the Euler forward and backward schemes,
respectively. These two schemes exhibit completely different stability properties, which will be
discussed in chapters on Ordinary Differential Equations.

·

Example 7.1.3 rectangle rule, midpoint
The third integration rule considered is based on the piecewise-constant, midpoint interpolation
rule considered in Example 2.1.3. Choosing the midpoint x̄1 = (xi + xi+1) as the interpolation
point for each Si = [xi, xi+1], the integration formula is given by

Ih =
N−1∑
i=1

∫
Si

(If)(x)dx =
N−1∑
i=1

∫
Si

f

(
xi + xi+1

2

)
dx =

N−1∑
i=1

hf

(
xi + xi+1

2

)
.

Recalling that the global function evaluation point of the midpoint interpolation is related to the
segmentation points by x̃i = (xi + xi+1)/2, i = 1, . . . , N − 1, the quadrature rule can also be
expressed as

N−1∑
i=1

hf(x̃i) .

The integration process is illustrated in Figure 7.4(a).
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Figure 7.4: Rectangle, midpoint rule.

The error analysis for the midpoint rule is more involved than that of the previous methods.
If we apply the general error bound, Eq. (7.7), along with the interpolation error bounds for the
midpoint rule, we obtain the error bound of

|I − Ih| ≤ (b− a) emax ≤ (b− a)
h

2
max
x∈[a,b]

|f ′(x)| .

However, this bound is not sharp. The sharp error bound for the rectangle, midpoint integration
rule is given by

|I − Ih| ≤
1

24
(b− a)h2 max

x∈[a,b]
|f ′′(x)| .

Thus, the rectangle, midpoint rule is second-order accurate. The higher accuracy and convergence
rate of the midpoint rule are captured in the error convergence plot in Figure 7.4(b).

Before we prove the error bound for a general f , let us show that the rectangle rule in fact
integrates a linear function f(x) = mx+ c exactly. The integration error for a linear function can
be expressed as

I − Ih =

N−1∑
i=1

∫
Si

f(x)− (If)(x)dx =
N−1∑
i=1

∫ xi+1

xi

f(x)− f
(
xi + xi+1

2

)
dx

=
N−1∑
i=1

∫ xi+1

xi

(mx+ c)−
(
m

(
xi + xi+1

2

)
+ c

)
dx

=

N−1∑
i=1

∫ xi+1

xi

m

[
x− xi + xi+1

2

]
dx .

For convenience, let us denote the midpoint of integral by xc, i.e., xc = (xi + xi+1)/2. This allows
us to express the two endpoints as xi = xc − h/2 and xi+1 = xc + h/2. We split the segment-wise
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integral at each midpoint, yielding∫ xi+1

xi

m

[
x− xi + xi+1

2

]
dx =

∫ xc+h/2

xc−h/2
m(x− xc) dx

=

∫ xc

xc−h/2
m(x− xc) dx+

∫ xc+h/2

xc

m(x− xc) dx = 0 .

The first integral corresponds to the (signed) area of a triangle with the base h/2 and the height
−mh/2. The second integral corresponds to the area of a triangle with the base h/2 and the height
mh/2. Thus, the error contribution of these two smaller triangles on Si cancel each other, and the
midpoint rule integrates the linear function exactly.

Proof. For convenience, let us denote the midpoint of segment Si by xmi . The midpoint approxi-
mation of the integral over Si is

Inh =

∫ xi+1

xi

f(xmi) dx =

∫ xi+1

xi

f(xmi) +m(x− xmi) dx ,

for any m. Note that the addition of he linear function with slope m that vanishes at xmi does not
alter the value of the integral. The local error in the approximation is

|In − Inh | =
∣∣∣∣∣
∫ xi+1

xi

f(x)− f(xmi)−m(x− xmi) dx
∣∣∣∣∣ .

Recall the Taylor series expansion,

f(x) = f(xmi) + f ′(xmi)(x− xmi) +
1

2
f ′′(ξi)(x− xmi)2 ,

for some ξi ∈ [xmi , x] (or ξi ∈ [x, xm,n] if x < xmi). Substitution of the Taylor series representation
of f and m = f ′(xmi) yields

|In − Inh | =
∣∣∣∣∣
∫ xi+1

xi

1

2
f ′′(ξi)(x− xmi)2 dx

∣∣∣∣∣ ≤
∫ xi+1

xi

1

2
|f ′′(ξi)(x− xmi)2| dx

≤
(∫ xi+1

xi

1

2
(x− xmi)2 dx

)
max

ξ∈[xi,xi+1]
|f ′′(ξ)| =

(
1

6
(x− xmi)3

∣∣∣∣xi+1

x=xi

)
max

ξ∈[xi,xi+1]
|f ′′(ξ)|

=
1

24
h3 max

ξ∈[xi,xi+1]
|f ′′(ξ)| .

Summing the local contributions to the integration error, we obtain

|I − Ih| ≤
N−1∑
i=1

1

24
h3 max

ξi∈[xi,xi+1]
|f ′′(ξi)| ≤

1

24
(b− a)h2 max

x∈[a,b]
|f ′′(x)| .
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The rectangle, midpoint rule belongs to a family of Newton-Cotes integration formulas, the
integration rules with equi-spaced evaluation points. However, this is also an example of Gauss
quadrature, which results from picking weights and point locations for optimal accuracy. In partic-
ular, k point Gauss quadrature achieves the order 2k convergence in one dimension. The midpoint
rule is a one-point Gauss quadrature, achieving second-order accuracy.

·
In the above example, we mentioned that the midpoint rule — which exhibit second-order

convergence using just one quadrature point — is an example of Gauss quadrature rules. The
Gauss quadrature rules are obtained by choosing both the quadrature points and weights in an
“optimal” manner. This is in contrast to Newton-Cotes rules (e.g. trapezoidal rule), which is
based on equally spaced points. The “optimal” rule refers to the rule that maximizes the degree of
polynomial integrated exactly for a given number of points. In one dimension, the n-point Gauss
quadrature integrates 2n − 1 degree polynomial exactly. This may not be too surprising because
2n − 1 degree polynomial has 2n degrees of freedom, and n-point Gauss quadrature also gives 2n
degrees of freedom (n points and n weights).

Example 7.1.4 trapezoidal rule
The last integration rule considered is the trapezoidal rule, which is based on the linear interpolant
formed by using the interpolation points x̄1 = xi and x̄2 = xi+1 on each segment Si = [xi, xi+1].
The integration formula is given by

Ih =
N−1∑
i=1

∫
Si

(If)(x) dx =
N−1∑
i=1

∫
Si

[
f(xi) +

(
f(xi+1)− f(xi)

h

)
(x− xi)

]

=

N−1∑
i=1

[
f(xi)h+

1

2
(f(xi+1)− f(xi))h

]

=
N−1∑
i=1

1

2
h(f(xi) + f(xi+1)) .

As the global function evaluation points are related to the segmentation points by x̃i = xi, i =
1, . . . , N , the quadrature rule can also be expressed as

Ih =

N−1∑
i=1

1

2
h(f(x̃i) + f(x̃i+1)) ,

Rearranging the equation, we can write the integration rule as

Ih =
N−1∑
i=1

1

2
h(f(x̃i) + f(x̃i+1)) =

1

2
hf(x̃1) +

N−1∑
i=2

[
hf(x̃i)

]
+

1

2
hf(x̃N ) .

Note that this quadrature rule assigns a different quadrature weight to the quadrature points on the
domain boundary from the points in the interior of the domain. The integration rule is illustrated
in Figure 7.5(a).

Using the general integration formula, Eq. (7.7), we obtain the error bound

|I − Ih| ≤ (b− a)emax = (b− a)
h2

8
max
x∈[a,b]

|f ′′(x)| .
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Figure 7.5: Trapezoidal rule.

This bound can be tightened by a constant factor, yielding

|I − Ih| ≤ (b− a)emax = (b− a)
h2

12
max
x∈[a,b]

|f ′′(x)| ,

which is sharp. The error bound shows that the scheme is second-order accurate.

Proof. To prove the sharp bound of the integration error, recall the following intermediate result
from the proof of the linear interpolation error, Eq. (2.3),

f(x)− (If)(x) =
1

2
f ′′(ξi)(x− xi)(x− xi+1) ,

for some ξi ∈ [xi, xi+1]. Integrating the expression over the segment Si, we obtain the local error
representation

In − Inh =

∫ xi+1

xi

f(x)− (If)(x) dx =

∫ xi+1

xi

1

2
f ′′(ξi)(x− xi)(x− xi+1) dx

≤
∫ xi+1

xi

1

2
|f ′′(ξi)(x− xi)(x− xi+1)| dx ≤

(∫ xi+1

xi

1

2
|(x− xi)(x− xi+1)| dx

)
max

ξ∈[xi,xi+1]
|f ′′(ξ)|

=
1

12
(xi+1 − xi)3 max

ξ∈[xi,xi+1]
|f ′′(ξ)| = 1

12
h3 max

ξ∈[xi,xi+1]
|f ′′(ξ)| .

Summing the local errors, we obtain the global error bound

|I − Ih| =

∣∣∣∣∣∣
N∑
i=1

1

12
h3 max

ξi∈[xi,xi+1]
|f ′′(ξi)|

∣∣∣∣∣∣ ≤ 1

12
(b− a)h2 max

x∈[a,b]
|f ′′(x)| .
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Figure 7.6: Integration of a non-smooth function.

·
Before concluding this section, let us make a few remarks regarding integration of a non-smooth

function. For interpolation, we saw that the maximum error can be no better than hr, where r is the
highest order derivative that is defined everywhere in the domain. For integration, the regularity
requirement is less stringent. To see this, let us again consider our discontinuous function

f(x) =


sin(πx), x ≤ 1

3
1

2
sin(πx), x >

1

3

.

The result of applying the midpoint integration rule with eight intervals is shown in Fig-
ure 7.6(a). Intuitively, we can see that the area covered by the approximation approaches that
of the true area even in the presence of the discontinuity as h → 0. Figure 7.6(b) confirms that
this indeed is the case. All schemes considered converge at the rate of h1. The convergence rate
for the midpoint and trapezoidal rules are reduced to h1 from h2. Formally, we can show that the
integration schemes converge at the rate of min(k, r + 1), where k is the order of accuracy of the
integration scheme for a smooth problem, and r is the highest-order derivative of f that is defined
everywhere in the domain. In terms of accuracy, integration smooths and thus helps, whereas
differentiation amplifies variations and hence hurts.

7.2 Integration of Bivariate Functions

Having interpolated bivariate functions, we now consider integration of bivariate functions. We
wish to approximate

I =

∫∫
D
f(x, y) dx dy .

Following the approach used to integrate univariate functions, we replace the function f by its
interpolant and integrate the interpolant exactly.
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Figure 7.7: Midpoint rule.

We triangulate the domain D as shown in Figure 2.15 for constructing interpolants. Then, we
approximate the integral as the sum of the contributions from the triangles, {Ri}Ni=1, i.e.

I =

N∑
i=1

∫∫
Ri

f(x, y) dx dy ≈
N∑
i=1

∫∫
Ri

(If)(x, y) dx dy ≡ Ih .

We now consider two examples of integration rules.

Example 7.2.1 midpoint rule
The first rule is the midpoint rule based on the piecewise-constant, midpoint interpolant. Recall,
the interpolant over Ri is defined by the function value at its centroid,

(If)(x) = f(x̃i) = f(xci ), ∀ x ∈ Rn ,

where the centroid is given by averaging the vertex coordinates,

x̃i = xci =
1

3

3∑
i=1

xi .

The integral is approximated by

Ih =
N∑
i=1

∫∫
Ri

(If)(x, y) dx dy =

N∑
i=1

∫∫
Ri

f(x̃i, ỹi) dx dy =

N∑
i=1

Ai f(x̃i, ỹi) ,

where we have used the fact ∫∫
Ri

dx dy = Ai ,

with Ai denoting the area of triangle Ri. The integration process is shown pictorially in Fig-
ure 7.7(a). Note that this is a generalization of the midpoint rule to two dimensions.

The error in the integration is bounded by

e ≤ Ch2‖∇2f‖F .
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Figure 7.8: Trapezoidal rule.

Thus, the integration rule is second-order accurate. An example of error convergence is shown
Figure 7.7(b), where the triangles are uniformly divided to produce a better approximation of the
integral. The convergence plot confirms the second-order convergence of the scheme.

Similar to the midpoint rule in one dimension, the midpoint rule on a triangle also belongs
in the family of Gauss quadratures. The quadrature points and weights are chosen optimally to
achieve as high-order convergence as possible.

·

Example 7.2.2 trapezoidal rule
The trapezoidal-integration rule is based on the piecewise-linear interpolant. Because the integral
of a linear function defined on a triangular patch is equal to the average of the function values at
its vertices times the area of the triangle, the integral simplifies to

Ih =
N∑
i=1

1

3
Ai

3∑
m=1

f(x̄mi )

 ,
where {x̄1

i , x̄
2
i , x̄

3
i } are the vertices of the triangle Ri. The integration process is graphically shown

in Figure 7.8(a) .
The error in the integration is bounded by

e ≤ Ch2‖∇2f‖F .

The integration rule is second-order accurate, as confirmed by the convergence plot shown in Fig-
ure 7.8(b).

·
The integration rules extend to higher dimensions in principle by using interpolation rules for

higher dimensions. However, the number of integration points increases as (1/h)d, where d is the
physical dimension. The number of points increases exponentially in d, and this is called the curse
of dimensionality. An alternative is to use a integration process based on random numbers, which
is discussed in the next unit.
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