
16 CONTROL FUNDAMENTALS 

16.1 Introduction 

16.1.1 Plants, Inputs, and Outputs 

Controller design is about creating dynamic systems that behave in useful ways. Many 
target systems are physical; we employ controllers to steer ships, fly jets, position electric 
motors and hydraulic actuators, and distill alcohol. Controllers are also applied in macro
economics and many other important, non-physical systems. It is the fundamental concept 
of controller design that a set of input variables acts through a given “plant” to create an 
output. Feedback control then uses sensed plant outputs to apply corrective inputs: 

Plant Inputs Outputs Sensors

Jet aircraft elevator, rudder, etc. altitude, hdg altimeter, GPS 
Marine vessel rudder angle heading gyrocompass 
Hydraulic robot valve position tip position joint angle 
U.S. economy fed interest rate, etc. prosperity inflation, M1 
Nuclear reactor cooling, neutron flux power level temp., pressure 

(Continued on next page)



16.2 Representing Linear Systems	 77 

16.1.2 The Need for Modeling 

Effective control system design usually benefits from an accurate model of the plant, although 
it must be noted that many industrial controllers can be tuned up satisfactorily with no 
knowledge of the plant. Ziegler and Nichols, for example, developed a general recipe which 
we detail later. In any event, plant models simply do not match real-world systems exactly; 
we can only hope to capture the basic components in the form of differential or integro
differential equations. 
Beyond prediction of plant behavior based on physics, the process of system identification 
generates a plant model from data. The process is often problematic, however, since the 
measured response could be corrupted by sensor noise or physical disturbances in the system 
which cause it to behave in unpredictable ways. At some frequency high enough, most 
systems exhibit effects that are difficult to model or reproduce, and this is a limit to controller 
performance. 

16.1.3 Nonlinear Control 

The bulk of this subject is taught using the tools of linear systems analysis. The main 
reason for this restriction is that nonlinear systems are difficult to model, difficult to design 
controllers for, and difficult overall! Within the paradigm of linear systems, there are many 
sets of powerful tools available. The reader interested in nonlinear control is referred to the 
book by Slotine and Li (1991). 

16.2 Representing Linear Systems 

Except for the most heuristic methods of tuning up simple systems, control system design 
depends on a model of the plant. The transfer function description of linear systems has 
already been described in the discussion of the Laplace transform. The state-space form is 
an entirely equivalent time-domain representation that makes a clean extension to systems 
with multiple inputs and multiple outputs, and opens the way to standard tools from linear 
algebra. 

16.2.1 Standard State-Space Form 

We write a linear system in a state-space form as follows 

ẋ = Ax + Bu + Gw (193) 

y = Cx + Du + v 

where 

•	 x is a state vector, with as many elements as there are orders in the governing differ
ential equations. 

•	 A is a matrix mapping x to its derivative; A captures the natural dynamics of the 
system without external inputs. 



78 16 CONTROL FUNDAMENTALS 

•	 B is an input gain matrix for the control input u. 

•	 G is a gain matrix for unknown disturbance w; w drives the state just like the control 
u. 

•	 y is the observation vector, comprised mainly of a linear combination of states Cx 
(where C is a matrix). 

•	 Du is a direct map from input to output (usually zero for physical systems). 

•	 v is an unknown sensor noise which corrupts the measurement. 

u 

w 

B 

G 

A 

1/s C 

v 

D 

y 
+ 

+ 

+ 
+ 

+ 

+ 

xx’ 

16.2.2 Converting a State-Space Model into a Transfer Function 

There are a number of canonical state-space forms available, which can create the same 
transfer function. In the case of no disturbances or noise, the transfer function (or transfer 
matrix) can be written as 

y(s)
G(s) = = C(sI − A)−1B + D,	 (194) 

u(s) 

where I is the identity matrix with the same size as A. A similar equation holds for y(s)/w(s), 
and clearly y(s)/v(s) = I. 

16.2.3 Converting a Transfer Function into a State-Space Model 

It may be possible to write the corresponding differential equation along one row of the state 
vector, and then cascade derivatives. For example, consider the following system: 

my∗∗(t) + by∗(t) + ky(t) = u∗(t) + u(t) (mass-spring-dashpot) 
s + 1 

G(s) = 
ms2 + bs + k 

Setting γx = [y∗, y]T , we obtain the system 



16.3 PID Controllers 79


⎬ � ⎬ �

dγx −b/m −k/m 1/m
= γx + u 

dt 1 0 0 

y = [1 1] γx 

Note specifically that dx2/dt = x1, leading to an entry of 1 in the off-diagonal of the second 
row in A. Entries in the C-matrix are easy to write in this case because of linearity; the 
system response to u∗ is the same as the derivative of the system response to u. 

16.3 PID Controllers 

The most common type of industrial controller is the proportional-integral-derivative (PID) 
design. If u is the output from the controller, and e is the error signal it receives, this control 
law has the form 

� t 
u(t) = kpe(t) + ki e(φ )dφ + kde

∗(t), 
0 

U (s) ki
C(s) = = kp + + kds (195)

E(s) s 
� 

1 � 

= kp 1 + + φds ,
φis 

where the last line is written using the conventions of one overall gain kp, plus a time 
characteristic to the integral part (φi) and and time characteristic to the derivative part (φd). 
In words, the proportional part of this control law will create a control action that scales 
linearly with the error – we often think of this as a spring-like action. The integrator 
is accumulating the error signal over time, and so the control action from this part will 
continue to grow as long as an error exists. Finally, the derivative action scales with the 
derivative of the error. The controller will retard motion toward zero error, which helps to 
reduce overshoot. 
The common variations are: P , P D, P I, P ID. 

16.4 Example: PID Control 

Consider the case of a mass (m) sliding on a frictionless table. It has a perfect thruster 
that generates force u(t), but is also subject to an unknown disturbance d(t). If the linear 
position of the mass is y(t), and it is perfectly measured, we have the plant 

my∗∗(t) = u(t) + d(t). 

Suppose that the desired condition is simply y(t) = 0, with initial conditions y(0) = yo and 
y∗(0) = 0. 



� 

� � 

� 

80 16 CONTROL FUNDAMENTALS 

16.4.1 Proportional Only 

A proportional controller alone invokes the control law u(t) = −kpy(t), so that the closed-
loop dynamics follow 

my∗∗(t) = −kpy(t) + d(t). 

kpIn the absence of d(t), we see that y(t) = yo cos m t, a marginally stable response that is 
undesirable. 

16.4.2 Proportional-Derivative Only 

Let u(t) = −kpy(t) − kdy∗(t), and it follows that 

my∗∗(t) = −kpy(t) − kdy
∗(t) + d(t). 

The system now resembles a second-order mass-spring-dashpot system where kp plays the 
part of the spring, and kd the part of the dashpot. With an excessively large value for 
kd, the system would be overdamped and very slow to respond to any command. In most 
applications, a small amount of overshoot is employed because the response time is shorter. 
The kd value for critical damping in this example is 2 mkp, and so the rule is kd < 2 mkp. 
The result, easily found using the Laplace transform, is 

⎬ � 
−kd kd 
2my(t) = yoe 

t cos �dt + sin �dt ,
2m�d 

where �d = 4mkp − k
the mass had a very large amount of natural damping, a negative kd could be used to cancel 

2/2m.d This response is exponentially stable as desired. Note that if


some of its effect and speed up the system response.

Now consider what happens if d(t) has a constant bias do: it balances exactly the proportional

control part, eventually settling out at y(t = = do/kp. To achieve good rejection of do
∗) 
with a P D controller, we would need to set kp very large. However, very large values of kp 

will also drive the resonant frequency �d up, which is unacceptable. 

16.4.3 Proportional-Integral-Derivative 

Now let u(t) = −kpy(t) − ki 
� t 
0 y(φ )dφ − kdy∗(t): we have 

� t 
my∗∗(t) = −kpy(t) − ki y(φ )dφ − kdy

∗(t) + d(t). 
0 

The control system has now created a third-order closed-loop response. If d(t) = do, a time 
derivative leads to 

my∗∗∗(t) + kpy
∗(t) + kiy(t) + kdy

∗∗(t) = 0, 

so that y(t = ∗) = 0, as desired, provided the roots are stable. 



16.5 Heuristic Tuning 81 

16.5 Heuristic Tuning 

For many practical systems, tuning of a PID controller may proceed without any system 
model. This is especially pertinent for plants which are open-loop stable, and can be safely 
tested with varying controllers. One useful approach is due to Ziegler and Nichols (e.g., 
Bélanger,1995), which transforms the basic characteristics of a step response (e.g., the input 
is 1(t)) into a reasonable PID design. The idea is to approximate the response curve by a 
first-order lag (gain k and time constant φ ) and a pure delay T : 

ke−Ts 

G(s) � (196)
φ s + 1 

The following rules apply only if the plant contains no dominating, lightly-damped complex 
poles, and has no poles at the origin: 

P kp = 1.0φ /T 
PI kp = 0.9φ /T ki = 0.27φ /T 2 

PID kp = 1.2φ /T ki = 0.60φ /T 2 kd = 0.60φ 

Note that if no pure time delay exists (T = 0), this recipe suggests the proportional gain can 
become arbitrarily high! Any characteristic other than a true first-order lag would therefore 
be expected to cause a measurable delay. 

16.6 Block Diagrams of Systems 

16.6.1 Fundamental Feedback Loop 

The topology of a feedback system can be represented graphically by considering each dy
namical system element to reside within a box, having an input line and an output line. For 
example, the plant used above (a simple mass) has transfer function P (s) = 1/ms2, which 
relates the input, force u(s), into the output, position y(s). In turn, the PD-controller has 
transfer function C(s) = kp + kds; its input is the error signal E(s) = −y(s), and its output 
is force u(s). The feedback loop in block diagram form is shown below. 

u(s) y(s)
C(s) P(s) 

16.6.2 Block Diagrams: General Case 

The simple feedback system above is augmented in practice by three external inputs. The 
first is a process disturbance, which can be taken to act at the input of the physical plant, 
or at the output. In the former case, it is additive with the control action, and so has 



82 16 CONTROL FUNDAMENTALS 

some physical meaning. In the second case, the disturbance has the same units as the plant 
output. 
Another external input is the reference command or setpoint, used to create a more general 
error signal e(s) = r(s) − y(s). Note that the feedback loop, in trying to force e(s) to zero, 
will necessarily make y(s) approximate r(s). 
The final input is sensor noise, which usually corrupts the feedback signal y(s), causing 
some error in the evaluation of e(s), and so on. Sensors with very poor noise properties can 
ruin the performance of a control system, no matter how perfectly understood are the other 
components. 

d 

yr 
e u

C 

u yd 

n 

P 

+ 

+ 

+ 
++ 

+-
+ 

16.6.3 Primary Transfer Functions 

Some algebra shows that 

e 1 
= = S 

r 1 + PC 
y 
= 

PC 
= T 

r 1 + PC 
u C 
= = U. 

r 1 + CP 

e/r = S relates the reference input and noise to the error, and is known as the sensitivity 
function. We would generally like S to be small at low frequencies, so that the tracking 
error there is small. y/r = T is called the complementary sensitivity function. Note that 
S + T = 1, implying that these two functions must always trade off; they cannot both be 
small or large at the same time. Other systems we encounter again later are the (forward) 
loop transfer function PC, the loop transfer function broken between C and P : CP , and 

e −P 
= 

du 1 + PC 
y P 
= 

du 1 + PC 
u −CP 
= 

du 1 + CP 
e 
= =

−1 −S 
dy 1 + PC 



83 

y 
= 

1 
= S 

dy 1 + PC 
u 
dy 
= 

−C 
1 + CP 

= −U 

e 
n 
= 

−1 
1 + PC 

= −S 

y 
n 
= 

−PC 
1 + PC 

= −T 

u 
n 
= 

−C 
1 + CP 

= −U. 

If the disturbance is taken at the plant output, then the three functions S, T , and U (control 
action) completely describe the system. This will in fact be the procedure when we address 
loopshaping. 


