Microstereolithography and AFM

2.674 Benita Comeau Jeehwan Kim

Slides courtesy Profs. Sang-Gook Kim, Rohit Karnik & Mathias Kolle¹

Atomic force microscope

For having high resolution image: TEM, AFM, STM

	Scanning Electron Microscope	Transmission Electron Microscope	Scanning Tunneling Microscope	Atomic Force Microscope
	SEM	TEM	STM	AFM
Lateral Resolution	5 nm	0.2 nm	0.1 nm	30 nm
Vertical Resolution	None	None	0.01 nm	0.1 nm
Magnification	2D	2D	3D	3D
Sample preparation	No	Difficult (FIB, Milling)	Extremely clean surface	Clean surface
Environment	Vacuum	Vacuum	Vacuum	Vac/Air/Liquid
Cross-section image	Yes	Yes	No	No

3

Scanning tunneling Microscope

Constant Current Mode

- Typical mode of operation
- Slow: z-stage must respond!
- Can tolerate rougher surface

Constant Height Mode

- Fast: z-stage need not respond
- Tilt sensitive
- Minimal drift
- Cannot tolerate rough surface

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Quantum Tunneling

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

STM as a fabrication tool

- Can be used to move individual atoms!
 - Higher current creates a temporary "bond" between the tip and atom
 - "Bond" atom, move tip to new position,
 - "release" atom!

© IBM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Writing "IBM" with 35 xenon atoms on nickel (IBM Almaden, 1989)

This image has been removed due to copyright restrictions. Please watch the video at https://www.youtube.com/watch?v=oSCX78-8-q0.

The atoms of (and in) Adam

To be precise – it's really molecules

Carbon monoxide on a copper (111) surface T around 5 K (-268°C)

© IBM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

http://ibmresearchnews.blogspot.com/2013/05/atom-atommolecule.html?cm_mc_uid=18927854944214476364271&cm_mc_sid_50200000=1447636427

Atomic Force Microscope (AFM)

Piezoelectric materials (Perovskite)

Electric fields $\leftarrow \rightarrow$ Elastic deformation or strain

1. Mechanical stress generates electric charge in the Sensor Mode Jacques & Pierre Curie (1880)

Figure by MIT OpenCourseWare.

2. Electric Field induces mechanical strain in the Actuation Mode

Lippmann (1881)

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

How to make x-y-z motion using piezo-actuator?

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Piezo disc, a cheap solution

Scanning principle: Contact mode

Applied voltage to the piezo-actuator

Translation of the voltage to height and position

This mode 1) damages sample surface, 2) cannot image liquid

Scanning Principle: Tapping mode (AC)

Free amplitude = A(w)

Potential energy, U

- Tapping mode is used for most surface topology
- Less damaging surface

Z-piezo actuator is controlled to maintain the set amplitude

Scanning Principle: Non-contact mode (AC)

- Non-contact mode does not damage sample surface
- Non-contact mode can image liquid
- Difficult to find stable operation range

Force vs. Gap

- A Cantilever approaches surface (thermal noise)
- B Snap to contact, tip is on surface (Hamaker constant)
- C "Attractive" work
- D Constant compliance region (Surface stiffness)
- E Hysteresis (viscous damping)
- F Retracting slope (surface stiffness)
- G "Adhesion" work (energy to separate surfaces)
- H Last bond(s) to break ("single bond forces")
- I Cantilever is off surface

Topological Limitation by Scanned Imaging

Tip Calibration

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

A home made AFM

- Interferometric AFM developed by Manalis et al. (APL, 69 (25), 1996)
- It detects the difference in motion between two neighboring cantilevers. → less sensitive to ground vibration

This image has been removed due to copyright restrictions. Please see Figure 6 in https://www.media.mit.edu/nanoscal e/courses/AFMsite/cantilevers.html. This image has been removed due to copyright restrictions. Please see Figure 1-5 in http://public.wsu.edu/~hipps/pdf_ files/spmguide.pdf.

Diffraction-based AFM

Classroom AFM System

Tunable grating

- No cantilever displacement → Fingers aligned
 - Even-numbered modes: brightest
 - Odd modes: darkest
- With cantilever displacement → Fingers displaced
 - Even-numbered modes: brightes
 - Odd modes: darkest
- This repeats every $\lambda/4$

This image has been removed due to copyright restrictions. Please see Figure 6 in https:// www.media.mit.edu/nanoscale /courses/AFMsite/cantilevers.html.

This image has been removed due to copyright restrictions. Please see http://measurebiology.org/w/images/thumb/e/e 3/DiffractiveTransducer.jpg/352px-DiffractiveTransducer.jpg.

Calibration

- Z-mode operation, 2Hz, 8 V
- Calibration (v/nm)

Lab #10. Part 1

- Get the laser pointing in the middle of ID fingers to get the diffraction modes on the photo detector.
- Get the tip in contact with the sample (Z-mode).
- Calibrate the system to figure out how much signal you get when you move the sample a given distance.
- Scan the sample to get image.

Lab #10. Part 2

- Calibrate the system.
- Measure the thermal noise spectral density.
- Relate the thermal fluctuation to the characteristics of the second order cantilever system.
- Estimate the spring constant and compare it with the theoretically calculated one.

Measuring noise spectra

- Tool: Spectrum Analyzer
- Takes a series of measurements of a quantity of interest at a high sampling rate

 ${\rm \mathbb{C}}$ sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

How to relate thermal-noise to k

Noise Force
$$\langle f_n^2 \rangle = 4k_B T b = k^2 \langle x^2 \rangle$$
 $b = \frac{k}{Qw_o} \frac{4k_b T k}{Qw_o} = k^2 \langle x^2 \rangle$
Quality factor $Q = \frac{f_0}{\Delta f} = \frac{k}{bw_o}$ $k = \frac{4k_B T}{w_0 Q \langle x^2 \rangle}$

 k_B :Boltzmann's constant

b: Damping

- k: Spring constant
- $< x^2 >$: Thermal noise x calibration²
- w_0 : Resonant frequency

 f_0 : Resonant frequency of the cantilever Δf : width of the peak at the half maximum

Cantilever, K

• For a tip loaded cantilever with constant cross-section

$$k = \frac{3EI}{L^3}$$

• The fingers can be ignored in analytical calculation.

$$k = \frac{EWh^3}{4L^3}$$

This image has been removed due to copyright restrictions. Please see Figure 6 in https://www.media.mit.edu/nanosca le/courses/AFMsite/cantilevers.html.

$$\begin{split} m\ddot{x}+b\dot{x}+kx&=0\\ m_{eff}&=\frac{33}{140}\rho LWh \end{split}$$

Lab #11 Measure graphene thickness using commercial AFM

Height?? \rightarrow Monolayer??

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Microstereolithography

3D printing

2.674 / 2.675 Micro/Nano Engineering Laboratory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.