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Problem 

Manufacturing Systems 
A manufacturing system is a set of machines, transportation elements, 
computers, storage buffers, and other items that are used together for 
manufacturing. 
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Problem 

Production Lines 
A production line, is organized with machines or groups of machines 
(�1, ,��) connected in series and separated by buffers (�1, , ��−1). 
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Why study production lines ? 

Economic importance 
Production lines are used in high volume manufacturing, particularly au-
tomobile production, in which they make engine blocks, cylinders, con-
necting rods, etc. Their capital costs range from hundreds of thousands 
dollars to tens of millions of dollars. 

The simplest form of an important phenomenon 
Manufacturing stages interfere with each other and buffers decouple 
them. 
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Research goals 

Make factories more efficient and more profitable, including micro-
and nano-fabrication factories. 

Develop tools for rapid design of production lines. This is very im-
portant for products with short life cycles. 
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Production line design 

Design
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Choose

machines
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performance
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Our focus: choosing buffers 

Problem description and Assumptions 

Maximize profit for production lines subject to a production rate 
target constraint. 
Process and machines have already been chosen (3 models). 

The deterministic processing time model of Gershwin (1987), (1994). 
The deterministic processing time model of Tolio, Matta, and Gersh-
win (2002). 
The continuous production line model of Levantesi, Matta, and Tolio 
(2003). 

Decision variables: sizes of in-process inventory (buffer) spaces, i.e., 
(�1, , ��−1) ≡ N. 

Cost is due to inventory space and inventory. 

c⃝2010 Chuan Shi — Problem : Our focus: choosing buffers 8/79 



Our focus: choosing buffers 

Problem description and Assumptions 
The deterministic processing time model of Gershwin (1987). 

Time required to process a part is the same for all machines and is 
taken as the time unit. 
Machine � is parameterized by the probability of failure, �� = 1/�� � ��, 
and the probability of repair, �� = 1/�� � ��, in each time unit. 

The deterministic processing time model of Tolio, Matta, and Gersh-
win (2002). 

Processing times of all machines are equal, deterministic, and con-
stant. 
It allows each machine to have multiple failure modes. Each failure 
is characterized by a geometrical distribution. 

The continuous production line model of Levantesi, Matta, and Tolio 
(2003). 

Machines can have deterministic, yet different, processing speeds. 
It allows each machine to have multiple failure modes. Each failure 
is characterized by an exponential distribution. 
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Benefits and costs of buffers 

Necessity 

Machines are not perfectly reliable and predictable. 

The unreliability has the potential for disrupting the operations of 
adjacent machines or even machines further away. 

Buffers decouple machines, and mitigate the effect of a failure of 
one of the machines on the operation of others. 
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Benefits and costs of buffers 

Undesirable consequence of buffers: Inventory 

Inventory costs money to create or store. 

The average lead time is proportional to the average amount of
 
inventory.
 

Inventory in a factory is vulnerable to damage.
 

The space and equipment needed for inventory costs money.
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Difficulties 

Evaluation 

Calculate production rate and average inventory as a function of buffer 
sizes (and machine reliability). 

����� ����� ����� ��� ���� ����� 

state = (�1, �2, , ��, �1, �2, , ��−1) 
where �� = state of �� = operation or repair 

�� = number of parts in ��, 0 ≤ �� ≤ �� 

Exact numerical solution is impractical due to large state space. 

There is no practical analytical solution to this problem for � > 2. 
For 2-machine lines, there are analytical solutions. 

Good approximation is available: decomposition. 
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Difficulties 

Decomposition
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★ Reprint with permission from Dr. Gershwin. 
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Difficulties 

Optimization1 

Determine the optimal set of buffer sizes.
 

The cost function is nonlinear.
 

The constraints can be nonlinear.
 

1This is my contribution. 
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Prior work review 

There are many studies focusing on maximizing the production rate but few 
studies concentrating on maximizing the profit. 

Substantial research has been conducted on production line evaluation and opti-
mization (Dallery and Gershwin 1992). 

Buzacott derived the analytic formula for the production rate for two-machine, 
one-buffer lines in a deterministic processing time model (Buzacott 1967). 

The invention of decomposition methods with unreliable machines and finite 
buffers (Gershwin 1987) enabled the numerical evaluation of the production rate 
of lines having more than two machines. 

Diamantidis and Papadopoulos (2004) also presented a dynamic programming 
algorithm for optimizing buffer allocation based on the aggregation method given 
by Lim, Meerkov, and Top (1990). But they did not attempt to maximize the 
profits of lines. 

For other line optimization work, see Chan and Ng (2002), Smith and Cruz 
(2005), Bautista and Pereira (2007), Jin et al. (2006), and Rajaram and Tian 
(2009). 
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Prior work review 

Evaluation: simulation methods 

Slow (according to Spinellis and Papadopoulos 2000). 

Statistical. 

Optimization: combinatorial or integer programming meth-
ods 

Slow (according to Gershwin and Schor 2000).
 

Inaccurate (So 1997, Tempelmeier 2003).
 

Do not take advantage of special properties of the problem (Shi and
 
Men 2003, Dolgui et al. 2002, Huang et al. 2002). 
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Schor’s problem 

Schor 1995, Gershwin and Schor 2000 

Schor’s unconstrained profit maximization problem: 

max 
N 

�(N) = �� (N) − 
�−1∑ 

�=1 

���� − 
�−1∑ 

�=1 

�� ̄��(N) 

s.t. �� ≥ �min, ∀� = 1, ⋅ ⋅ ⋅ , � − 1. 

where � (N) = production rate, parts/time unit 
�̂ = required production rate, parts/time unit 
� = profit coefficient, $/part 

�̄�(N) = average inventory of buffer �, � = 1, ⋅ ⋅ ⋅ , � − 1 
�� = buffer cost coefficient, $/part/time unit 
�� = inventory cost coefficient, $/part/time unit 
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Assumptions 

Assumptions 

� (N) is monotonic and concave. 

M              B              M              B              M1                               1                                2                               2                                3
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�� can be treated as continuous variables (Schor 1995, Gershwin and 
Schor 2000). 

� (N) and �(N) can be treated as continuously differentiable func-
tions (Schor 1995, Gershwin and Schor 2000). 

The decomposition is a good approximation. 
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The Gradient Method 
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Figure 1: �(N) vs. �1 and �2 

c⃝2010 Chuan Shi — Problem : Prior work review 19/79 



⋅ ⋅ ⋅ 

��� 

The Gradient Method 

We calculate the gradient direction to move in (�1, , ��−1) space. 
A line search is then conducted in that direction until a maximum is 
encountered. This becomes the next guess. A new direction is chosen 
and the process continues until no further improvement can be achieved. 
There is no analytical expression to compute profits of lines having more 
than two machines. Consequently, to determine the search direction, we 
compute the gradient, g, according to a forward difference formula, which 
is 

�� = 
�(�1, ⋅ ⋅ ⋅ , �� + ���, ⋅ ⋅ ⋅ , ��−1) − �(�1, ⋅ ⋅ ⋅ , ��, ⋅ ⋅ ⋅ , ��−1) 

where �� is the gradient component of buffer ��, � is the profit of the 
line, and ��� is the increment of buffer ��. 
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Research topics 

Topics that have been finished/are in process 

Profit maximization for production lines with a production rate con-
straint.
 

Profit maximization for production lines with both time window con
-

straint and production rate constraint.
 

Evaluation and profit maximization for lines with an arbitrary single
 
loop structure.
 

Topics that might be considered in the future 

Systems with quality control. 

Systems with set-up cost for buffers. 

etc. 
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