

Using Tarsos and music21 to Analyze Presidential Speech Patterns

MIT student

Abstract

I believed that over the course of their first term in office, presidents would increase the size of their

pitch range, and that their range would shift towards lower frequencies. I found no strong correlation

suggesting that their range increased in size, but there was there a trend suggesting that their range

decreased in frequency.

Introduction

Tarsos is a program for analyzing Music Information Retrieval (MIR) features of music in a culture-

independent way[3]. Specifically, it can analyze an mp3 file, extract a pitch histogram, and calculate

things such as the best fit “scale” that is being used (using peak finding algorithms).

I was interested in how this software might be applied in less conventional ways. I recently took a class

on public speaking, and one of the things we examined was the actual pitches that we were using when

we spoke. Thinking of these together, I became curious about the speech patterns of various presidents

during their first term in office.

While I have obviously never been the President of the United States, I feel that perhaps I can relate to

what that first term must feel like. In my four years of college, I entered feeling ready and that people

expected a lot from me. I soon realized that I wasn't ready at all, but that's okay because I had some

time to get there. I matured a lot, and grew as a speaker, a leader, and as a student. I became more

experienced and more confident at handling the various situations that arise in college. Similarly, I'm

1
�

sure that the President feels ready to take office by the time he is elected. During the first years, he
�

begins to realize exactly what the role entails. Towards the end, he is more confident in his position and

in his stances, and he is ready to handle any of the various crises that arise during a four year term as

president.

I thought that because the president would gain much experience (and confidence) speaking over the

course of his presidency, that he would become monotonically less monotonous in his speech patterns.

Specifically, I believed that the range of pitches that he employs in his speeches would increase in size

as he becomes more confident and perhaps dramatic. Additionally, I hypothesized that as his initial

excitement faded into confident experience, he would use more lower pitches and his pitch range would

shift downwards.

Methodology

The first task was finding recordings to use of various presidential speeches. Fortunately, I found a

large database online that contains recordings of presidential speeches going back to President

Roosevelt[2]. Some presidents had only a few recordings relative to others though, so I had to decide

how to choose speeches that would be comparable from president to president, and also spread fairly

evenly throughout their first term. I decided to use the State of the Union Addresses because every

president back to Kennedy has a recorded speech given every year after being sworn in for their first

term. They all occurred in the same time of year, in the same location, to the same audience. They were

also all roughly the same duration. The recording technologies for each president was roughly the same

throughout his term, and I only compared each recorded State of the Union Address with those of the

same president. I also found Tarsos to be relatively robust to noise caused by older recording

techniques.

2
�

After downloading the relevant files, I ran them through the Tarsos analysis program and exported the

pitch and pitch class histograms as CSV files. I experimented with different settings on the first set of

recordings in order to find one set of options1 that gave a near-optimal scale description for each of

those three recordings. Once I found these options, I used the same set of options for each file and also

extracted a Scala[4] file.

Finally, I used music21[5] as well as some of my own code (see Appendix B) to analyze the data and

extract information about range, most common pitches, average interval between Scala pitch classes,

etc. Of the various metrics that I analyzed, I decided that the most relevant were the highest and lowest

used pitch, the average pitch, and the range (highest minus lowest pitch).

For the highest, lowest, and average pitch, I filtered the pitch histogram produced by Tarsos by number

of annotations to account for noise that may have been produced by the recording technology or by the

audience. I used threshold values of 0.33% of the number of annotations for each speech. Empirically, I

found that this threshold kept as much of the vocal range as possible while eliminating most of the

frequencies caused by the audience.

Results and Analysis

The raw data for each president for each metric is in Appendix A. I was more interested in how these

features were changing over time.

1 The settings were: Window size: 15; Threshold: 10; Time: 100; Cents: 15; Quality: 0

3
�

Table 1 shows how the range changed from speech to speech for each president sampled.

Table 1: Change over time of Pitch Range (in cents above 8.176 Hz)

Between the 1st and 2nd speech, only 44% of presidents sampled increased the size of their range. Going

from the 2nd to the 3rd speech, again 44% of presidents sampled increased the size of their range. Over

the course of their entire presidency (between their 1st and 3rd speech), again only 44% of them

increased the size of their range. As consistent as these numbers are, I believe that they show that there

is no strong trend showing that the size of the pitch range of presidents increases over the course of

their first term in office.

4
�

 Table 2: Change over time of Highest Pitch used (in cents above 8.176 Hz)

Tables 2 shows how the highest pitch used in each speech varied over time from speech to speech.

Between the 1st and 2nd speech, 78% of presidents sampled decreased their highest pitch used. Going

from the 2nd to the 3rd speech, only 44% of presidents sampled decreased the size of their highest pitch

used. Over the course of their entire presidency (between their 1st and 3rd speech), 56% of them

decreased their highest pitch used. I believe that these numbers show that there is no strong trend

showing that the highest pitch used of presidents decreases over the course of their first term in office,

although it is interesting to notice patterns emerging over smaller lengths of time.

5
�

Table 3 shows how the lowest pitch used in each speech varied over time from speech to speech
�

Table 3: Change over time of average Pitch used (in cents above 8.176 Hz)

Between the 1st and 2nd speech, 89% of presidents sampled decreased their lowest pitch used. Going

from the 2nd to the 3rd speech, only 44% of presidents sampled did not increase the size of their lowest

pitch used. Over the course of their entire presidency (between their 1st and 3rd speech), 78% of them

decreased their lowest pitch used. I believe that these numbers might reveal a trend towards the range

of pitches used decreasing in frequency over time, or at least that the lower pitches get lower.

6
�

Table 4 shows how the average pitch used in each speech varied over time from speech to speech.
�

Table 4: Change over time of Average Pitch used (in cents above 8.176)

Between the 1st and 2nd speech, 89% of presidents sampled decreased their average pitch used. Going

from the 2nd to the 3rd speech, only 33% of presidents sampled decreased the size of their average pitch

used. Over the course of their entire presidency (between their 1st and 3rd speech), 89% of them

decreased their average pitch used. I believe that these numbers (especially in light of the data for the

lowest pitches used) suggest that the pitch range of presidents decreases in frequency over the course of

their first term in office.

Previous and Future Work

While no one has attempted to use automatic pitch annotation software to analyze the speech patterns

of various presidents before, there has been other work into analyzing speech pitch patterns and also

7
�

speech synthesis. Atal et. al. used an alternative representation of a speech and attempted to synthesize

speech by analyzing the waveforms of other speeches[1]. Using Tarsos, it might be possible to recreate

speeches through careful selection and application of the Scala files that are generated. Another next

step could be to examine the pitch contours within a particular speech and see how those pitch contours

vary with time. It would also be interesting to examine the intentional use of pauses within each speech

over time. One could also determine if there is a correlation between the rate of speaking and the

average pitch or pitch range used.

Conclusions

I made two hypotheses. First was that the pitch range of a president increases in size over the course of

his first term in office. I believe that the data shows that there is no strong trend to suggest this. Second,

I hypothesized that the pitch range of a president decreases in frequency over the course of his first

term in office. I believe that the data does, in fact, support this hypothesis.

Table 5: Summarized results supporting the hypothesis
that the pitch frequency of the range decreases

Table 6: Summarized results showing that
there is no strong trend of increasing the size
of the range over the first term of presidency

8
�

References
�
[1] Atal, B. S. "Speech Analysis and Synthesis by Linear Prediction of the Speech Wave." The Journal

of the Acoustical Society of America 47.1A (1970): 637-55. Print.

[2] Presidential Speech Archive. The Miller Center at the University of Virginia. Web. 9 May 2012.
<http://millercenter.org/president/speeches>.

[3] Six, Joren, and Olmo Cornelis. Tarsos - a Platform to Explore Pitch Scales in Non-Western and
Western Music. Proceedings of the 12th International Society for Music Information Retrieval
Conference, ISMIR 2011. International Society for Music Information Retrieval. Print.

[4] Op De Coul, Manuel. "Scala Scale File Format." Scala Scale File (.scl) Format. 2001. Web. 9 May
2012. <http://www.huygens-fokker.org/scala/scl_format.html>.

[5] Cuthbert, Michael Scott and Christopher Ariza, “music21: A Toolkit for Computer-
Aided Musicology and Symbolic Music Data,” Proceedings of the International Symposium
on Music Information Retrieval 11 (2010), pp. 637–42.

9
�

http://millercenter.org/president/speeches
http://www.huygens-fokker.org/scala/scl_format.html

Appendix A – Raw Data
�

 Table 7: Range of each Speech (in cents above 8.176 Hz). Only accepted pitches
with more annotations than .0033 times the total number of annotations

Table 8: Highest Pitch Frequency per Speech (in cents above 8.176 Hz)

10

Table 9: Lowest Pitch Frequency used per Speech (in cents above 8.176 Hz)

Table 10: Average Pitch Frequency used per Speech (in cents above 8.176 Hz)

11
�

Appendix B – Analysis Code
from sys import stdout
from music21 import *
import numpy

defaultThreshold = 10

presidentToSpeechDates = {
'hwBush': ['1990_0131', '1991_0129', '1992_0128'],
'bush': ['2002_0129', '2003_0128', '2004_0120'],
'carter': ['1978_0119','1979_0123','1980_0123'],
'clinton': ['1994_0125','1995_0124','1996_0123'],
'ford': ['1975_0115','1976_0119','1977_0112'],
'johnson': ['1964_0108','1965_0104','1966_0112'],
'kennedy': ['1961_0130','1962_0111','1963_0114'],
'nixon': ['1970_0122','1971_0122','1972_0120'],
'reagan': ['1982_0126','1983_0125','1984_0125']

}

presidentToFolderName = {}
for president in presidentToSpeechDates.keys():

presidentToFolderName[president] = president
presidentToFolderName['hwBush'] = 'bush'

paperKeys = ['average_pitch_default', 'highest_pitch_default', \
'lowest_pitch_default', 'range_default']

def getAverageInterval(presidentScala):
'''
Returns the average interval in cents of the scala
'''
return numpy.average([i.cents for i in presidentScala.getIntervalSequence()\

])

def getAverageCentsAboveTonic(presidentScala):
'''
Returns the average cents above tonic for the scala

Could be interpereted as the middle of the scale
�
'''
�
return numpy.average(presidentScala.getCentsAboveTonic())
�

def getMostCommonPitchClass(annotationsToCents):
'''
Returns the frequency in cents of the most common pitch class
'''
return annotationsToCents[max(annotationsToCents.keys())]

12
�

def getMostCommonPitch(annotationsToCents):
'''
Returns the frequency in cents of the most common pitch
'''
return annotationsToCents[max(annotationsToCents.keys())]

def getAveragePitch(centsToAnnotations, threshold):
'''
Returns the average pitch above a certain threshold

weighted by it's occurence
'''
validPitches = [cent for cent in centsToAnnotations.items() if cent[1] > \

threshold]
�
pitches = []
�
for (pitch, annotations) in validPitches:
�

pitches += [pitch] * annotations
�
return numpy.average(pitches)
�

def getHistograms(president, speechDate, directory=\
'/home/the8ball/Documents/term8/21M.269/final/'):
'''
Returns 4 histograms:

centsToAnnotations for pitch classes
�
centsToAnnotations for pitches
�
annotationsToCents for pitch classes
�
annotationsToCents for pitches
�

'''
presidentPath = directory + president + '/' + 'spe_' + speechDate + '_' +\

president
myFiles = [open(presidentPath + '_pitch_histogram.csv', 'r'), \

open(presidentPath + '_pitch_class_histogram.csv', 'r')]
�
centsToAnnotations = {}
�
centsToAnnotationsClasses = {}
�
annotationsToCents = {}
�
annotationsToCentsClasses = {}
�
for line in myFiles[0]:
�

(cents, annotations) = line.split(';')
try:

cents = float(cents)
annotations = int(annotations)
centsToAnnotations[cents] = annotations
annotationsToCents[annotations] = cents

except:
#Key or Value can't be converted to a number. Probably means we've
reached the header
if cents != 'Bin (cents)':

13
�

print "couldn't parse:", cents, annotations
pass

for line in myFiles[1]:
�
(cents, annotations) = line.split(';')
�
try:
�

cents = float(cents)
�
annotations = int(annotations)
�
centsToAnnotationsClasses[cents] = annotations
�
annotationsToCentsClasses[annotations] = cents
�

except:
#Key or Value can't be converted to a number. Probably means we've
reached the header
if cents != 'Bin (cents)':

print "couldn't parse:", cents, annotations
�
return (centsToAnnotationsClasses, centsToAnnotations, \
�

annotationsToCentsClasses, annotationsToCents)
�

def getPresidentialScala(president, speechDate, directory=\
'/home/the8ball/Documents/term8/21M.269/final/'):
'''
Returns a ScalaStorage object for this speech for this president
'''
presidentPath = directory + president + '/' + 'spe_' + speechDate + '_' + \

president
�
return scala.parse(presidentPath + '.scl')
�

def generatePresidentialHistograms(threshold=defaultThreshold, \
printProgress=True):
'''
Returns a dictionary from president last names to information regarding

their first 3 state of the union addresses
'''
#Used for printing progress
progress = 0
progressPerPresident = 1.0 / (len(presidentToFolderName.keys()) * 1.0)

presidentialAnalysis = {}
�
for (president, presidentFolderName) in presidentToFolderName.items():
�

if printProgress:
bars = int(progress * 78)
spaces = 78 - bars
stdout.write('|' + '='*bars + ' '*spaces + '|')
stdout.flush()

speechDates = presidentToSpeechDates[president]
presidentialAnalysis[president] = {}

14
�

progressPerSpeech = progressPerPresident * (1.0 / \
(len(speechDates) * 1.0))

for i in xrange(len(speechDates)):
speechDate = speechDates[i]
speechName = 'state_of_the_union' + str(i+1)

#See the getHistograms function for the order of the histograms
histograms = getHistograms(presidentFolderName, speechDate)
thisScala = getPresidentialScala(presidentFolderName, speechDate)

presidentialAnalysis[president][speechName] = {
'date': speechDate,
'scala': thisScala,
'cents_to_annotations_classes': histograms[0],
'cents_to_annotations': histograms[1],
'annotations_to_cents_classes': histograms[2],
'annotations_to_cents': histograms[3],
'average_interval': getAverageInterval(thisScala),
'average_cents_above_tonic': \

getAverageCentsAboveTonic(thisScala),
'most_common_pitch_class': \

getMostCommonPitchClass(histograms[2]),
'most_common_pitch': getMostCommonPitch(histograms[3]),
'average_pitch': \

getAveragePitch(histograms[1], threshold=threshold),
'average_pitch_class': \

getAveragePitch(histograms[0], threshold=threshold)
}

progress += progressPerSpeech

if printProgress:
bars = int(progress * 78)
spaces = 78 - bars
stdout.write('|' + '='*bars + ' '*spaces + '|')
stdout.flush()

if printProgress:
�
stdout.write('|' + '='*78 + '|')
�
stdout.flush()
�
print 'Completed'
�

return presidentialAnalysis

def picklePresidentialInfo(filename = 'analysis2.pkl', printProgress=True, \
directory='/home/the8ball/Documents/term8/21M.269/final/'):

15
�

import pickle
�
myFile = open(directory + str(filename), 'w')
�
pickle.dump(generatePresidentialHistograms(printProgress = printProgress), \
�

myFile)
�
print 'Dumped succesfully to', filename
�

def unpicklePresidentialInfo(filename = 'analysis.pkl'):
import pickle
globals()['allPresidents'] = pickle.load(open(filename, 'r'))
print 'Created allPresidents'
for (thisPresident, thisHist) in allPresidents.items():

globals()[str(thisPresident)] = President(thisHist)
�
print 'Created %s' % str(thisPresident)
�

def gatherAllDataForAllPresidents():
'''
Returns all the data for all the presidents sorted by key
'''
if 'allPresidents' not in globals():

unpicklePresidentialInfo()

result = {}
�
allDataKeys = []
�
for thisPresident in allPresidents.keys():
�

if allDataKeys == []:
allDataKeys = globals()[thisPresident].getDataKeys()

for thisKey in allDataKeys:
if thisKey not in result:

result[thisKey] = {}
try:

result[thisKey][thisPresident] = globals()[thisPresident].\
getDataFromSpeeches(thisKey)

except KeyError:
print "President %s doesn't have the key %s" % (thisPresident, \

thisKey)
return result

def displayDictNicely(thisDict, indentation=0):
'''
Displays each item of this dictionary on a new line
'''
for (key, value) in thisDict.items():

if isinstance(value, dict):
print '\t'*indentation + str(key)
displayDictNicely(value, indentation=indentation+1)

else:
�
print '\t'*indentation, key, value
�

16
�

def displayChangeOverTime(hist, keys, indentation=0, showOverallChange=True, \
showOriginalValues=False):
'''
Displays the difference between speeches for a given key
Dict should be sorted by data key first, and then by president
'''
if not isinstance(keys, list):

keys = [keys]

for dataKey in keys:
�
print '\t' * indentation + dataKey
�
for (key, value) in hist[dataKey].items():
�

values = value.values()
data = {key:{'Change Over Time':[values[1] - values[0], values[2] -\

values[1]]}}
if showOverallChange:

data[key]['Overall Change'] = values[-1] - values[0]
if showOriginalValues:

data[key]['Original Values'] = values
displayDictNicely(data, indentation=indentation+1)

print

class President(object):
'''
Allows for easy analysis of presidential histograms
'''

def	� __init__(self, presidentialHistogram):
�
self.hist = presidentialHistogram
�
self.histogramNames = ['cents_to_annotations_classes', \
�

'cents_to_annotations', 'annotations_to_cents_classes', \
'annotations_to_cents']
�

self.speechPrefix = 'state_of_the_union'
�
self.getHighestPitch(default=True)
�
self.getLowestPitch(default=True)
�
self.getRange(default=True)
�
self.getAveragePitch(default=True)
�

def getSpeechData(self, speechNumber, showHist=False):
'''
Shows all of the analysed data for the given speech but the histograms

only show the histograms if showHist=True
�
'''
�
result = dict(self.hist[self.speechPrefix + str(speechNumber)])
�

17
�

if not showHist:
�
for thisName in self.histogramNames:
�

del result[thisName]
�
return result
�

def getDataKeys(self):
'''
Return the valid data keys for this president
'''
return self.hist['state_of_the_union1'].keys()

def getDataFromSpeeches(self, dataKey, speeches=[1,2,3]):
'''
Returns the specified data key for each of the speeches in the list

'speeches'
'''
result = {}
for speechNum in speeches:

try:
result[speechNum] = self.hist[self.speechPrefix + \

str(speechNum)][dataKey]
except KeyError:

print "The speech %s doesn't have the key %s" % \
(self.speechPrefix + str(speechNum), dataKey)

return result

def getDataFromSpeech(self, dataKey, speechNum):
'''
Returns the specified data key for the specified speech
'''
return self.getDataFromSpeeches(dataKey=dataKey, speeches=[speechNum])

def getAllData(self, showHist=False):
'''
Gets all data for all speeches excluding the histograms

unless showHist is True
'''
result = dict(self.hist)
if not showHist:

for i in xrange(1,4):
for thisName in self.histogramNames:

del result[self.speechPrefix + str(i)][thisName]
return result

def getAllDataByKeys(self, showHist=False):
'''

18
�

Gets all data for all speeches excluding the histograms
�
unless showHist is True
�

Returns an object sorted by the Data key
�
'''
�
result = {}
�
for thisKey in self.getDataKeys():
�

if thisKey in self.histogramNames and not showHist:
continue
�

result[thisKey] = {}
�
for i in xrange(1,4):
�

try:
result[thisKey][i] = self.hist[self.speechPrefix + \

str(i)][thisKey]
except KeyError:

print "The speech %s doesn't have the key %s" % \
(self.speechPrefix + str(speechNum), dataKey)

return result

def getHighestPitch(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):
'''
Returns the value of the highest pitch used (in cents)

Must occur more than threshold times
�
'''
�
if not isinstance(speeches, list):
�

speeches = [speeches]

baseName = 'highest_pitch_'
�
if default:
�

baseName = baseName + 'default'
�

results = {}
for speech in speeches:
�

thisName = baseName
�
if threshold==None and thresholdPercentage==None:
�

thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)

elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \

thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)

else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)

19
�

http:thresholdPercentage=0.33

if thisName not in self.hist[self.speechPrefix + str(speech)]:
validPitches = [pair[0] for pair in self.hist[self.speechPrefix\

+ str(speech)]['cents_to_annotations'].items() if pair[1] >\
thisThreshold]

self.hist[self.speechPrefix + str(speech)][thisName] = \
max(validPitches)

results[speech] = self.hist[self.speechPrefix + str(speech)]\
[thisName]
�

return results
�

def getLowestPitch(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):
'''
Returns the value of the lowest pitch used (in cents)

Must occur more than threshold times
�
'''
�
if not isinstance(speeches, list):
�

speeches = [speeches]

baseName = 'lowest_pitch_'
�
if default:
�

baseName = baseName + 'default'
�

results = {}
for speech in speeches:
�

thisName = baseName
�
if threshold==None and thresholdPercentage==None:
�

thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)

elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \

thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)

else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)

if thisName not in self.hist[self.speechPrefix + str(speech)]:
validPitches = [pair[0] for pair in self.hist[self.speechPrefix\

+ str(speech)]['cents_to_annotations'].items() if pair[1] >\
thisThreshold]

self.hist[self.speechPrefix + str(speech)][thisName] = \
min(validPitches)

results[speech] = self.hist[self.speechPrefix + str(speech)]\
[thisName]
�

return results
�

20
�

http:thresholdPercentage=0.33

def getRange(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):
'''
Returns the distance in cents between the highest used pitch and the lowest one
'''
if not isinstance(speeches, list):

speeches = [speeches]

baseName = 'range_'
�
if default:
�

baseName = baseName + 'default'
�

results = {}
for speech in speeches:
�

thisName = baseName
�
if threshold==None and thresholdPercentage==None:
�

thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)

elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \

thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)

else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)

if thisName not in self.hist[self.speechPrefix + str(speech)]:
validPitches = [pair[0] for pair in self.hist[self.speechPrefix\

+ str(speech)]['cents_to_annotations'].items() if pair[1] >\
thisThreshold]

self.hist[self.speechPrefix + str(speech)][thisName] = \
max(validPitches) - min(validPitches)

results[speech] = self.hist[self.speechPrefix + str(speech)]\
[thisName]
�

return results
�

def getNumAnnotations(self, speechNum):
'''
returns the total number of annotations for a given speech
'''
return sum(self.hist[self.speechPrefix + str(speechNum)]\

['cents_to_annotations'].values())

def getAverageNumAnnotations(self):
'''
returns the average number of annotations per speech

21
�

http:thresholdPercentage=0.33

'''
�
return numpy.average([self.getNumAnnotations(i) for i in xrange(1,4)])
�

def getAveragePitch(self, speeches=[1,2,3], threshold=None, \
thresholdPercentage=0.33, default=False):
'''
Returns the average pitch above a certain threshold

weighted by it's occurence
�
'''
�
if not isinstance(speeches, list):
�

speeches = [speeches]

baseName = 'average_pitch_'
�
if default:
�

baseName = baseName + 'default'
�

results = {}

for speech in speeches:
�
thisName = baseName
�
if threshold==None and thresholdPercentage==None:
�

thisThreshold = int(self.getNumAnnotations(speech) / 200.0)
if not default: thisName += str(thisThreshold)

elif threshold==None:
thisThreshold = int(self.getNumAnnotations(speech) * \

thresholdPercentage / 100.0)
if not default: thisName += str(thresholdPercentage)

else:
thisThreshold = threshold
if not default: thisName += str(thisThreshold)

validPitches = [cent for cent in self.hist[self.speechPrefix + \
str(speech)]['cents_to_annotations'].items() if cent[1] > \
thisThreshold]

pitches = []
for (thisPitch, annotations) in validPitches:

pitches += [thisPitch] * annotations

if thisName not in self.hist[self.speechPrefix + str(speech)]:
self.hist[self.speechPrefix + str(speech)][thisName] = \

numpy.average(pitches)
results[speech] = self.hist[self.speechPrefix + str(speech)]\

[thisName]
return results

22
�

http:thresholdPercentage=0.33

MIT OpenCourseWare
http://ocw.mit.edu

21M.269 Studies in Western Music History: Quantitative
and Computational Approaches to Music History
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

