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22.101 Applied Nuclear Physics (Fall 2006) 

Lecture 22 (12/4/06) 

Nuclear Decays 

References: 

W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap 4. 

A nucleus in an excited state is unstable because it can always undergo a 

transition (decay) to a lower-energy state of the same nucleus. Such a transition will be 

accompanied by the emission of gamma radiation.  A nucleus in either an excited or 

ground state also can undergo a transition to a lower-energy state of another nucleus. 

This decay is accomplished by the emission of a particle such as an alpha, electron or 

positron, with or without subsequent gamma emission.  A nucleus which undergoes a 

transition spontaneously, that is, without being supplied with additional energy as in 

bombardment, is said to be radioactive.  It is found experimentally that naturally 

occurring radioactive nuclides emit one or more of the three types of radiations, 

α − particles, β − particles, and γ − rays. Measurements of the energy of the nuclear 

radiation provide the most direct information on the energy-level structure of nuclides.  

One of the most extensive compilations of radioisotope data and detailed nuclear level 

diagrams is the Table of Isotopes, edited by Lederer, Hollander and Perlman. 

In this chapter we will supplement our previous discussions of beta decay and 

radioactive decay by briefly examining the study of decay constants, selection rules, and 

some aspects of  α − , β − , and γ − decay energetics. 

Alpha Decay 

Most radioactive substances are α − emitters.  Most nuclides with A > 150 are 

unstable against α − decay. α − decay is very unlikely for light nuclides.  The decay 

constant decreases exponentially with decreasing Q-value, here called the decay 

energy, λα ~ exp(−c / v) , where c is a constant and v the speed of the α − particle, 
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v ∝ Qα . The momentum and energy conservation equations are quite straightforward 

in this case, as can be seen in Fig. 20.1. 

Fig. 20.1.  Particle emission and nuclear recoil in α - decay . 

p	 + p = 0 (20.1)
D α 

M Pc 2 = (M Dc 2 + TD ) + (Mα c
2 + Tα )	 (20.2) 

Both kinetic energies are small enough that non-relativistic energy-momentum relations 

may be used, 

2 2TD	 = pD / 2M D = pα / 2M D = (Mα / M D )Tα (20.3) 

Treating the decay as a reaction the corresponding Q-value becomes 

Qα	 = [M P − (M D + Mα )]c 2 

= TD + Tα 

=
M D

M 
+ 

D

Mα Tα ≈ 
A

A 
− 4 

Tα (20.4) 

This shows that the kinetic energy of the α -particle is always less than Qα . Since Qα > 
0 (Tα  is necessarily positive), it follows that α -decay is an exothermic process.  The 
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various energies involved in the decay process can be displayed in an energy-level 
diagram shown in Fig. 20.2.  One can see at a glance how the rest masses and  

Fig. 20.2.  Energy-level diagram for α -decay. 

the kinetic energies combine to ensure energy conservation.  We will see in the next 

lecture that energy-level diagrams are also useful in depicting collision-induced nuclear 

reactions. The separation energy Sα  is the work necessary to separate an α -particle 

from the nucleus, 

Sα = [M (A − 4, Z − 2) + Mα − M (A, Z )]c 2 

= B(A, Z ) − B(A − 4, Z − 2) − B(4,2) = − Qα (20.5) 

One can use the semi-empirical mass formula to determine whether a nucleus is stable 

against α -decay. In this way one finds Qα  > 0 for A > 150. Eq.(20.5) also shows that 

when the daughter nucleus is magic, B(A-4,Z-2) is large, and Qα  is large. Conversely, 

Qα  is small when the parent nucleus is magic. 

Estimating α -decay Constant 

An estimate of the decay constant can be made by treating the decay as a barrier 

penetration problem, an approach proposed by Gamow (1928) and also by Gurney and 

Condon (1928). The idea is to assume the α -particle already exists as a particle inside 

the daughter nucleus where it is confined by the Coulomb potential, as illustrated in Fig. 

20.3. The decay constant is then the probability per unit time that it can tunnel through 

the potential, 

3 



Fig. 20.3.  Tunneling of an α − particle through a nuclear Coulomb barrier. 

λα ~ ⎛⎜ 
v ⎞
⎟P (20.6)

⎝ R ⎠ 

where v  is the relative speed of the α  and the daughter nucleus, R is the radius of the 

daughter nucleus, and P the transmission coefficient.  Eq.(20.6) is a standard form for 

describing tunneling probability in the form of a rate.  The prefactor ν / R  is the attempt 

frequency, the rate at which the particle tries to tunnel through the barrier, and P is the 

probability of tunneling for each try. Recall from our study of barrier penetration (cf. 

Chap 5, eq. (5.20)) that the transmission coefficient can be written in the form 

P ~ e−γ      (20.7)  

2 

γ = 
2 r 

∫ dr(2m[V (r) − E])1/ 2 

h r1 

= 2 
∫ 
b 

dr⎢
⎡ 
2µ⎜⎜

⎛ 2Z De2 

− Qα ⎟⎟
⎞
⎥
⎤

1/ 2 

(20.8)
h R ⎢⎣ ⎝ r ⎠⎥⎦ 

with µ = Mα M D /(Mα + M D ) . The integral can be evaluated, 
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1/ 2γ = 
8Z De2 [cos−1 y − y (1− y) ] (20.9)
hv 

where y = R/b = Qα /B, B = 2ZDe2/R, Qα = µv 2 / 2 = 2Z De2 / b . Typically B is a few 

tens or more Mev, while Qα  ~ a few Mev. One can therefore invoke the thick barrier 

approximation, in which case b >> R (or Qα  << B), and y << 1. Then 

cos−1 y ~ π − y − 1 y 3 / 2 − ... (20.10)
2 6 

the square bracket in (20.9) becomes 

[ ]~ π − 2 y +O( y 3 / 2 ) (20.11)
2 

and 

γ ≈
4πZ De2 

−
16Z De2 ⎛

⎜
R ⎞
⎟ 

1/ 2 

(20.12)
hv hv ⎝ b ⎠ 

So the expression for the decay constant becomes 

λα ≈ 
v exp⎢

⎡
−

4πZ De2 

+
8 (Z De2 µR)1/ 2 

⎥
⎤ 

(20.13)
R ⎣ hv h ⎦ 

where µ  is the reduced mass.  Since Gamow was the first to study this problem, the 

exponent is sometimes known as the Gamow factor G. 

To illustrate the application of (20.13) we consider estimating the decay constant 

of the 4.2 Mev α -particle emitted by U238. Ignoring the small recoil effects, we can 

write 

Tα ~ 1 µv 2 → v ~ 1.4 x 109 cm/s,   µ  ~ Mα2 
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R ~ 1.4 (234)1/3 x 10-13 ~ 8.6 x 10-13 cm 

2− 
4πZ De2 

= −173 , 8 (Z De µR)1/ 2 
= 83 

hv h 

Thus 

P = e−90 ~ 10−39 (20.14) 

As a result our estimate is 

λα ~ 1.7x10−18  s-1, or t1/2 ~ 1.3 x 1010 yrs 

The experimental half-life is ~ 0.45 x 1010 yrs. Considering our estimate is very rough, 

the agreement is rather remarkable.  In general one should not expect to predict λα  to be 

better than the correct order of magnitude (say a factor of 5 to 10).  Notice that in our 

example, B ~ 30 Mev and Qα  = 4.2 Mev. Also b = RB/ Qα = 61 x 10-13 cm.  So the thick 

barrier approximation, B >> Qα  or b >> R, is indeed well justified. 

The theoretical expression for the decay constant provides a basis for an empirical 

relation between the half-life and the decay energy.  Since t1/2 = 0.693/α , we have from 

(20.13) 

2 2ln(t1/ 2 ) = ln(0.693R / v)+ 4πZ De / hv − 
8 (Z De µR)1/ 2 (20.15)
h 

We note R ~A1/3 ~ Z D 
1/ 3 , so the last term varies with ZD like Z D 

2 / 3 . Also, in the second 

trerm v ∝ Qα . Therefore (20.15) suggests the following relation, 

blog(t1/ 2 ) = a + (20.16)
Qα 
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with a and b being parameters depending only on ZD. A relation of this form is known as 

the Geiger-Nuttall rule. 

We conclude our brief consideration of α -decay at this point.  For further 

discussions the student should consult Meyerhof (Chap 4) and Evans (Chap 16). 

Beta Decay 

Beta decay is considered to be a weak interaction since the interaction potential is 

~ 10-6 that of nuclear interactions, which are generally regarded as strong.  

Electromagnetic and gravitational interactions are intermediate in this sense.   β -decay is 

the most common type of radioactive decay, all nuclides not lying in the “valley of 

stability” are unstable against this transition.  The positrons or electrons emitted in β -

decay have a continuous energy distribution, as illustrated in Fig. 20.4 for the decay of 

Cu64, 

Fig. 20.4. Momentum (a) and energy (b) distributions of beta decay in Cu64. (from 

Meyerhof) 
Cu 64 → Zn64 + β +ν , T-(max) = 0.57 Mev 29 30 

→28 Ni 64 + β + +ν , T+ (max) = 0.66 Mev 

7 

0

4

8

0 1β-
ra

ys
/u

ni
t m

om
en

tu
m

 
in

te
rv

al
 Λ

 (p
c)

Momentum pc, 103 gauss cm Momentum pc, 103 gauss cm
2 3

0

4

8

0 1 2

Cu64 β+

3

a

0

4

10

0 0.2

β-
ra

ys
/u

ni
t e

ne
rg

y 
in

te
rv

al
 Λ

 (T
c)

Kinetic energy Tc, Mev Kinetic energy Tc, Mev
0.4

Cu64 β-

0.6
0

4

10

0 0.2

8 8

0.4 0.6

b

Cu64 β-

Cu64 β+

Figure by MIT OCW.



The values of T± (max) are characteristic of the particular radionuclide; they can be 

considered as signatures. 

If we assume that in β -decay we have only a parent nucleus, a daughter nucleus, 

and a β -particle, then we would find that the conservations of energy, linear and angular 

moemnta cannot be all satisfied.  It was then proposed by Pauli (1933) that particles, 

called neutrino ν  and antineutrino ν , also can be emitted in β -decay. The neutrino 

particle has the properties of zero charge, zero (or nearly zero) mass, and intrinsic angular 

momentum (spin) of h / 2 . The detection of the neutrino is unusually difficult because it 

has a very long mean-free path.  Its existence was confirmed by Reines and Cowan 

(1953) using the inverse β -decay reaction induced by a neutrino, p +ν → n + β − . The 

emission of a neutrino (or antineutrino) in the β -decay process makes it possible to 

satisfy the energy conservation condition with a continuous distribution of the kinetic 

energy of the emitted β -particle. Also, linear and angular momenta are now conserved. 

The energetics of β -decay can be summarized as 

p + p + p = 0       (20.17)  
D β ν 

M Pc 2 = M Dc 2 + Tβ + Tν electron decay (20.18) 

M Pc 2 = M Dc 2 + T
β + + Tν + 2mec

2 positron decay (20.19) 

where the extra rest mass term in positron decay has been discussed previously in Chap 

11 (cf. Eq. (11.9)). Recall also that electron capture (EC) is a competing process with 

positron decay, requiring only the condition MP(Z) > MD(Z-1). Fig. 20.4 shows how the 

energetics can be expressed in the form of energy-level diagrams. 
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Fig. 20.5. Energetics of β − decay processes. (from Meyerhof) 

Typical decay schemes for 
β 

-emitters are shown in Fig. 20.6.  For each nuclear level 

there is an assignment of spin and parity.  This information is essential for determining 

whether a transition is allowed according to certain selection rules, as we will discuss 

below. 

Fig. 20.6.  Energy-level diagrams depicting nuclear transitions involving beta decay.  
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Experimental half-lives of β -decay have values spread over a very wide range, 

from 10-3 sec to 1016 yrs. Generally, λβ ~ Qβ 
5 . The decay process cannot be explained 

classically.  The theory of β -decay was developed by Fermi (1934) in analogy with the 

quantum theory of electromagnetic decay.  For a discussion of the elements of this theory 

one can begin with Meyerhof and follow the references given therein.  We will be 

content to mention just one aspect of the theory, that concerning the statistical factor 

describing the momentum and energy distributions of the emitted β  particle. Fig. 20.7 

shows the nuclear coulomb effects on the momentum distribution in β -decay in Ca (Z = 

20). One can see an enhancement in the case of β − -decay and a suppression in the case 

of β + -decay at low momenta.  Coulomb effects on the energy distribution are even more 

pronounced. 

Fig. 20.7. Momentum distributions of β -decay in Ca. 
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Selection Rules for Beta Decay 

Besides energy and linear momentum conservation, a nuclear transition must also 

satisfy angular momentum and parity conservation.  This gives rise to selection rules 

which specify whether a particular transition between initial and final states, both with 

specified spin and parity, is allowed, and if allowed what mode of decay is most likely.  

We will work out the selection rules governing β −  and γ -decay. For the former 

conservation of angular momentum and parity are generally expressed as 
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I P = I D + Lβ + S β (20.17) 

π P = π D (−1)Lβ (20.18) 

where Lβ  is the orbital angular momentum and Sβ  the intrinsic spin of the electron-

antineutrino system.  The magnitude of angular momentum vector can take integral 

values, 0, 1, 2, …, whereas the latter can take on values of 0 and 1 which would 

correspond the antiparallel and parallel coupling of the electron and neutrino spins.  

These two orientations will be called Fermi and Gamow-Teller respectively in what 

follows. 

In applying the conservation conditions, the goal is to find the lowest value of Lβ 

that will satisfy (20.17) for which there is a corresponding value of Sβ  that is compatible 

with (20.18). This then identifies the most likely transition among all the allowed 

transitions. In other words, all the other allowed transitions with higher values of Lβ , 

which makes them less likely to occur.  This is because the decay constant is governed by 

the square of a transition matrix element, which in term can be written as a series of 

contributions, one for each Lβ  (recall the discussion of partial wave expansion in cross 

section calculation, Appendix B, where we also argue that the higher order partial waves 

are less likely the low order ones, ending up with only the s-wave), 

2 2 22λβ ∝ M = M (Lβ = 0) + M (Lβ = 1) + M (Lβ = 2) + ... (20.19) 

Transitions with Lβ  = 0, 1, 2, … are called allowed, first-borbidden, second-

forbidden,…etc. The magnitude of the matrix element squared decreases from one order 

to the next higher one by at least a factor of 102. For this reason we are interested only in 

the lowest order transition that is allowed. 

To illustrate how the selection rules are determined, we consider the transition 
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He6 (0+ )→ Li 6 (1+ )2 3 

To determine the combination of Lβ  and Sβ  for the first transition that is allowed, we 

begin by noting that parity conservation requires Lβ  to be even. Then we see that Lβ  = 0 

plus Sβ  = 1 would satisfy both (20.17) and (20.18).  Thus the most likely transition is the 

transition designated as allowed, G-T. Following the same line of argument, one can 

arrive at the following assignments. 

O14 (0+ )→ N 14 (0+ ) allowed, F8 7 

n1 (1/ 2+ )→ H 1 (1/ 2+ ) allowed, G-T and Fo 1 

Cl38 (2− )→ A38 (2+ ) first-borbidden, GT and F17 18 

Be10 (3+ )→5 B
10 (0+ ) second-forbidden, GT4 

Parity Non-conservation 

The presence of neutrino in β -decay leads to a certain type of non-conservation 

of parity. It is known that neutrinos have instrinsic spin antiparallel to their velocity, 

whereas the spin orientation of the antineutrino is parallel to their velocity (keeping in 

mind that ν  and ν  are different particles). Consider the mirror experiment where a 

neutrino is moving toward the mirror from the left, Fig. 20.8.  Applying the inversion 

symmetry operation 

12 



Fig. 20.8.  Mirror reflection demonstrating parity non-sonserving property of neutrino.  

(from Meyerhof) 

( x → −x ), the velocity reverses direction, while the angular momentum (spin) does not.  

Thus, on the other side of the mirror we have an image of a particle moving from the 

right, but its spin is now parallel to the velocity so it has to be an antineutrino instead of a 

neutrino. This means that the property of ν  and ν , namely definite spin direction 

relative to the velocity, is not compatible with parity conservation (symmetry under 

inversion). 

For further discussions of beta decay we again refer the student to Meyerhof and 

the references given therein. 

Gamma Decay 

An excited nucleus can always decay to a lower energy state by γ -emission or a 

competing process called internal conversion.  In the latter the excess nuclear energy is 

given directly to an atomic electron which is ejected with a certain kinetic energy.  In 

general, complicated rearrangements of nucleons occur during γ -decay. 

The energetics of γ -decay is rather straightforward.  As shown in Fig. 20. 9 a γ 

is emitted while the nucleus recoils. 

Fig. 20.9. Schematics of γ -decay 

hk + p = 0 (20.20)
a 

M * c 2 = Mc 2 + Eγ + Ta  (20.20) 
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The recoil energy is usually quite small, 

Ta = pa 
2 / 2M = h 2 k 2 / 2M = Eγ 

2 / 2Mc 2 (20.21) 

Typically, Eγ  ~ 2 Mev, so if A ~ 50, then Ta ~ 40 ev. This is generally negligible. 

Decay Constants and Selection Rules 

Nuclear excited states have half-lives for γ -emission ranging from 10-16 sec to > 

100 years. A rough estimate of λγ  can be made using semi-classical ideas.  From 

Maxewell’s equations one finds that an accelerated point charge e radiates 

electromagnetic radiation at a rate given by the Lamor formula (cf. Jackson, Classical 

Electrodynamics, Chap 17), 

dE 2 e2 a 2 

= 3 (20.22)
dt 3 c 

where a is the acceleration of the charge.  Suppose the radiating charge has a motion like 

the simple oscillator, 

x(t) = xo cosωt (20.23) 

where we take xo 
2 + yo 

2 + zo 
2 = R 2 , R  being the radius of the nucleus.  From (20.23) we 

have 

a(t) = Rω 2 cosωt (20.24) 

To get an average rate of energy radiation, we average (20.22) over a large number of 

oscillation cycles, 

⎛ dE ⎞ 2 R 2ω 4e2
2 R 2ω 4 e2 

⎜ ⎟ = 3 (cos ωt)avg ≈ 3 (20.25)
⎝ dt ⎠avg 3 c 3c 
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Now we assume that each photon is emitted during a time intervalτ  (having the physical 

significance of a mean lifetime).  Then, 

⎛ dE ⎞ hω
⎜ ⎟ = (20.26)
⎝ dt ⎠avg τ 

Equating this with (20.25) gives 

e2 R 2 Eγ 
3 

λγ ≈ 4 3 (20.27)
3h c 

If we apply this result to a process in atomic physics, namely the de-excitation of an atom 

by electromagnetic emission, we would take R ~ 10-8 cm and Eγ  ~ 1 ev, in which case 

(20.27) gives 

λγ ~ 106 sec−1 , or t1/ 2 ~ 7 x 10-7 sec 

On the other hand, if we apply (20.27) to nuclear decay, where typically R ~ 5 x 10-13 cm, 

and Eγ  ~ 1 Mev, we would obtain 

λγ ~ 1015 sec-1, or t1/ 2  ~ 3 x 10-16 sec 

These result only indicate typical orders of magnitude.  What Eq.(20.27) does not explain 

is the wide range of values of the half-lives that have been observed.  For further 

discussions we again refer the student to references such as Meyerhof. 

Turning to the question of selection rules for γ -decay, we can write down the 

conservation of angular momenta and parity in a form similar to (20.17) and (20.18), 

I i = I f + Lγ (20.28) 
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π i = π f πγ (20.29) 

Notice that in contrast to (20.27) the orbital and spin angular momenta are incorporated 

in Lγ , playing the role of the total angular momentum.  Since the photon has spin h  [for 

a discussion of photon angular momentum, see A. S. Davydov, Quantum Mechanics 

(1965(, pp. 306 and 578], the possible values of Lγ are 1 (corresponding to the case of 

zero orbital angular momentum), 2, 3, …For the conservation of parity we know the 

parity of the photon depends on the value of Lγ . We now encounter two possibilities 

because in photon emission, which is the process of electromagnetic multipole radiation, 

one can have either electric or magnetic multipole radiation, 

π γ  = (−1)Lγ electric multipole 

− (−1)Lγ  magnetic multipole 

Thus we can set up the following table, 

Radiation Designation Value of Lγ π γ 

electric dipole E1 1 -1 

magnetic dipole M1 1 +1 

electric quadrupole E2 2 +1 

magnetic quadrupole  M2 2 -1 

electric octupole E3 3 -1 

etc. 

Similar to the case of β -decay, the decay constant can be expressed as a sum of 

contributions from each multipole [cf. Blatt and Weisskopf, Theoretical Nuclear Physics, 

p. 627], 

λγ = λγ (E1) + λγ (M1) + λγ (E2) + ... (20.30) 
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provided each contribution is allowed by the selection rules.  We are again interested 

only in the lowest order allowed transition, and if both E and M transitions are allowed, E 

will dominate.  Take, for example, a transition between an initial state with spin and 

parity of 2+ and a final state of 0+. This transition requires the photon parity to be 

positive, which means that for an electric multipole radiation Lγ  would have to be even, 

and for a magnetic radiation it has to be odd.  In view of the initial and final spins, we see 

that angular momentum conservation (20.28) requires Lγ  to be 2. Thus, the most likely 

mode of γ -decay for this transition is E2.  A few other examples are: 

1+ → 0+ M1 

1 − 1 + 

→ E1 
2 2 

9 + 1 − 

→ M4 
2 2 

0+ → 0+ no γ -decay allowed 

We conclude this discussion of nuclear decays by the remark that internal 

conversion (IC) is a competing process with γ -decay. The atomic electron ejected has a 

kinetic energy given by (ignoring nuclear recoil) 

Te = Ei − E f − EB (20.31) 

where Ei − E f is the energy of de-excitation, and EB  is the binding energy of the atomic 

electron. If we denote by λe  the decay constant for internal conversion, then the total 

decay constant for de-excitation is 

λ = λγ + λe (20.32) 
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