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7.1 Mixed States 

Until now we have considered systems whose state was unequivocally described by a state vector. Although the 
result of an observable measurement on the state is probabilistic, until now the state of the system was well defined 
and evolved in a deterministic way. When we presented the fundamental concepts of QM we defined the state as a 
complete description of the set of probabilities for all observables. In particular, we put this into the context of the 
preparation step of an experiment. Since in order to obtain information about a system, the experiment has to be 
repeated many times, often we deal with an ensemble of systems (either an ensemble of copies of the same systems, 
or an ensemble in time of the same system). In many cases, when we repeat in experiment, it might be difficult to 
prepare the system in exactly the same state (or prepare perfectly identical copies), thus there is some uncertainty 
on the initial state. 
To describe this situation in more abstract terms, we are thus interested in the case where our information regarding 
the system is not complete. Thus we will associate the concept of state of a system with an ensemble of similarly 
prepared systems. By this, we mean an ensemble of systems that could have been prepared in principle, we do not 
need to refer to a a concrete set of systems that coexist in space. 
The first postulate now reads: to each state corresponds a unique state operator ρ. The dynamical variable X over the 
ensemble represented by the state operator ρ has expectation value given by: (X) = Tr {ρX} /Tr {ρ} = 

� (i|ρX |i)i
(Notice that here the summation is done over some basis, but any basis is equivalent as it gives the same result). If 
we impose to ρ to have trace 1, the expectation value of X is just (X) = Tr {ρX}. We impose further constraints on 
ρ: 

– Tr {ρ} = 1 as said. 
– ρ is self-adjoint ρ† = ρ, so that (X) is real. 
– ρ is non-negative (u|ρ |u) ≥ 0. 

These properties will allow us to associate a probability meaning to ρ. The state operator ρ can be expressed as 
the sum of projectors: ρ = 

�N 
ρn |un) (un|, where N is the dimension of the space (that is, ρ has a spectral n=1 

representation in terms of projectors). With the properties established above, we have: 
�

ρn = 1, ρn = ρ∗ , that is, n n
the coefficients are real: 0 ≤ ρn ≤ 1.
 
If the system can also be described by a state vector |ψ), the state operator is given by: ρ = |ψ) (ψ|. A state that
 
can be written in this way is called pure state.
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Since the state operator for a pure state is a projector, it is an idempotent: ρ2 = ρ (Proof: (|ψ) (ψ|)(|ψ) (ψ|) = |ψ) (ψ|). 
Therefore, the eigenvalues of ρ and ρ2 are the same, or ρ2 n = ρn and they must be either 0 or one. Since we know 
that the sum of the eigenvalues, which is equal to the trace, must be one, we can deduce that the state operator for 
a pure state has just one eigenvalue equal one and all the other are zero. This is the definition of a pure state, a state 
with only one non-zero eigenvalue (and equal to 1). An equivalent formulation is to say that Tr

{
ρ2
} 
= 1. 

A more general state operator can be written as a convex sum of pure states. To define a convex sum, let’s consider 
a set of state operators {ρi} and the operator ρ = aiρi. If 0 ≤ ai ≤ 1∀i and ai = 1, the sum is said to be convex 
and ρ is a good state operator. 

? Question: Show that the representation as a convex sum of pure states is not unique. 
Consider ρ = a|ψ)(ψ|+ (1 − a)|ϕ)(ϕ| with 0 ≤ a ≤ 1. Now define 

√ √ 
|x) = a|ψ)+ 1− a|ϕ) 

√ √ 
|y) = a|ψ) − 1− a|ϕ) 

1
2
|x) (x|+ 1

2
|y) (y|.By substitution, ρ = 

There is actually an infinite number of ways of representing ρ. A state operator that is not pure, is called mixed
 
state. The properties of a mixed state are that Tr

{
ρ2
} 
< 1 and it cannot be expressed in terms of one pure state
 

only.
 
As said, the state operator for a pure state is the outer product of the pure state vector and its dual: ρ = |ψ) (ψ|.
 
The expectation value of an observable is therefore (X) = Tr {|ψ) (ψ|X} = Tr {(ψ|X |ψ)} since the trace is invariant
 
under permutation. We find the known result: (X) = (ψ|X |ψ).
 
Imagine we have two state operators in the same Hilbert space. We have:
 

0 ≤ Tr {ρ1ρ2} ≤ 1 

the equality Tr {ρ1ρ2} = 1 is reached only if the two state operator are equal and pure. 

7.2 Dynamics of mixed states and operators 

For a pure state, the evolution is dictated by the Schrödinger equation: 

d |ψ)
i = H |ψ)
dt 

which has formal solution: |ψ(t)) = U(t, 0) |ψ(0)). The unitary operator U (the propagator) that gives the evolution 
is the solution of the equation: 

dU 
i = HU(t, 0) 
dt 

If the Hamiltonian is time-independent, the propagator has the form: U(t, 0) = e−iHt. The dynamics of a pure state 
in state operator form (ρ = |ψ) (ψ|) is simply given by: 

ρ(t) = |ψ(t)) (ψ(t)| = U(t, 0) |ψ(0)) (ψ(0)|U †(0) = U(t, 0)ρ(0)U †(t, 0) 

The equivalent of the Schrödinger equation for the state operators is the Liouville equation: 

dρ 
= −i [H, ρ] ,

dt 

which can be easily derived from the evolution of vector states described by Schrödinger equation. 
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? Question: Derive the Liouville equation.
 
Given the definition of density matrix as a convex sum of pure states:
 

 

ρ = pα|ψα)(ψα|
α 

where each vector state obeys Schrödinger equation: 

˙in|ψ) = H|ψ) 

we obtain, by taking the derivative of the first equation and inserting the second one: 

inρ̇ = in 
L

pα(|ψ̇α)(ψα|+ |ψα)(ψ̇α|) 
L

α 

= pα(H|ψα)(ψα|+ |ψα)(ψα|H) = [H, ρ]α 

The solution of the Liouville equation is: 
ρ(t) = U(t)ρ(0)U †(t) 

7.2.1 Heisenberg picture 

As the Liouville equation is more general than the Schrödinger equation, we would like to reformulate the QM 
dynamics starting from it. We are thus interested in obtaining the evolution of the observables in the Heisenberg 
picture starting from the Liouville equation. 
The expectation value of an observable O at time t is given by the trace: (O(t)) = Tr {ρ(t)O} = Tr

{
U(t, 0)ρ(0)U †O

} 
= 

Tr
{
ρ(0)U †OU 

}
. Notice that using the invariance of the trace under cyclic permutation it is possible to assign the 

time dependence either to the state operator (Scrhödinger picture) or to the operator (Heisenber picture). In the first 
one, the state evolves forward in time while the observable operator is time-independent. In the Heisenberg picture 
instead, the observable evolves ”backward” (since as we saw U † = U(−t), at least for time-independent hamiltonian) 
and the state operator is fixed. With this last picture we can follow the evolution of the observable without having 
to establish a state operator, that is, we can generalize this evolution to a class of state operators. 
The operator in the Heisenberg picture at time t is given by: OH (t) = U †(t, 0)OU(t, 0) and it evolves following the 
equation: 

dOH ∂O 
)

= i [H(t), OH (t)] + 
dt ∂t H 

The observable expectation value must be the same in the two pictures: 

d(O(t)) { 
dρ ∂O 

} {
∂O 
}

= Tr O + ρ = Tr iρ(t) [H, O] + ρ(t)
dt dt ∂t ∂t 

and: 
d(O(t)) { 

dOH 
} { 

∂O 
) } 

= Tr ρ(0) = Tr iρ(0) [H, OH ] + ρ(0) 
dt dt ∂t H 

7.2.2 Interaction picture 

We revisit the interaction picture also in the context of the Liouville equation. Assume that the overall Hamiltonian 
of the system can be written as H = H0 + V (where we separate the known, trivial part H0 from the interesting 
one, V ). The transformation to the interaction picture is operated by the propagator UI (t) = e−iH0t, such that 

† †|ψ)I = U |ψ) and AI = U AUI .I I 
†The evolution of the density matrix in the interaction picture ρI = U ρUI , is then: I 

˙† † †iρ̇I = iU ρ(t)UI + iUI ρUI + iU UI˙ ρ(t) ˙I I 
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with 
†iU̇ † 

I = −H0U (t) and iU̇I = UI (t)H0I 

We obtain therefore: 
−H0U

†ρ(t)U + U †[H, ρ(t)]U + U †ρ(t)UH0 

= −[H0, ρI (t)] + [U †(t)H(t)U(t), ρI (t)] 
= [HI , ρI (t)] 

† where HI = U (t)V UI (t).I 

A. Example: rf Hamiltonian in the rotating wave approximation 

The interaction picture is particularly useful when the Hamiltonian is composed by a large part time independent 
−iH0 t(H0) and a small, time-dependent part H1(t). The interaction picture is defined by the operator U(t)I = e , 

which would give the evolution of the state operator if H1 were zero. The interaction picture allows to make more 
evident the effect of the perturbation on the system, by isolating it and often by simplifying the calculations. 
Let for example consider the following Hamiltonian acting on a two level system 19: 

−iω0tσz σxe iω0tσzH = ω0σz +ω1e , ω0 ≫ ω1, ρ(0) = (11 + ǫσz )/2 �
H
��

0 

� � �� �
H1 

Since [H0, σz] = 0, in the absence of the perturbation the system does not evolve, it is a constant of the motion. 
−iω0 tσzLet us define an unitary operator R = e that operates the transformation to the interaction picture. We can
 

rewrite the Hamiltonian as: H = ω0σz + Rω1σxR
† .
 

The state operator in the interaction picture is given by: ρ(t)I = R†(t)ρ(t)R(t). Its evolution is therefore:
 

dρI dR† dρ dR 
= ρR(t) +R†(t) R + R†(t)ρ 

dt dt dt dt 

Notice that dR = −iω0σz and 
dR† 

= iω0σz. We obtain:dt dt 

dρI dρ 
= i [ω0σz , ρ] +R†(t) R(t)

dt dt 

and using Liouville equation we have: 

dρI dρI 
= i [ω0σz , ρ]− iR† �H, ρ]R = −iR†[H1, ρ]R = ω1[R

†(RσxR
†)R, R†ρR

� 
⇒ = −i [ω1σx ρI (t)]

dt dt 

Notice that this is true in general: 

dρI 
� 
˜
� 

˜ † = −i H1, ρI , , H = U (t)H1(t)UI (t)Idt 

7.3 Partial Trace 

We define the partial trace of a bipartite system on HAB = HA ⊗HB as a linear map TrB {·} from HAB → HA (or 
HB ) that is determined by the equation 

TrB {A ⊗B} = ATr {B} 
(where A, B are operators on HA, HB respectively). This can be extended to more general composite (multipartite)
 
systems. As for the trace, the partial trace is independent of the basis.
 
Why do we define the partial trace? Consider a composite system composed of two parts, A and B, and an ob
servable of the first system only OA. The expectation value of the observable on the system A alone is given by:
 

19 It could be a nuclear spin in a magnetic field under the action of a weaker rf field 
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(OA) = Tr {OAρA} and on the composite system: (OA) = Tr {(OA ⊗ 11B )ρAB }. We can rewrite this last equation 
as (OA) == TrA {OATrB {ρAB }} where TrB denote the partial trace on the B system. Thus, to obtain information 
about observables of a subsystem we can first take the partial trace of the state density operator and then use that 
to calculate the expectation value. 
We use also the partial trace to reduce the dimensionality of the system: ρA = TrB {ρAB }. 
To calculate the partial trace, write ρ as a sum of tensor products ρ = ijkh mijkh |ai) (aj |⊗ |bk) (bh| 20 and for each 

term we have: TrB {|ai) (aj | ⊗ |bk) (bh|} = |ai) (aj |Tr {|bk) (bh|}. 
We are often interested in describing a particular system inside a larger space and we would like to just describe 
the state of this system ρS without having to describe or know the overall system. The larger system containing the 
subsystem which we are interested in, can be the environment, a cavity, a field. By doing a partial trace over the 
environment degrees of freedom we discard the knowledge about them. In general we will obtain a state operator 
that describes a mixed state (that as we saw, describe some lack of knowledge onthe system). The state operator can 
thus be seen as resulting from the reduction of a larger system to a smaller one, via the partial trace. If the initial 
multipartite system was entangled, the reduced system is left in a mixed state, since some information was lost. The 
partial trace reveals the level of entanglement of a state. 

7.3.1 Examples 

1) Pure product state (separable): ρAB = ρA ⊗ ρB . The reduced density matrix is therefore: ρA = TrB {ρAB } = ρA.r 
No information is lost about the A state.
 
2) Pure entangled state: Bell State. ρ = (|00)+ |11))⊗ ((00|+ (11|)/2 = (|00) (00|+ |00) (11|+ |11) (00|+ |11) (11|)/2.
 
The partial trace over B picks up only the diagonal terms and it gives the reduced matrix: ρA = TrB {ρ} =
 r 
(|0) (0|+ |1) (1|)/2. All the information about the system A is now lost, since it is now in the maximally mixed state 
(the identity). 

7.4 Entanglement measurement 

We have seen examples of entangled states, but we haven’t given a formal definition of entanglement yet. This is 
because it is not easy to give such a definition in the most general case. It is however possible to do so in the simplest 
case of bipartite pure systems. In that case we say that a state is entangled if it cannot be written as |ψ) = |a) ⊗ |b). 
If such a decomposition exists, the state is called a separable or product state. The Schmidt decomposition can be 
used to check if the state is separable. 

� Theorem: For any vector v on the tensor product H1 ⊗H2 of two Hilbert spaces, there exist orthonormal sets on 
m1 2 1 2each space {ui },{ui } such that v can be written as v = i ⊗ u with ai non-negative.i=1 aiu i 

The proof is obtained from the singular value decomposition21 . 
The number m of the vectors needed for the decomposition is called the Schmidt rank and the ai are the Schmidt 

2coefficients. If the Schmidt rank of a vector is one, the associate state is separable. Note that a are the eigenvaluesi 
of the reduced density matrix obtained by taking the partial trace over the other system. As such, the rank is easily
 
calculated by taking the partial trace.
 
The Schmidt rank is sometimes used to quantify entanglement for pure, bipartite systems. There exists many other
 
measure of entanglement, however they coincide at least for this simplest case. For more complex cases, multi-partite,
 
mixed states, the measures are not equivalent and sometimes ill-defined.
 

A. Concurrence 

One of the most used metrics for pure bipartite states is the concurrence. It can be operatively defined as: C = 
2|αδ −βγ|, where the 4 coefficients are defined as: |ψ) = α |00)+β |01)+γ |10)+ δ |11). This metric has the following 
properties: 

20 Notice that by the Schmidt theorem (see later) we can always find such decomposition. 
21 The proof is presented in M. Nielsen & I. L. Chuang, Quantum computation and quantum information Cambridge University 
Press (2000). 
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1. The concurrence is bounded by 0 and 1: 0 ≤ C ≤ 1. 
2. C = 0 iif the state is separable. 
3. C = 1 for any maximally entangled state. 

The four Bell States are maximally entangled states. They correspond to the triplet and singlet manifolds: 

|ϕ+) = (|00)+ |11))/2 |ϕ−) = (|00) − |11))/2 
|ψ+) = (|01)+ |10))/2 |ψ−) = (|01) − |10))/2 

We can go from one of the Bell State to another with simple local operations (e.g. σ1 |ϕ+) = |ψ+)), but local x 
operations (that is, operations on single qubit) cannot change the degree of entanglement.
 
The concurrence can be used to calculate the entanglement even for a mixed state of two qubits. For mixed qubit,
 
an equivalent (more general) definition is given by
 

C(ρ) ≡ max(0, 
�
λ1 −
�
λ2 −
�
λ3 −
�
λ4) 

in which λ1, ..., λ4 are the eigenvalues of 

Λ = ρ(σy ⊗ σy )ρ ∗ (σy ⊗ σy ) 

in decreasing order (ρ∗ is the complex conjugate of the density matrix). 

B. Entropy 

The von Neumann entropy is defined as 
S(ρ) = −Tr {ρ log ρ} 

The entropy of the reduced density matrix is a good measure of entanglement: 

E → S(ρA) = −Tr {ρA log ρA} 

where ρA = TrB {ρ}. We can prove that this quantity is the same independently of which subsystem we trace over 
first. 

C. Purity 

We can also consider the purity of the reduced state as a measure of entanglement 

E → P ur(ρA) = −Tr
{
ρ2 
} 
.A

Reference 
Dagmar Bruss, Characterizing entanglement, Journal of Mathematical Physics, 43, 9 (2002) 

7.5 Mixed States and interpretation of the density matrix 

We have seen how a mixed state emerged naturally from tracing over one part of a composite system, when the two 
parts were entangled. Now we can also introduce a density operator as a probabilistic description of a system, instead 
of the reduced system of a larger one. We consider an ensemble of systems: this ensemble can arise either because 
there are many copies of the same system (as for example in NMR, where there are 1018 molecules in the sample) or 
because we are making many experiments on the same system (for example in a photon counting experiment from 
the same molecule). In this last case we have an ensemble over the time. The requirements on the ensemble are 

1. that the elements of the ensemble do not interact with each other (first type of ensemble), and 
2. that the system does not have memory (ensemble over time). 

With these requirements, the physical ensembles we are considering are equivalent to a more abstract concept of 
ensemble, as seen at the beginning of the chapter. 

56 



�

7.5.1 Classical Macro-states 

In classical statistical mechanics, equilibrium properties of macroscopic bodies are phenomenologically described 
by the laws of thermodynamics22 . The macro-state M depends on a relatively small number of thermodynamic 
coordinates. To provide a more fundamental derivation of these thermodynamic properties, we can examine the 
dynamics of the many degrees of freedom N , comprising a macroscopic body. Description of each micro-state µ, 
requires an enormous amount of information, and the corresponding time evolution is usually quite complicated. 
Rather than following the evolution of an individual (pure) micro-state, statistical mechanics examines an ensemble 
of micro-states corresponding to a given (mixed) macro-state. It aims at providing the probabilities pM (µ), for the 
equilibrium ensemble. 

A. Microcanonical ensemble 

Our starting point in thermodynamics is a mechanically and adiabatically isolated system. In the absence of heat or 
work input to the system, the internal energy E, and the generalized coordinates x, are fixed, specifying a macro-state 
M = (E, x). The corresponding set of individual micro-states form the microcanonical ensemble. All micro-states 
are confined to the surface H(µ) = E in phase space. The probability distribution function for a microstate µ of 
Hamiltonian H is thus just given by the number of accessible states Ω(E) at the fixed energy E: 

1 
pE (µ) = δ(H(µ) − E)

Ω(E, x) 

B. Canonical ensemble 

Instead of fixing the energy of the system, we can consider an ensemble in which the temperature of the system is 
specified and its internal energy is then deduced. This is achieved in the canonical ensemble where the macro-states, 
specified by M = (T, x), allow the input of heat into the system, but no external work. The system S is maintained 
at a constant temperature through contact with a reservoir R. The reservoir is another macroscopic system that 
is sufficiently large so that its temperature is not changed due to interactions with S. The probability distribution 
function (p.d.f.) for a microstate µ of Hamiltonian H in the canonical ensemble is 

−βH(µ)e
pT (µ) = ,

Z(T, x)

where the normalization Z(T, x) = {µ} e
−βH(µ) is the partition function and β = 1/kbT (with kb the Boltzmann 

factor). Unlike in a microcanonical ensemble, the energy of a system exchanging heat with a reservoir is a random 
variable, and it is e.g. possible to define a probability distribution for the energy itself (by changing variables from 
µ to H(µ) in the p.d.f. above.) 

C. Gibbs and Grand-canonical ensemble 

A generalization of the canonical ensemble is to allow the energy to vary by both the addition of heat and work. The 
Gibbs canonical ensemble describes a system where (mechanical) work is done (which changes the internal variables 
x). In the Grand-canonical ensemble instead chemical work is performed (which varies the number of particles). Thus 
the chemical potential µc is fixed and N can vary. 
[The chemical potential of a thermodynamic system is the amount by which the energy of the system would change 
if an additional particle were introduced, with the entropy and volume held fixed. The chemical potential is a 
fundamental parameter in thermodynamics and it is conjugate to the particle number.] 

22 (Note: this section and the next one is taken from Prof. Kardar 8.333 “Statistical Mechanics I” notes as available on OCW, 
in some points with only small changes). 
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D. Entropy 

Given a probability distribution, we can define the entropy S as 

S = −kb
 

pa log(pa) 
a 

(with the convention that x log(x) → 0 for x → 0) where pa describe the probability distribution (0 ≤ pa ≤ 1, 
pa = 1). It is a measure of our knowledge about the state of the system. a 

For example, if pj = 1, pi = 0, ∀i  j, S = 0 (minimum entropy, maximum knowledge). If instead we have a uniform = 
distribution pi = 1/N , ∀i, S is maximum: 

1 
� 

1 
)

S = −kb 

 
log = kb log(N). 

N N 
i 

In the ensemble interpretation of the density matrix, the entropy S(ρ) = −kbTr {ρ log ρ} can be seen to have the same 
meaning as in classical statistics, since we give a probabilistic meaning to the density matrix. Given the decomposition 
into pure states: ρ = pi |ψi) (ψi| we obtain that S(ρ) = −kb i pi log (pi). In particular the entropy is maximized 
for the identity state. 
The entropy S describes the lack of knowledge in the system and it can also be used to quantify subjective estimates of 
probabilities. In the absence of any information, the best unbiased estimate is that all N outcomes are equally likely. 
This is the distribution of maximum entropy. If additional information is available, the unbiased estimate is obtained 
bymaximizing the entropy subject to the constraints imposed by this information. The entropy maximization method 
corresponds to finding the best unbiased estimate by minimizing the amount of information that we introduce in the 
estimate (given what we know about the distribution). 
For example, in the canonical ensemble, we maximize the entropy given a fixed average energy. The canonical ensemble 
can in fact exchange energy with a large heath bath, so that the system is thermalized and the energy kept fixed. 
The microcanonical ensemble instead describes an isolated system, where the possible states of the system have the 
same energy and the probability for the system to be in any given state is the same. 

7.5.2 Quantum Macro-states 

We can as well formulate a statistical theory for QM. In QM we have seen already that micro-states are described 
by vectors in Hilbert spaces, evolving unitarily according to the Schrödinger equation. Unlike in classical mechanics, 
the value of an operator O is not uniquely determined for a particular micro-state. It is instead a random variable, 
whose average in a state |ψ) is given by (O) = (ψ|O|ψ). 
As in the classical case, we can define quantum macro-states describing ensembles of micro-states. Macro-states of 
the system depend on only a few thermodynamic functions. We can form an ensemble of a large number N of micro
states µa corresponding to a given macrostate. The different micro-states occur with probabilities pa. (For example 
pa = 1/N in the absence of any other information.) When we no longer have exact knowledge of the microstate, it 
is said to be in a mixed state. 
A mixed quantum state is obtained from a set of possible states {|ψa)}, with probabilities {pa}. The ensemble average 
of the quantum mechanical expectation value of an observable O is thus 

(O) =
 

pa (ψa|O |ψa) =
 

pa(ψa|n) (n|O |m) (m|ψa) =
 

(m|ψa)pa(ψa|n) (n|O |m) = Tr {ρO}
a m,n,a m,n,a

where we defined the density matrix:  
pa |ψa) (ψa|

a 

with the properties seen above (trace normalization to 1, hermiticity, positivity). We have also already seen that the 
density matrix obeys the Liouville equation: 

dρ 
in = [H, ρ]
dt 
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dρEquilibrium requires time independent averages, and suggests = 0. This condition is satisfied by choosing ρ = ρ(H),dt 
so that [ρ(H), H] = 0. ρ may also depend on conserved quantities such that [H, L] = 0. Various equilibrium quantum 
density matrices can now be constructed in analogy to classical statistical mechanics. For example, it is possible to 
use this minimization of the entropy to calculate the density matrix describing a mixed state. 

A. Microcanonical ensemble: 

As the internal energy has a fixed value E, a density matrix that includes this constraint is 

δ(H− E)
ρ(E) = 

Ω(E) 

In the matrix representation this can be written as 

1 
ρn,m = (n| ρ |m) = pa(m|ψa)(ψa|n) = δ(En − E)δn,m,

Ω 
a 

where H |n) = En |n). Thus, only eigenstates of the correct energy can appear in the quantum wave-function and 

(for pa = 1/N) such states on average have the same amplitude, |(n|ψa)|2 = 1/Ω. This is equivalent to the classical 
postulate of equal a priori equilibrium probabilities. The Ω eigenstates of energy E are combined in a typical micro
state with independent random phases. Note that the normalization condition Tr {ρ} = 1, implies that Ω(E) = 

δ(E − En) is the number of eigenstates of H with energy E. n 
Notice that we can also obtain the same result by using the maximization of the entropy method. For a microcanonical 
ensemble, we have no other knowledge on the system than the normalization constraint (Tr {ρ} = 1). We thus want 
to find an unbiased estimate that reflects this minimum knowledge by maximizing the entropy. We thus calculate 
the density matrix by posing: { 

max(S) 
Tr {ρ} = 1 

We can use the Lagrangian multiplier method to solve this problem. Define a function L = S − λ [Tr {ρ} − 1], where 
λ is a coefficient that multiply the constraint condition. The constrained maximum is found at the maximum of the 
function L: 

dL{ 
= 0 → −kbTr {log2 ρ + 11} − λTr {11} = 0dρ
 

dL
 = 0 → Tr {ρ} = 1dλ 

We therefore find ρ ∝ 11, since log(ρ) ∝ 11 from the first equation. From the normalization condition we obtain: 
ρii = 1/N , where N is the dimension of the Hilbert space. This expresses the same condition as above (although for 
a discrete system). 

B. Canonical ensemble: 

A canonical ensemble describes a system with a fixed temperature. A fixed temperature T = 1/(kB β) can be achieved
 
by putting the system in contact with a reservoir. The canonical density matrix is then obtained by maximizing the
 
system entropy under the constrain of a given average energy.
 
If the average energy is fixed we have another condition, (E) = Tr {Hρ} in addition to normalization. Therefore:
 

L = −kB Tr {ρ log2 ρ} − λ1 [Tr {ρH} − (E)]− λ2 [Tr {ρ} − 1] 

We can now calculate the maximum of L: 
kbTr {log2 ρ + 1} − λ1Tr {H} − λ2Tr {11} = 0 → log2 ρ = −λ1H+ K11 

The density matrix is therefore an exponential: ρ = e−βH/Z, where β = 1/(kBT ) and Z is the partition function, 
determined by the normalization condition: 

−βEnZ = Tr
{
e −βH
} 
= e 

n 
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(where the last expression is calculated in the energy eigenbasis). 
We can calculate the average energy and the entropy: 

∂ (E) = Tr
{
He −βH/Z

} 
= − (lnZ)

∂β 

S = −kB Tr {ρ log2 ρ} = kB β(E)+ kB ln Z 

In general, any macroscopic observable can be calculated from the partition function. 

C. Grand Canonical ensemble 

In the Grand Canonical ensemble the number of particles N , is no longer fixed. Quantum micro-states with indefinite 
particle number span a space called Fock space (we will come back to this concept when studying the e.m. field). 
The density matrix can be obtained as before, where we maximize the entropy, subjected now to conditions on the 
energy and the particle number. It can be shown (although we only mention it here) that 

−βH+βµNe
ρ(β, µ) = ,Q 

where the normalization is: ∞ 
−βH+βµ βµN ZN (β)Q(β, µ) = Tr
{
e N 

} 
= = e 

N=0 

7.5.3 Example: Spin-1 2 

lConsider a spin- 1 system in a magnetic field along z. The Hamiltonian is then H = 2 2γBσz = nωσz. At thermal 
equilibrium, the density matrix is 

−βlωσz/2e {
−βlωσz/2

}
ρ = , Z = Tr e 

Z 
−βlω/2We find Z = e + eβlω/2 and the expectation values: 

n βnω 
)

(Sx) = (Sy) = 0. (Sz) = − tanh 
2 2 

11 βlωIn the high temperature approximation, we can expand the exponential to find ρ = + σz. This is the expression2 2 
that is used for example in NMR. 
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