
8.04: Quantum Mechanics Professor Allan Adams  
Massachusetts Institute of Technology Tuesday March 19  

Problem Set 6 
Due Wednesday April 3 at 10.00AM 

Assigned Reading:  
E&R 6all, G, H 
Li. 71−9, 81 
Ga. 4all, 5all, 61,2 
Sh. 5all, 7all 

1. (10 points) Exam Corrections 
For any problem on which you lost points on Exam 1, write out a correct answer on 
separate paper (don’t modify your exam). Staple your exam to your problem set. 

2. (10 Points) Finding Meaning in the Phase of the Wavefunction 
Suppose ψo(x) is a properly-normalized wavefunction with (x̂)ψo = xo and (p̂)ψo = po, 
where xo and p0 are constants. Define a new wavefunction 

iqx/n ψoψnew(x) = e (x) 

where q is a real number with the appropriate dimensions. 

(a) What is the expectation value (x̂)ψnew in the state given by ψnew(x)? 
(b) What is the expectation value (p̂)ψnew in the state given by ψnew(x)? 
(c) Based on your results, interpret in one sentence the physical significance of adding 

an overall factor eiqx/n to a wavefunction. 
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3. (15 points) Relation between Wavefunction Phase and Probability Current 
Consider a particle with mass m in the state described by the wavefunction ψ(x). We 
can always express the wavefunction in amplitude-phase form as, 

iθ(x)ψ(x) = A(x)e , 

where A(x) and θ(x) are real functions. 

(a) Show that the probability current is given by 

J = |A(x)|2 n 
∂xθ(x) 

m 

i.e. the probability current is proportional to the gradient of the phase. 
(b) Show that there can be no current in a region where the wavefunction is real. 
(c) How large is the current for a plane wave of wavevector k? 
(d) Calculate the current in a region where the wavefunction is given by Beαx +Ce−αx , 

where α is a real constant and B, C are complex numbers, i.e. B, C are not 
position-dependent. Is it correct to say that since e±αx are real functions, the 
current inside the barrier must be zero? Find a condition on B and C such that 
the current vanishes. This problem will play an important role for us next week! 
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4.	 (15 points) Odd-parity Energy Eigenstates in the Finite Square Well 
Consider the finite square well potential of depth Vo and width 2L,  	  

−Vo |x| ≤ L 
V (x) =

0 else

where Vo and L are real, positive constants. We examined the even-parity bound state 
solutions in lecture. In this problem, you are to analyze the odd-parity bound states. 

(a) The width, L, sets a characteristic length scale for our finite well. Use dimensional 
analysis to identify a second characteristic length scale, Ro, and a dimensionless 
measure of the overall size of the well, go. Give a physical interpretation to Ro. 

(b) Derive a transcendental equation for the allowed energies and solve it graphically. 
Hint: Work with dimensionless variables and parameters! 

(c) Examine the two limiting cases	 of a wide, deep well (go » 1) and a shallow, 
narrow well (go « 1), and describe character of the solutions in each limit. Is 
there always at least one odd bound state? If not, what is the condition on go 
such that an odd bound state exists? What is the corresponding condition on L, 
holding Ro fixed, or on Ro holding L fixed? 

(d) Explore the dependence of the energy eigenstates on L and Vo by playing with the 
“one well” part of the PhET Quantum Bound State applet. Print out a screen 
that shows two different wells both with precisely four bound states. How do the 
widths of the evanescent tails vary as the binding energy goes to zero? 

http://phet.colorado.edu/en/simulation/bound-states
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5. (35 points) Quantum Glue 
Consider a one-dimensional system described by a particle of mass m in the presence 
of a pair of delta function wells of strength Wo > 0 located at x = ±L, i.e. 

V (x) = −Wo δ(x + L) − Wo δ(x − L) . 

This is a rough but illuminating toy model of an electron in the presence of two positive 
charges located at x = ±L. 

(a) Derive a transcendental equation for the allowed eigenenergies of any bound states. 
Express your result in terms of the dimensionless quantities go = mLWo and n2 

= −n2κ2 
ξ = κL, where E 

2m is the (negative) energy of the bound state. 
(b) Solve	 your transcendental equation(s) graphically / numerically to identify all 

bound state energy eigenvalues. How many bound states exist? Does the number 
depend on go? 

(c) Plot all bound state energy eigenfunctions for go = 0.1, go = 1
2 and go = 10. 

(d) How does the energy of the most tightly bound state vary as you vary L? Include 
a plot (with axes and units labeled) which shows the energy as a function of L. 
Note: You do not have to do this analytically – this is most easily done numerically 
using Mathematica. 

(e) Suppose we place the particle in the lowest energy bound state. Do the two delta 
functions want to be close together or far apart? Plot the induced force between 
the delta functions as a function of L. Again, best done numerically. 

(f) Use the above to suggest a plausible explanation for why H+
2 is a stable molecule. 

(g) Use the	 PhET Quantum Bound State applet to explore the dependence of the 
energies of the various bound states of a pair of identical wells as a function of the 
distance between the wells and the shape of the wells themselves. How does the 
splitting between levels change as you increase the separation between the wells? 
Why does the 2rd excited state have the same number of nodes inside each well 
as the 3rd excited state, but not the same number as the 4th? 

http://phet.colorado.edu/en/simulation/bound-states
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6. (15 points) Further Facts about Hermitian Operators and Commutators 
Recall that the Hermitian Adjoint of an operator Â is defined as the operator Â† such 
that, for all functions f(x) and g(x), 

(f | ˆ g) = ( ˆA† Af |g) . 

(a) Show that (f |Â†g) = (g| ˆ .Af)∗ 

(b) Show that (in)† = −in. 
(c) Show that ( ÂB̂)† = B̂†Â† . 

Â† ˆRecall that an operator is Hermitian if it is equal to its own Adjoint, = A.  
Henceforth, let Â and B̂ be Hermitian operators, and define Ĉ = [ ˆ B]. A, ˆ

(d) Show that Ĉ† = −Ĉ. Such an operator is called anti-Hermitian.  
ˆ ˆ (e) Show that the eigenvalues of the Hermitian operators A and B are all real. 

(f) Show that the eigenvalues of the anti-Hermitian operator Ĉ are all imaginary. 
(g) Suppose [ ˆ J ] = −sĴ , where s is a real quantity and ˆK, ˆ K is Hermitian. 

ˆi. Is J Hermitian? 
ii. Show that [ K, ˆ Ĵ†] = +sĴ† . 

ˆ ˆiii. Suppose Kϕk = kϕk. Show that ( ˆ K with eigenJϕk) is an eigenfunction of 
value (k − s). 

iv. Show that ( Ĵ†ϕk) is an eigenfunction of K̂ with eigenvalue (k + s). 
ˆ ˆ Ĵ†?v. In the harmonic oscillator, what operators play the role of K, J and 
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Aside: Why Hermitian? 
We’ve taken it as a postulate that observables in Quantum Mechanics are represented 
by Hermitian operators, with the observable values determined by the spectrum of 
eigenvalues of the operator. We’ve justified the restriction to Hermitian operators by 
requiring all observables to be real. However, it is easy to construct matrices which 
have all real eigenvalues but which are not real - for example, consider the matrix     

−1 i −1 0 
M = , M † ≡ MT ∗ = . 

0 1 −i 1

M ’s eigenvalues are both real (±1), but M is explicitly not Hermitian (M †  = M). So 
clearly reality of the eigenvalues is not enough. What gives? 
In fact, we need to add one more requirement – observable operators must admit a 
basis of orthonormal eigenvectors in order for the rest of the rules of QM to make sense. 

ˆTo see why, consider again our operator M . By construction, both eigenvalues are real 
and non-degenerate. However, the corresponding eigenvectors are not orthogonal:     

1 i 
φ−1 = , φ+1 = , (φ−1|φ+1) = i , 

0 2

as you can easily check. 
Now consider the consequences! If I tell you that a sample system in my lab is observed 
to have M = +1, you’d say, “cool, by the rules of QM, I deduce that ψ = √1 φ+1, with 

5 
the coefficient chosen to normalize the state, (ψ|ψ) = 1.” Fair enough. However, if I 
then ask you whether a subsequent measurement might give M = −1, you are obliged 
to reply, “the rules of QM say that the probability of measuring m in the state ψ is 
Pψ(m) = |(φm|ψ)|2, so the probability of measuring M = −1 in the state ψ = √1

5 φ+1 

is Pψ(−1) = |(φ−|ψ)|2 = |(φ−|√1 φ+1)|2 = 1 , so you have 20% chance of measuring 
5 5 

M = −1 even though you just measured M = +1!” Ack!! If the eigenvectors are not 
orthogonal, you can’t even be sure of the thing you just measured! That is bad. 
The condition for a linear operator to have an orthonormal eigenbasis is that it is 
“Normal”, ie that the operator commutes with its adjoint,  

ˆ A†A, ˆ = 0 . 

This does not imply that Â = Â†, so there is still space for an operator to be Normal but 
not Hermitian. But being Normal and having real eigenvalues does imply Hermitian. 
To be fair, it’s totally reasonable to ask, “Why is this such a big deal? Maybe the 
world is even less certain than we think?” Happily, we can answer this by appealing 
to experiment. And QM, with diagonalizable operators, matches the real world. 
In general, I have nothing against being abnormal. Some of the best physicists through
out history were quite abnormal. Many of my closest friends are profoundly abnormal. 
All to the good. But in the case of physical operators – normality is essential. 
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