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Lecture 4 

Expectations, Momentum, and Uncertainty 

Assigned Reading:
 

E&R 3all, 51,3,4,6 

Li. 25−8, 31−3 

Ga. 2all  =4 

Sh. 3, 4 

Our job now is to properly define the uncertainties Δx and Δp.
 

As an aside, let us review the properties of discrete probability distributions.
 

a N 

14 1 
15 1 
16 3 
20 2 
21 4 
22 5 

Consider the number distribution N of ages a in a population. The probability  
of finding a person with a given age is P(a) = N(a) , satisfying a P(a) = 1. 

Ntotal 

What is the most likely age? In this case, that is 22. 

What is the average age? In general, the weighted average   
a aN(a)(a) = = aP(a). 
Ntotal a 

In this case, it is 19.4. Note that in general, as in this example, (a) does not have 
to be a measurable value of a! 

What is the average of the squared age? In general,  
(a 2) = a 2P(a). 

a 

For a general function of the age,  
(f(a)) = f(a)P(a). 

a 



� 
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Is the average of the squared age equal to the square of the average age? In 
mathematical notation, is (a2) = (a)2? No! If a represented a more general 
quantity rather than age, it could sometimes be positive or negative, and those 
terms might cancel out in the average. By contrast, a2 would never be negative, 
so its average would satisfy that too. 

How do we characterize the uncertainty? We could use Δa = a − (a), but the 
problem is that (Δa) = 0 identically. Instead, we use the standard deviation 
defined by 

(Δa)2 = ((a − (a))2), 
which also satisfies
 

(Δa)2 = (a 2) − (a)2 .
 

In this case, the standard deviation is about 2.8. 

Similar expressions exist for continuous variables. Given that ψ has been discussed as a 
function of position x thus far, it makes sense to proceed in that way. Mathematically,  ∞ 

(f(x)) = f(x)p(x) dx (0.1) 
−∞ 

but p(x) = ψ*(x)ψ(x). Hence, the way to find the expectation value of a function of position 
in a given quantum state is  ∞ 

(f(x)) = ψ*(x)f(x)ψ(x) dx. (0.2) 
−∞  ∞

In all this, the normalization p(x) dx = 1 is assumed. From this, the uncertainty in −∞ 
position  

Δx ≡ (x2) − (x)2 (0.3) 

can be found.
 
Notice that expectation values (f(x)) depend on the state! This can be written as (f(x))ψ,
 
(f(x))|ψ), or (ψ|f(x)|ψ).
 

For example, let us consider a wavefunction given by 

ψ(x) = {N · (x 2 − l2)2 for |x| ≤ l, 0 otherwise}. (0.4) 

We need to figure out the normalization for this wavefunction by ∞ 

|ψ(x)|2 dx = 1 (0.5) 
−∞ 

315 ewhich, when effected by nondimensionalization of the integral, yields N = 
256 

√ 
iϕ 
. 

After this, by noting that |ψ(x)|2 is even while x is odd, then (x) = 0. Also, 
(x2) = l

2 
. Hence, Δx = √l .

11 11 

l 
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Figure 1: Plot of ψ(x) in this case 

After all of this, how do we find the momentum expectation value (p)? Näıvely, we might 
say that (p) = ∞ 

ψ*(x)pψ(x) dx. But how exactly are we to express p in an integral over −∞ 
functions of x? Clearly, this will not do! 

Here’s a hint: we know that a wave with 

k = 2πλ−1 

is associated with a particle with 
p = hλ−1 = nk. 

Disregarding normalization, the associated wavefunction is 
ikx ψ = e . 

But note that 
∂eikx 

= ikeikx . 
∂x 

This means that 
∂eikx 

= nkeikx −in . 
∂x 

Thus 
∂eikx 

−in = p · e ikx ,
∂x 

and the units work out too! But what does momentum have to do with a derivative with 
respect to position anyway? 

Here’s another hint: Noether’s theorem states that to every symmetry is associated a con
served quantity. 

Symmetry Conservation 

x → x + Δx p 
t → t + Δt E 

↔ 
x →R ·x L 

∫



 

 
 

 
 

�
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So momentum is associated with spatial translations! 

Now consider how translations behave for functions: 

l∂f(x) l2∂2f(x)
f(x) → f(x + l) = f(x) + + + . . . (0.6)

∂x 2∂x2 

∞ 
l∂ 

= ( )nf(x) (0.7)
∂x

n=0 
l∂ 

= e ∂x f(x). (0.8) 

∂Hence translations are generated by spatial derivatives 
∂x . But we just said that translations 

∂are associated with p! This means that it is natural to associate p with somehow. In a 
∂x 

similar way, E would be associated with ∂ , and Lz with ∂ .
∂t ∂ϕ 

That’s enough for hints. We need to take a stand on this. 

Momentum in quantum mechanics is realized by an operator 

∂ 
p̂ = −in . (0.9)

∂x 

This operator p̂ is what we use to compute expectation values. More precisely, 

∞ ∂nψ(x)(p n) = (−in)n ψ * (x) dx (0.10)
∂xn 

−∞ 

and the uncertainty is then given by Δp = (p2) − (p)2 . 

Let us return to our previous example wavefunction given by 

ψ(x) = {N · (x 2 − l2)2 for |x| ≤ l, 0 otherwise}. (0.11) 

Now we can find 
∞ ∂ψ(x)(p) = −in ψ * (x) dx (0.12)

∂x −∞ 
∞ 

= −in|N |2 (x 2 − l2)2 · (2 · 2x · (x 2 − l2)) dx (0.13) 
−∞ 

= 0 (0.14) 

as the wavefunction is even while its spatial derivative is odd. 

By a similar computation, (p2) = 3n
2 
, which dimensionally makes sense as well. 

l2 

From this, we find that Δp = 
√ 

l 
3n , and the uncertainty relation is satisfied as 

3ΔxΔp = n.
11 

∑

∫

∫
∫

√
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But what does this new operator p̂ have to do with having momentum p = nk? Let us 
consider two states given by 

ψk(x) = e ikx 

and 
ikx ik'xψs(x) = e + e . 

The first has definite momentum p = nk, while the second, being a superposition of states 
'with definite momenta p = nk and p = nk', is not itself a state of definite momentum. We 

can show this by acting on each state with the operator p̂: 

pψk(x) = nkeikx ˆ

is simply proportional to ψk(x), while 

(x) = n · (keikx + k' ik
'x)ˆ epψs

is not simply proportional to ψs(x). We see that p̂ is an operator which acts simply on 
wavefunctions corresponding to states with definite momenta, but not on arbitrary super
positions of momentum states. This means that p̂ is the operator whose eigenstates 
are states of definite momentum, and the corresponding eigenvalue is exactly 
the momentum of that state. 
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