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Lecture 5 

Operators and the Schrödinger Equation 

Assigned Reading:
 

E&R 3all, 51,3,4,6 

Li. 25−8, 31−3 

Ga. 2all  =4 

Sh. 3, 4 

We have just seen that in quantum mechanics, momentum becomes associated with an 
operator proportional to the spatial derivative. But what exactly is an operator, and what 
is the relation of any other observable quantity to an operator? Let us take this moment to 
flesh out some mathematical definitions. 

An operator is a rule for building one function from another. 

Examples include the identity ˆ 1f(x) = f(x), the spatial derivative ˆ ∂ such 1 such that ˆ D = 
∂x 

∂f (x)ˆthat Df(x) = 
∂x , the position x̂ = x such that x̂f(x) = xf(x), the square 2̂ such that 

ˆ ˆ ˆ ˆ2f(x) = f 2(x), the projection Py such that Pyf(x) = y, and the addition Ay such that 
Âyf(x) = f(x) + y, among others. Notationally, operators will be distinguished by hats on 
top of symbols. 

A linear operator is an operator that respects superposition: 

ˆ ˆO(af(x) + bg(x)) = aOf(x) + b Ôg(x) . (0.1) 

From our previous examples, it can be shown that the first, second, and third operators are 
linear, while the fourth, fifth, and sixth operators are not linear. 

ˆAll operators com with a small set of special functions of their own. For an operator A, if 

Âf(x; A) = A · f(x; A) 

ˆfor a given A ∈ C, then f(x) is an eigenfunction of the operator A and A is the corre
sponding eigenvalue. Operators act on eigenfunctions in a way identical to multiplying the 
eigenfunction by a constant number. For instance, the aforementioned operator D̂ has as its 
eigenfunctions all exponentials eαx, with any α ∈ C allowed. 

In general, though, most functions are not eigenfunctions of a given operator. That is why 
eigenfunctions and eigenvalues of a given operator are particularly special! 
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Coming back to physics, to every observable quantity is associated a corresponding 
operator . For instance, the momentum operator is 

∂ 
p̂ = −in ,

∂x

the position operator is 
x̂ = x, 

the energy operator is 
p̂2 n2 ∂2 

Ê = + V (x̂) = − + V (x),
2m 2m ∂x2 

and so on. Given a state described by a wavefunction ψ(x), we can calculate the expectation 
value of any observable quantity in that state by using the corresponding operator: � ∞ 

�An� = ψ�(x)Âψ(x) dx, 
−∞ 

and  
ΔA ≡ �A2� − �A�2 . 

Note that the operator order matters! For instance,   
∂ ∂f(x) 

p̂ˆ p(xf(x)) = −in f(x) + x ,xf(x) = ˆ (xf(x)) = −in ·
∂x ∂x

while   
∂f(x) ∂f(x) 

x̂ˆ x = −inx .pf(x) = ˆ −in
∂x ∂x 

To measure the importance of order, we define the commutator of two operators Â and B̂ as 

[ ˆ AB̂ − B̂ ˆA, B̂] ≡ ˆ A . (0.2) 

For example, we have just seen that 

x̂ˆ pˆpf(x) − ˆxf(x) = inf(x) 

for all f(x). Hence, 

[x̂, p̂] = in1̂ . (0.3) 

This is a deep and profound result in quantum mechanics! 

ˆUpon measuring an observable A which has an associated operator A, the measured value 
ˆis one of the eigenvalues of A. Then, immediately after the measurement occurs, the wave-

function corresponding to the system state changes to be the eigenfunction φ(x; A) of Â such 
that 

Âφ(x; A) = A · φ(x; A). 
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This immediate change in the wavefunction to be an eigenfunction of an operator corre
sponding to the measured quantity is called wavefunction collapse. It is a strange beast, but 
we will come back to it later. 

Note that all eigenvalues of operators corresponding to an observable quantity must be real. 
Operators with only real eigenvalues have many special properties that we will explore later. 

For example, the eigenvalues of p̂ are real momenta 

p = nk, 

and for a given k, these are the momenta that can be measured. This means that the 
eigenfunctions must be 

φ(x; k) = Neikx 

for some normalization N . That said, the eigenfunctions φ(x; k) are not strictly normalizable, 
because they do not approach 0 as x → ±∞. Non-normalizable wavefunctions like this 
one are not valid as physical single-particle states, but are useful for building normalizable 
wavepackets that do represent physical single-particle states. This also means that we can 
never measure quantities like momentum or position with full precision, either, because like 
momentum, position is a continuous variable so its eigenfunctions are not normalizable. 

As another example, let us suppose a particle is found at position x0. What is its wavefunc
tion immediately after this measurement occurs? It must be an eigenfunction of the position 
operator x̂, and it must vanish for x  = x0. This implies that 

φ(x; x0) = Nδ(x − x0) 

is the desired wavefunction with some normalization coefficint N , because by the properties 
of the Dirac delta function, 

ˆ · δ(x − x0).xδ(x − x0) = x0 

As with momentum eigenfunctions, position eigenfunctions are not normalizable, but they 
can be used in superpositions to form normalizable wavepackets corresponding to physical 
single-particle states. 

As yet another example, let us say that a quantum object is in a state given by the wave-
function ψ(x). Measuring the position to be x0 changes the wavefunction to δ(x − x0), 
which is not a superposition. Measuring the momentum to be p0 would instead change the 

ip0x 

wavefunction to e � , which is also not a superposition. Hence, measurement of a particular 
eigenvalue collapses the wavefunction into the corresponding eigenfunction. 

Let us say that we know the state given by a wavefunction ψ(x) and we want to measure 
the position. The probability density, given that position is continuous, of measuring x0 is 
p(x0) = |ψ(x0)|2 . What does this look like for a more general observable A? 



�
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Given an operator Â with observable eigenvalues A and corresponding eigenfunctions φ(x; A) 
fulfilling 

Âφ(x; A) = A · φ(x; A), 
ˆwe can expand any wavefunction ψ(x) as a superposition of eigenfunctions of A. If A is 

discrete, then  
ψ(x) = cAφ(x; A) (0.4) 

A 

while if A is continuous, then 

ψ(x) = c(A)φ(x; A) dA. (0.5) 

The probability of measuring an eigenvalue A0 in the state ψ is, if A is discrete, 

P(A0) = |cA0 |2 (0.6) 

or if A is continuous, then the probability density is 

p(A0) = |c(A0)|2 . (0.7) 

For example, for position, 

ψ(x) = c(x0)φ(x; x0) dx0. 

In this case, 
c(x0) = ψ(x0) 

as 
φ(x; x0) = Nδ(x − x0). 

The probability density of measuring a position is then 

p(x0) = |ψ(x0)|2 . 

For momentum, 

ψ(x) = c(k)φ(x; k) dk. 

In this case, 
c(k) = ψ̃(k) 

as 
φ(x; k) = Neikx . 

The probability density of measuring a momentum is then 

p(k) = |ψ̃(k)|2 . 

∫

∫

∫
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For energy, which typically takes just discrete values, 

ψ(x) = cnφ(x; En). 
n 

Generally, the eigenfunctions φ(x; En) depend on the particular system, so a general form 
cannot be given for them, and thus neither can a general form be given for cn. Still, though, 
the probability (not a density for discrete energies) of measuring an energy is 

P(En) = |cn|2 . 

When the wavefunction representing a state is expanded as a superposition of eigenfunc
ˆtions of an operator A corresponding to an observable A, it is useful to find the expansion 

coefficients. Whether or not A is continuous, the following is true (though notationally, cA 

would be used in the discrete case, while c(A) would be used in the continuous case, so the 
notation should be chosen based on context): 

c(A) = φ (x; A)ψ(x) dx ≡ φ(A)|ψ . (0.8) 

The reason why doing this is useful is because an observable A with a corresponding operator 
Â has real eigenvalues and orthonormal eigenvectors. What this means is that 

φa|φb = δab. 

This is exactly like expanding a physical 3-dimensional vector in an orthonormal basis v = 
j vj ej with ej · el = δjl, and the expansion coefficients would be vj = ej · v. That is also 

why the term c(A) = φ(A)|ψ is known as an inner product. 

Thus far, we have seen that the configuration of the system is given by a wavefunction 
corresponding to a quantum state. Expectation values of observables are found through the 
actions of corresponding operators on quantum states. Measuring a particular value for a 
quantity is probabilistic, but once the measurement is made, the wavefunction collapses into 
the eigenfunction corresponding to that measured eigenvalue. Given the wavefunction, these 
are all the predictions that can be made about the system at a given moment in time. So 
what happens at a later time? We have seen that translations are tied to time derivatives, 
so the real question is, what is ∂ψ(x,t) ?

∂t 

We know from de Broglie that plane waves 

i(kx−ωt)ψ(x, t; k) = e 

have energy 
E = nω. 

∑

∫

〈 〉

? 〈 〉

〈 〉
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In fact, this is true of any wavefunction like 
−iωtφ(x)ψ(x, t) = e 

regardless of φ(x). We can also see that 

∂ψ(x, t)
in = nωψ(x, t)

∂t 
ˆin such a case. This seems to suggest that the energy operator E is tied to the operator 

in ∂ . Along with this, we need that translation in time respect superposition and that the 
∂t 

total probability 
∞ 

ψ (x, t)ψ(x, t) dx = 1 
−∞ 

be conserved. This means that the time derivative, which is linear, acting on a wavefunction 
should be equal to a linear operator acting on the wavefunction. 

Indeed, the Schrödinger equation is 

∂ψ(x, t)
Êψ(x, t) = in .	 (0.9)

∂t 

This equation describing the time evolution of a quantum state is analogous to the equation 
ˆ	 ∂of motion F = ṗ. Take care to note that E is not defined as the operator in

∂t any more 
ˆthan F is defined to be ṗ. Like F, the definition of E depends on the details of the system. 

ˆIn this class, the general form for E comes from turning the classical equation 
2p

E = + V (x)
2m 

into an operator definition 

ˆ p̂2 

E = + V (x̂). 
2m 

Finally, this is not a derivation per se of the Schrödinger equation, but has been motivated 
by our finding of the momentum operator as a generator of spatial translations. 

There are a few key features of the Schrödinger equation: 
∂ψ(x,t;n)1. It is linear, so it respects superposition. If ψ(x, t; n) = in

∂t ,then  	    
∂

Ê cnψ(x, t; n) = in cnψ(x, t; n) . 
∂t

n	 n 

2. It is unitary, so it conserves probability. This will be explained later. 

3. It is deterministic!	 It is first-order in t, so if ψ(x, 0) is known, then the Schrödinger 
equation determines ψ(x, t) for all t. However, note that wavefunction collapse upon 
measurement is not deterministic! 

∫

∑ ∑

?
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