
    

       
             

Quantum Physics III (8.06) — Spring 2018 

Assignment 1 

Posted: Wednesday, February 7, 2018 

Announcements 

• Please make sure your recitation section is correct. 

• Please put your name and section at the top of what you hand in. 

Readings 

• Griÿths, Chapter 6 

• Cohen-Tannoudji, Chapter XI 

• Shankar, Chapter 17 

• Sakurai, Sections 5.1-5.3 

Problem Set 1 

1. The Joy of 2× 2 Hermitian Matrices (10 points) 
P

3(a) Compute (~a·~σ)2 (using the formula σiσj = δij I + k=1 iǫijkσk) and write down 
its eigenvalues. Using also the fact that tr~a·~σ = 0, what can you conclude about 
the eigenvalues of ~a·~σ? What about the eigenvalues of a0I + ~a·~σ? 

(b) Let ~a = (α, 0, β). Write down the exact eigenvalues of ~a·~σ. Write down the 
dominant terms and the first two correction terms in the cases when |α| ≪ |β|
and when |α| ≫ |β|. Compare with the results you obtain from second-order 
perturbation theory. 

a0I+~a·~σ(c) Define the inner product hA, Bi ≡ tr[A†B]. Suppose that A = 
2 . Write 

down Hermitian matrices Q0, Q1, Q2, Q3 such that ai = hA, Qii. 

2. Anharmonic Oscillator (15 points) 

Consider the anharmonic oscillator with Hamiltonian 
2 √ 3p̂

2 x̂
H = + 1 mω2 x̂ + λ 2 ~ω ,

2 d32m 
~ 3where d2 = 

mω and we treat x̂ term as a perturbation. 
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(a) Show that the first order shift in the ground state energy is zero. Calculate the 
shift to order λ2 . 

(b) Calculate the ground state wave function to order λ. (You may just write your 
answer as a sum of harmonic oscillator states.) 

(c) Sketch the potential V (x) as a function of x for small λ. Is the state you found 
in (b) anything like the true ground state? What e�ect has perturbation theory 
failed to find? 

3. Perturbation of the Three-Dimensional Harmonic Oscillator (25 points) 

The spectrum of the three-dimensional harmonic oscillator has a high degree of degen-
eracy. In this problem, we see how the addition of a perturbation to the Hamiltonian 
reduces the degeneracy. This problem is posed in such a way that you can work through 
it before we even begin to discuss degenerate perturbation theory in lecture. 

Consider a quantum system described by the Hamiltonian 

H = H0 + δH (1) 

where 
1 

2 2H0 = p~ + 
2

1 mω2 ~x (2) 
2m 

where ~x = (x1, x2, x3) and p~ = (p1, p2, p3). The perturbing Hamiltonian δH is given by 

δH = λωL2 (3) 

where λ is a unit free constant and where L2 = x3p1 −x1p3, is the component of angular 
momentum in the y direction. 

In parts (a)-(e) of this problem, we study the e�ects of this perturbation within the 
degenerate subspace of states which have energy E = (5/2)~ω when λ = 0. 

(a) Set λ = 0. Thus, in this part of the problem H = H0. Define creation and 
annihilation operators for “oscillator quanta” in the 1, 2 and 3 directions. Define 
number operators N1, N2, N3. Denote eigenstates of these number operators by 
their eigenvalues, as |n1, n2, n3i. What is the energy of the state |n1, n2, n3i? How 
many linearly independent states are there with energy E = (5/2)~ω? [That is, 
what is the degeneracy of the degenerate subspace of states we are studying?] 

(b) Express the perturbing Hamiltonian δH in terms of creation and annihilation 
operators. 

(c) What is the matrix representation of δH in the degenerate subspace you described 
in part (a)? 

(d) What are the eigenvalues and eigenstates of δH in the degenerate subspace? What 
are the eigenvalues and eigenstates of H = H0 + δH in the degenerate subspace? 
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(e) What is the matrix representation of H0 + δH in the degenerate subspace if you 
use the eigenvectors of δH as a new basis? (i.e. instead of the original |n1, n2, n3i 
basis.) 

[Note: As we shall see in part (f), this problem is “too simple” in important 
ways. The aspect of this problem which will generalize when we consider more 
generic perturbations is that if a perturbation breaks a degeneracy, then even an 
arbitrarily small but nonzero perturbation has qualitative consequences: it selects 
one particular choice of energy eigenvectors, within the previously degenerate 
subspace. In the present problem, this can be described as follows: if λ were 
initially zero and you were happily using the |n1, n2, n3i states as your basis of 
energy eigenstates, and then somebody “turns on” a very small but nonzero value 
of λ, this forces you to make a qualitative change in your basis states. The 
“rotation” you must make from your previous energy eigenstates to the new states 
which are now the only possible choice of energy eigenstates is not a small one, 
even though λ is arbitrarily small.] 

(f) Suppose that |ψi and |φi are eigenstates of H0 with di�erent energy eigenval-
ues. That is, |ψi and |φi belong to di�erent degenerate subspaces. Show that 
hφ|δH|ψi = 0 for any two such states. Relate this fact to a statement you can 
make about the operators H0 and δH , without reference to states. 

[The fact that hφ|δH|ψi = 0 if |ψi and |φi and belong to di�erent degenerate 
subspaces means that δH is a “non-generic” perturbation of H0; a more general 
perturbation would not have this property. It is only for perturbations with 
this property that the analysis you have done above — which focusses on one 
degenerate subspace at a time — is complete. Notice also that in order to analyze 
H = H0 + δH , we did not have to assume that λ was in any sense small. If δH 
were “generic”, we would have had to assume that λ was small in order to make 
progress.] 

4. Polarizability of a Particle on a Ring; the Ethane Molecule (10 points) 

Consider a particle of mass m constrained to move in the xy-plane on a circular ring 
of radius a. The only variable of the system is the azimuthal angle, which we will call 
φ. The state of the system is described by a wave function ψ(φ) that must be periodic 

ψ(φ + 2π) = ψ(φ) 

and normalized: Z 
2π 

|ψ(φ)|2dφ = 1 . 
0 

(a) The kinetic energy of the particle can be written: 

L2 

H0 = z (4) 
2ma2 

where Lz = −i~d/dφ. Calculate the eigenvalues and eigenfunctions of H0. Which 
of the energy levels are degenerate? 
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Figure 1: A cartoon of an ethane molecule in its most favorable orientation, seen end on. 

(b) Now assume that the particle has a charge q and that it is placed in a uniform 
electric field ε in the x-direction. We must therefore add to the Hamiltonian the 
perturbation 

δH = −qεa cosφ. 

Calculate the new wave function of the ground state to first order in ε. Use this 
wave function to evaluate the induced electric dipole moment in the x-direction: 
hψ|qx|ψi. Determine the proportionality constant between the dipole moment and 
the applied field ε. This proportionality constant is called the “polarizability” of 
the system. 

(c) Now turn o� the electric field of part (b) and consider the ethane molecule CH3 — 
CH3. We will consider the rotation of one CH3 group relative to the other, about 
the straight line joining the two carbon atoms, as sketched in figure 1. Here, the 
solid circles represent the H atoms in one CH3 group, which rotate relative to the 
open circles representing the H atoms in the other CH3 group. 

To a zeroth approximation, this rotation is free, and the Hamiltonian H0 of (4) 
describes the rotational kinetic energy. (The constant 2ma2 must be replaced by 
some new constant times the moment of inertia of a CH3 group with respect to 
the rotational axis. However, for simplicity, we will just keep calling the constant 
2ma2.) 

We now take the electrostatic interaction energy between the two CH3 groups 
into account as a perturbation. To take into account the threefold symmetry, we 
add to H0 a term of the form 

δH = b cos 3φ , 

where b is a real constant. Calculate the energy and wave function of the new 
ground state (to first order in b for the wave function and to second order for the 
energy). Give a physical interpretation of the result. 

5. Energy Shift Due to Finite Nuclear Size (20 points) 

When you studied the hydrogen atom in 8.04/8.05, you assumed that the Coulomb 
potential extended all the way to the origin. In reality, the proton’s charge is smeared 
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out over a sphere of roughly 10−13 cm in radius. This has a small e�ect on the energy 
levels of the hydrogen atom. Let’s find out how small. 

You will model the electric charge distribution of the proton as a uniformly charged 
sphere of radius R. You may ignore the fine structure, Lamb shift, and hyperfine 
splittings of hydrogen for this problem. 

(a) Find the electrostatic potential energy of the electron for all r. 

~[Hint: Use Gauss’s law ∇~ · E = 4πρ to find the electric field everywhere and then 
~ ~integrate F = −eE to obtain the potential energy.] 

Your answer should have the features that for r > R you should have V (r) = 
−e2/r and for all values of r, V (r) is continuous. 

(b) Use lowest order perturbation theory to calculate the shift in the energy of the 
ground state of hydrogen due to this modification of the potential. Evaluate your 
answer numerically, taking R = 10−13 cm, and express your answer as a fraction 
of the binding energy of the ground state (13.6 eV). [Hint: You can simplify the 
integrals by noticing that the unperturbed wave function varies only slowly over 
the range 0 < r < R and can thus be replaced by the value at r = 0.] 

(c) Why is this e�ect most important for states with orbital angular momentum zero? 
Without doing any calculation, make an estimate of the factor by which this e�ect 
is smaller for an ℓ = 1 state as compared to an ℓ = 0 state. 

(d) Experimentally, the most precise measurement of the proton radius comes from 
the PSI experiment: 

R = 0.84184(67)× 10−13 cm. (5) 

[R. Pohl et al., “The size of the proton,” Nature 466, 213 (2010).] This mea-
surement is controversial, since it di�ers by 4% from the CODATA world aver-
age (R = 0.8768(69) × 10−13 cm). Putting the controversy aside, explain why 
the PSI experiment could get such impressive accuracy using muonic hydrogen 
(a muon-proton bound state) instead of ordinary hydrogen (an electron-proton 
bound state). [Hint: Recall that the muon has basically the same properties as 
an electron, except it is 206.8 times heavier.] 
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