
    

Quantum Physics III (8.06) — Spring 2018 

Assignment 4 

Posted: Thursday, March 1, 2018 

Readings 

• Griÿths Chapter 8 on WKB approximation 

• Shankar Section 16.2. 

Problem Set 4 

1. The equation satisfied by the approximate WKB solution (10 points) 

In trying to solve the equation 

2ψ ′′ −~ = p 2(x)ψ , (1) 

we wrote the approximate solution ψa(x) given by 
Z 

� x �1 i 
ψa(x) = p exp p(x ′ )dx ′ . 

p(x) ~ 

(a) Find the exact di�erential equation satisfied by the approximate solution and 
show it can be written as 

h i 

2ψ ′′ −~ a = p 2(x) + · · · ψa , 

where the dots represent extra terms not present in (1) that you must determine 
and are functions of p(x) and its derivatives. 

(b) Consider the extra terms you found and explore the condition that each one is 
much smaller than p2(x). Express the resulting conditions as constraints on the 
local de Broglie wavelength λ(x) and its derivatives. 

2. Airy functions and bound states in linear potentials (10 points) 

Consider the Schrödinger equation for a particle of mass m in a potential 
(

gx , for x > 0 
V (x) = (1) 

∞ , for x ≤ 0 

Here g > 0 is a constant. 

1 



Quantum Physics III (8.06) — Spring 2018 Assignment 4 

(a) Remove the units from the Schrödinger equation by letting x = Lũ, with ũ unit 
free and L a length scale constructed as 

~ 2 

L3 = . 
2mg 

With a further transformation to a variable u, also unit free, reduce the di�erential 
equation to the form 

d2ψ 
= uψ . (2) 

du2 

(b) The Schrodinger equation (2), extended to u ∈ (−∞, ∞), is tailored for a solution 
in momentum space! Using a unit-free momentum variable k we write 

Z 

∞ 

ψ̃(k) = e −ikuψ(u)du , 
−∞ 

which goes together with the inverse relation 
Z 

1 ∞ 
iku ˜ψ(u) = e ψ(k)dk . 

2π −∞ 

Find the di�erential equation satisfied by ψ̃(k) and solve it choosing ψ̃(0) = 1. 
Write your answer for ψ(u) in terms of an integral 

Z 

∞ � �1 
ψ(u) = dk cos · · · ,

π 0 

where the dots represent some function of k and u that you should determine. 
The result is an integral representation for the Airy function: ψ(u) = Ai(u). 
[As a check on your result, confirm that your (numerical) integral gives Ai(1) = 
0.135292] One can use the integral representation to show that the Airy function 
Ai(u) decays quickly for large positive u and is oscillatory for u < 0. 

(c) Determine the first two zeroes of the Airy function. Use those to give the values 
of the energies E for the lowest two energy eigenstates of the original potential 
(1) with a wall at x = 0. Express your answers as 

� 2 2 �1/3~ g
E = # ,

2m 

where # are pure numbers. 

3. Quantum Mechanics of a Bouncing Ball (10 points) 

The semiclassical approximation can also be used to estimate the energy eigenvalues 
and eigenstates for potentials that cannot be treated exactly so easily. This problem 
is loosely based on Griÿths 8.6. 

Consider the quantum mechanical analogue to the classical problem of a ball of mass 
m bouncing elastically on the floor, under the influence of a gravitational potential 
which gives it a constant acceleration g. 
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(a) Find the semiclassical approximation to the allowed energies En, in terms of m, 
g, and ~. 

(b) Estimate the zero point energy of a neutron “at rest” (i.e. in the quantum me-
chanical ground state) on a horizontal surface in the earth’s gravitational field. 
Express your answer in eV. [This may sound artificial to you, but the experi-
ment has been done. See V. V. Nesvizhevsky et al., Nature 415, 297 (2002) 
and arXiv:hep-ph/0306198 for an experimental measurement of the quantum me-
chanical ground state energy for neutrons bouncing on a horizontal surface in the 
earth’s gravitational field. This experiment got a lot of press at the time, because 
it involves both gravity and quantum mechanics, which made for an eye catching 
press release. It of course has nothing to do with quantum gravity.] 

(c) Now imagine dropping a ball of mass 1 gram from rest from a height of 1 meter, 
and letting it bounce. Do the 8.01 “calculation” of the classical energy of the ball. 
The quantum mechanical state corresponding to a ball following this classical 
trajectory must be a coherent superposition of energy eigenstates, with mean 
energy equal to the classical energy. How large is the mean value of the quantum 
number n in this state? 

4. Semi-classical approximation of the potential V (x) = αx4 (10 points) 

Consider the Schrödinger equation 

~ 2 d2ψ − + αx4ψ = Eψ. 
2m dx2 

Let the energies be E0 < E1 < . . . and define the dimensionless energies en = E
γ 
n where 

� �1/3 
~ 4α 

γ ≡ . 
2m

In an 8.05 problem set we explored numerical solutions of this potential and found that 
the first few energies were 

e0 = 0.667986 

e1 = 2.39364 

e2 = 4.69680 

e3 = 7.33573 

e4 = 10.2443 

e5 = 13.3793 

In this problem we will show how to estimate these energies using semiclassical meth-
ods. 

(a) Assume that the turning points are at −x0, x0 with x0 > 0. Express the energy 
E in terms of α and x0. 
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(b) Use the connection formulae to show (assuming the WKB approximation is valid) 
that 

� � 

p1 
Z x0 1 

2m(En − V (x))dx = n + π (1) 
~ 2−x0 

for n = 0, 1, 2, . . .. 

(c) In what follows, we will use Ẽn to denote the estimate of the nth energy that is 
obtained from (1) while En represents the true energy. Compute the integral in 

˜(1) to obtain a formula for ẽn ≡ En/γ in terms of n. The answer should be of 
the form ẽn = β(n + δ)ǫ for β, δ, ǫ constants to be determined. You may find the 
following expression useful: 

Z 1 √ √ π�(1 )
1− t4dt = 4 ≈ 0.874019. 

0 8�(7
4 ) 

� � � � � � 

� ˜ � � ˜ � � ˜ �e0−e0 e2−e2 e5−e5Write down ẽ0, ẽ1, ẽ2, ẽ3, ẽ4, ẽ5 and the relative errors � �
, 
� � 

and 
� � 

. 
e0 e2 e5 

5. Application of the Semiclassical Method to the Double Well Potential (20 
points) 

Do Griÿths Problem 8.15. 

This is not as diÿcult a problem as its length would indicate. Griÿths leads you 
through all the steps. This is an instructive problem in quantum dynamics. You 
should recall that this is the potential that we used to describe the physics of the 
ammonia molecule, early in 8.05. Back then, we had to wave our hands a little when 
we talked about tunneling splitting the degeneracy between the even and odd states. 
Now, you can do this calculation for real. 

Hint for (a) and (b): The steps suggested by Griÿths are: work out the wave function 
ψ1 in region (i); from ψ1 use the connection formulae at x2 to obtain the wave function 
ψ2 in regions (ii); use ψ2 and the connection formulae at x1 to obtain the wave function 
ψ3 in region (iii). Equation (8.59) can be found by requiring that ψ3 should satisfy 
ψ3(0) = 0 or ψ3

′ (0) = 0 at x = 0. 

It is a bit easier (and more transparent) to use a slightly di�erent approach from what 
Griÿths suggests. Given that the wave function should be an even or odd function of 
x, the wave function in region (iii) can be written down immediately. For example in 
the even case, 

� �
Z 

C 1 x 

ψ(x) = p cosh dy κ(y) , −x1 < x < x1 (2) 
κ(x) ~ 0 

using our standard notations. (2) is an example where by symmetry, the exponentially 
small piece in a classically forbidden region is known exactly. The wave function ψ2 in 
region (ii) then can be obtained using two ways: from ψ1 in region (i) via connection 
formulae at x2, or from ψ3 in region (iii) via connection formulae at x1. The consistency 
of two wave functions leads to equation (8.59) of Griÿths. 
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6. Tunneling from perturbation theory (20 points) A key feature of tunneling is 
that the rate is suppressed exponentially by an amount that scales with the width of 
the barrier and the square root of the height of the barrier. We will see in this problem 
how exponential suppression can arise from high-order degenerate perturbation theory. 

In this problem we consider a particle localized on a line with a potential equal to zero 
at the endpoints and a potential barrier of height V0 and width W in the middle. Thus 
the WKB transmission coeÿcient (or tunneling probability) for particle with energy √ 
much smaller than V0 is exp(−2W 2mV0/~). 

(a) First suppose the positon of the particle is restricted to sites 0, 1, . . . , N . The 
Hamiltonian consists of two terms. There is a “barrier” term H0 which is a 
potential of height V0 on all sites except 0 and N ; i.e. 

N−1 
X 

H0 = V0 |xihx|, (3) 
x=1 

and a “hopping” term 

N 
X 

δH = −λ |x − 1ihx| + |xihx − 1|. (4) 
x=1 

Assume that λ ≪ V0. 

0 1 2 3 4 5 −λ −λ −λ −λ −λ 

barrier 
H0 

0 

V0 

hopping 
δH 

Figure 1: A particle is constrained to occupy one of N +1 nodes (here N = 5) with a barrier 
potential H0 from (3) and a hopping term δH from (4). 

If there were no hopping term, there would be a two-dimensional space of zero-
energy degenerate ground states spanned by |0i and |Ni, or by the more useful 
linear combinations 

|0i + |Ni |0i − |Ni |g+i = √ and |g−i = √ . 
2 2 

In the absence of hopping, the other states |1i, . . . |N − 1i are also degenerate 
with energy V0. 

At suÿciently high order of perturbation theory the hopping term will lift the 
degeneracy between the ground states so that: Eg+ 6 Eg− .= The formula for the 
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kth-order correction to the energy of the |g±i states is 
X X δHg±,mk−1 · · · δHm2,m1 δHm1,g±E(k) 

g± 
= · · · + other terms. (5) 

(E0 − E0 ) · · · (E0 − E0 )g± m1 g± mk−1m1 mk−1 

Here m1, . . . , mk−1 range over all states outside the degenerate subspace |g±i and 
we have used the fact that a similar term does not couple |g+i to |g−i. 
What is the smallest value of k for which Ek − Ek is nonzero? It turns out that g− g+ 

the other terms not shown begin to contribute only for higher values of k, and 
one may ignore them for the purposes of this problem. 

Evaluate the energy splitting for this value of k. Your answer should decrease 
exponentially with N , since N is analogous to W , but the scaling with V0 will not 
look like the WKB case. 

(b) Now suppose that the discrete approximation above came from a 1-D Hamiltonian 
in which we discretized space and replaced the p2/2m with a finite di�erence op-
erator. If the lattice spacing is ℓ then the finite-di�erence operator corresponding 

d2 
to is

dx2 
X1 

D2 = −2|xihx| + |xihx + 1| + |xihx − 1|.ℓ ℓ2 
x 

2 
If we ignore the diagonal part, the kinetic energy term 

2
p
m is equivalent to δH 

from (4). What is the corresponding value of λ? 

Suppose that the potential term is a square barrier of width W and take ℓ = W/N 
so this corresponds to N lattice sites. 

We see that as we reduce ℓ the energy splitting in (a) goes down since N = W/ℓ 
increases as ℓ → 0. This is an artifact of our approximation scheme since the 
physics of the system should not depend on the “regulator” ℓ that we hope to 
take to zero. But we cannot make ℓ arbitrarily small because λ would diverge 
and we could not keep the ratio λ/V0 small, spoiling the perturbation-theory 
argument. Let us impose the perturbation condition explicitly by setting 

λ 
= ǫ ≪ 1 

V0 

with ǫ a fixed small constant. Verify that this means that ℓ2V0 is kept constant 
as ℓ → 0. Eliminate ℓ to estimate the energy splitting as a function of ǫ, W , V0, 
m and ~. 

(c) Part (a) and (b) have given estimates of the splitting in energies of |g±i but have 
not directly addressed tunneling. In this part, suppose that the Hamiltonian is 
simply 

H = E+|g+ihg+| + E−|g−ihg−| 
and define � = E− − E+. Suppose that we begin at time 0 in the state |0i, and 
after time t we measure whether the particle is in state |0i or |Ni. At what time t 
will we find the state in position N with probability 1? Using the energy splitting 
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from (b) above, give the tunneling rate (tunneling probability per unit time) and 
find how it scales with W and V0. How does your answer compare with the WKB 
prediction? 
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