Quantum Physics III (8.06) — Spring 2018 Assignment 6

Posted: Monday, April 2, 2018

Readings and Announcements

- See in Materials the PDF and LaTeX files for the proposals you will have to submit.
- Griffiths: Sections 9.2 and 9.3 for interactions of atoms with light. Chapter 10 for the adiabatic approximation.

1. Decay of the Three Dimensional Harmonic Oscillator (15 points)

The object of this problem is to calculate the lifetime of a particle with charge q and mass m in the first excited states of a three-dimensional isotropic harmonic oscillator of frequency ω .

By analogy with the hydrogen atom, we refer to the states $|1, 0, 0\rangle$, $|0, 1, 0\rangle$, $|0, 0, 1\rangle$ as the 2p states, and we call the ground state $|0, 0, 0\rangle$ the 1s state. An alternate basis for the 2p states is given by eigenstates of L_z .

$$|m_{\ell} = 1\rangle = \frac{|1, 0, 0\rangle + i|0, 1, 0\rangle}{\sqrt{2}}$$
$$|m_{\ell} = 0\rangle = |0, 0, 1\rangle$$
$$m_{\ell} = -1\rangle = \frac{|1, 0, 0\rangle - i|0, 1, 0\rangle}{\sqrt{2}}$$

- (a) Calculate the transition rate $\Gamma(2p, m_{\ell} \to 1s)$ per unit time for the particle to spontaneously emit electromagnetic radiation and make a transition to the ground state. Show that the transition rate is independent of m_{ℓ} and give your formula for $\Gamma(2p \to 1s)$ in terms of m, ω, q , and fundamental constants.
- (b) What is the lifetime of the 2p state? Thinking of this as a model of hydrogen, let the particle be an electron and set $\hbar\omega = \frac{3}{4}E_{Ry}$ to give the lifetime in seconds. $(E_{Ry} = \text{Rydberg} = 13.6\text{eV})$

2. 1D model of ionization (15 points)

Consider an electron in the *ground state* of a deep one-dimensional square well:

$$V(x) = \begin{cases} 0 & \text{for } x < 0\\ -V_0 & \text{for } 0 < x < a, \quad V_0 > 0\\ 0 & \text{for } x > 0. \end{cases}$$

A very deep well means

$$V_0 \gg \frac{\hbar^2}{ma^2} \quad \rightarrow \quad \frac{2ma^2V_0}{\hbar^2} \equiv z_0^2 \gg 1 \,.$$

An electromagnetic plane wave with electric field $E(t) = 2E_0 \cos(\omega t)$ parallel to the x axis acts on the electron. The electron can then escape the well in an "ionization" process.

- (a) Find the relevant density of final states in the continuum. Use momentum eigenstates unmodified by the well. What is the condition on ω for this to be a reasonable approximation?
- (b) Calculate the transition rate from the ground state to the continuum of momentum states. You will do the following approximations:
 - Use the *infinite* square-well ground state wavefunction as the initial state.
 - Assume the energy of the electron on the ground state is $-V_0$.

3. Comparing rates for spontaneous and stimulated emission (10 points)

For downward transitions with energy difference $\hbar\omega_0$ consider the unit-free ratio r formed by dividing the spontaneous emission rate by the stimulated emission rate, where blackbody radiation at a temperature T is the stimulus:

$$r \equiv \frac{\text{spontaneous emission rate}}{\text{stimulated emission rate}}$$

- (a) What is the ratio r as a function of ω_0 and T?
- (b) Consider a single mode of frequency ω_0 of the electromagnetic field, associated to a photon of fixed polarization and fixed direction of propagation. Calculate (using statistical physics) the expected number \bar{n} of such photons in the radiation at temperature T. Express r in terms of \bar{n} and interpret the result.
- (c) At room temperature, what is the frequency ν_0 (in Hz) for which both rates are the same? Which process dominates for frequencies associated with visible light? Which process dominates at the frequency 10^{10} Hz used in masers?

4. Griffiths 9.11, p.359. (20 points) Decays of 2S, 2P states of hydrogen.

5. Griffiths 9.14, p.363. (20 points) Decays of 3S state of hydrogen.

MIT OpenCourseWare https://ocw.mit.edu

8.06 Quantum Physics III Spring 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>