11.433J / 15.021J Real Estate Economics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Week 8: Public Goods, Externalities, Development and regulations.

- Public goods (e.g. open space) and "free riding".
- Externalities across properties: Nash versus cooperative solutions.
- The impact of historical development in "locking in" current land use patterns.
- Regional open space/land constraint impacts.
- Congestion and development decisions.

1). A number (n) of neighbors contemplate purchasing a vacant lot in their midst.

MV = valuation of the lot by each (as a piece of adjoining open space).

p = price of lot

 $MV\!>\!\!p\!/\!n$, but $MV\!<\!\!p$

Free riding with open space as a *pure* public good. Sharing? Exclusion? Voting?

House Prices and Park Access: greater distance = less benefit or more sharing?

Figure by MIT OpenCourseWare.

2). Suppose park benefits depend on the number using it (n)?

MV(n) = valuation of the park by each (as a function of how many are sharing it)

If the park is not excludable how many will use it: $MV(n_0) = 0$ so $n_0 = \infty$ (possibly) [examples: Fishing, grazing]

3). Total value of usage to group: nMV(n)How many should use to maximize total usage value: $MV(n^*) + n\partial MV/\partial n^* = 0$

$$MV(n^*) = - n\partial MV/\partial n^* > 0$$
, hence $n^* < n_0$
4). $n_0 - n^* =$ degree of "over grazing, fishing..."
If the park is excludable it can be
"privatized". Owner winds up setting an
entrance fee as above = $[- n\partial MV/\partial n^*]$.

Public Goods –vs- Externalities

Externalities: impact of what happens on one parcel to adjoining ones.

Public good: a collective impact on many parcels whose origination is not one specific other parcel.

5).
$$P = \alpha - \beta F - \gamma f$$

 $F = FAR$ of subject's lot
 $f = FAR$ of neighbors [*an externality*]
 $\beta =$ marginal impact of own FAR on
price
 $\gamma =$ marginal impact of neighbor FAR

 α = all other location factors

6). $C = \mu + \tau F$ [construction costs:as before]

7). p = [(
$$\alpha$$
- μ) – (τ + β)F - γ f]F

8). Nash ["a beautiful mind"] solution:

$$F^{m} = [(\alpha - \mu) - \gamma f] / 2(\tau + \beta)$$

$$F^{m} = f, \text{ implies:}$$

$$F^{m} = (\alpha - \mu) / [2(\tau + \beta) + \gamma]$$

$$p^{m} = (\alpha - \mu)^{2} (\tau + \beta) / [2(\tau + \beta) + \gamma]^{2}$$

9). Cooperative solution that maximizes all property recognizing that f=F from the beginning:

$$\mathbf{p} = (\alpha \textbf{-} \mu)\mathbf{F} - (\tau + \beta)\mathbf{F}^2 \textbf{-} \gamma \mathbf{F}^2$$

Solution is:

$$\begin{split} F^* &= (\alpha \text{-}\mu) \ / \ 2(\tau + \beta + \gamma) \ , \ F^* < F^m \\ p^* &= (\alpha \text{-}\mu)^2 \ / \ 4(\tau + \beta + \gamma) \ , \ p^* > p^m \end{split}$$

What if $\gamma < 0$ and greater neighborhood FAR increases home values?

Additional examples of public goods/externalities

- Infrastructure: sidewalks, roads, waterways, lagoons..in addition to open space.
- Historic Districts. Designation provides insurance and control against adverse design/use (a public good). Downside is loss of individual development options. Net is positive (Coulson)? Empirical issue: suppose "better" properties are chosen for historic designation?
- Comprehensive Development Design. Is the "style" of your property an externality to others? Yes in Europe, no in the US.

Solutions to Public Good/Externality Problems.

- Scale: single (collective) ownership of a large parcel of land insures few negative and many positive externalities at development stage (Thorsnes shows development scale matters lots are worth more in big developments)
- Single owner maximizes the total value of development sacrificing value at one location if such a sacrifice creates more value at other locations.
- If development ownership is fragmented each fragment considers only what best for his portion.
- Is the "whole" *always* worth more than the sum of the parts? [Liquidity versus externalities]. Does the price of an acre decrease/increase with the size of purchase?

Solutions to Public Good/Externality Problems.

- With large scale Private development, what happens later on maintaining the original concept and adapting to change.
 - Are covenants and restrictions enough?
 - Lessons from Houston, Hilton Head
- **Public Regulation/Planning.** Alternatively, careful public regulations and master-planning could achieve such harmony. (If you trust planners or politicians to maximize aggregate land value). How to insure this give them a stake?
- "Town Architects" in Europe. What if there is little consensus on what good design is?

Are there "externalities" in commercial Real Estate?

- Office Building height: views versus view blockage, the market for air rights.
- "Good" office architecture. Where is the externality, tenants or neighbors?
- Adjacent retail stores: auto strips (multiple dealerships), shopping centers.
- Hospitals, medical "zones".

10). Industry (I)-Household (H) Externalities can operate at a metropolitan scale.

$$\begin{aligned} r_{I}(d) &= r_{I} - k_{I}d \\ r_{H}(d) &= r_{H} - k_{H}d + |m-d| \gamma \\ k_{I}, k_{H} &= marginal values for commuting \\ to the center: k_{I} < k_{H} \\ \gamma &= marginal valuation of distance from industries by households: assume \gamma "large" \\ [note works in both directions with the absolute value function |--|.] \end{aligned}$$

Multiple equilibrium solutions to a city in which one use dislikes being near to the other. History matters! Which patterns maximizes regional land value?

Bidding for Uses: Coase Theorem Revisited

	<u>Town A</u>	<u>Town B</u>
Production Costs	15	10
Environmental Harm	10	20
Production + "Compensation"	" 25	30
Production + "Exclusion"	-5	0

"Compensation" = firm pays town environmental costs if it locates there. [town has location "rights"]

"Exclusion" = town pays environmental costs for firm *not* to locate there. [firm has location "rights"]

What if environmental impacts spread beyond boundaries?

Then firms must compensate all towns for each possible location – that location where the sum of production costs plus <u>all</u> compensation payments is lowest – is best.

Impacts of regional open space policy: *Always* raises house prices and land values. How much is from constricting supply as opposed to generating true "public good" benefits? London Green Belt, Seattle growth boundary

green belt

Ditto California Coastal Commission Zoning [see French and Lafferty]

Ocean

Desert

11). Travel demand congestion.

Sort travelers according to their valuation of car usage: W(V), where V is the # travelers who value using their car by at least W dollars per trip. W(1) is the value of the highest valuer in the population. If travel costs C^0 , then V^0 is the solution to $W(V^0)=C^0$. V^0 people drive, and the total value of all auto usage is: $\mathbf{V0}$

 $\sum W(V) > C^0 V^0$

V=1

12). Traffic congestion: Equilibrium.
As more travelers use their cars, the cost of travel for each rises: C(V), ∂C/∂V>0.
Ask what travel usage V⁰ equalizes the value of usage to the last user with the cost of that trip:

 $W(V^0) = C(V^0)$

Still true that total value $[\sum W(V)] > C(V^0)V^0$

Can we do better?

13). Traffic congestion: Planning. Ask what travel usage V* maximizes the aggregate value of usage-minus-total-costs:

 $\sum_{V=1}^{V^*} W(V) - C(V^*)V^*$

Answer: $W(V^*) = C(V^*) + V^* \partial C / \partial V$ and $V^* < V^0$

14). Why and How to implement? a). Let the V^{*} car users pay the V⁰ - V^{*} (lower valuing) people *not to drive*! The gain to the V* users is greater than the payment, and the value of the payment to the receivers is greater than their loss of driving.

b). Enact a toll or charge for driving of: $V^* \partial C / \partial V$ (social cost).

c). London and Singapore cordon licenses.

Travel Congestion: Magnitudes

d). One rule of thumb suggests that the social cost of driving is at least as great as the private cost of driving.

- If you are traveling 60mph and value time at \$10 per hour: the congestion toll is \$.16 per mile (\$3-\$4 per gallon).

- If you are stuck at 20mph its closer to \$.50 per mile or \$10-\$15 per gallon!

- Worse MPG=lower fuel toll per gallon (it's a tax on *driving* not a green tax on emissions)

15). Extensions: travel distortions.

- People drive too often and should double up
- Trips are too long (land uses too spread out)
- Transit and other *less congestion-prone* modes are not used enough

- Peak periods of travel need to be broadened: work hours need to be spread out.

- When development creates traffic it needs to be taxed/regulated (!) Not only for local infrastructure, but for regional Traffic impacts as well.

- Impacts beyond local jurisdiction borders suggests bargaining between town-Developer is not enough.