
18.01 Calculus Jason Starr 
Fall 2005 

Lecture 15. October 18, 2005 

Homework. Problem Set 4 Part I: (d) and (e); Part II: Problem 2. 

Practice Problems. Course Reader: 3B­6, 3C­2, 3C­3, 3C­4, 3C­6. 

1. The Riemann sum for the exponential function. The problem is to compute the Riemann 
integral, � b 

xe dx, 
0 

using Riemann sums. Choose the partition of [0, b] into a sequence of n equally­spaced subintervals 
of length b/n. So the partition numbers are xk = kb/n. Also the length of each partition is 

xΔxk = b/n. Because ex is increasing, the minimum value of e on the interval [xk−1, xk ] occurs at 
the left endpoint, 

(k−1)b/nyk,min = e xk−1 = e . 

Similarly, the maximum value occurs at the right endpoint, 

kb/n yk,max = e xk = e . 

Thus the lower sum is, 
n n� � b 

Amin = yk,minΔxk = e(k−1)b/n . 
n 

k=1 k=1 

And the upper sum is, 
n n� � b 

Amax = yk,maxΔxk = ekb/n . 
n 

k=1 k=1 

To evaluate each of the sums, make the substitution c = eb/n . Then the lower sum is, 

n−1n
b �b � 

lAmin = c k−1 = c . 
n n 

k=1 l=0 

The sum is a geometric sum, 
n 

(1 + c + c 2 + · · ·+ c n−2 + c n−1) = 
c − 1 

. 
c − 1 

Plugging this in gives, 
n ebn/n b c − 1 b − 1 

Amin = = . 
eb/n − 1n c − 1 n 
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This simplifies to, 
b/n 

.Amin = (e b − 1) 
eb/n − 1 

A similar computation gives, 
b/nb/nAmax = (e b − 1)e

eb/n − 1 
. 

Now make the substitution, h = b/n. This gives, 

h 
Amin = (e b − 1) 

eh − 1 
, 

hhAmax = (e b − 1)e . 
he − 1 

Taking the limit of Amin, respectively Amax, as n tends to infinity is the same as taking the limit 
as h tends to 0. 

Now observe that, 
he

lim 
− 1 

, 
h 0 h→

is the difference quotient limit giving the derivative of ex at x = 0. Since dex/dx equals ex, and 
since e0 equals 1, this gives, 

he − 1 
lim = 1. 
h 0 h→

Inverting gives, 
hh e − 1 

�−1 

lim = lim = (1)−1 = 1. 
h→0 eh − 1 h 0 h→

Also, because ex is continuous, 
lim e h = e 0 = 1. 
h 0→

Putting this together gives, 

lim Amin = (e b − 1) lim 
h→0 eh 

h 
− 1 

= (e b − 1)(1) = e b − 1. 
n→∞ 

Similarly, 
hlim Amax = (e b − 1)(lim e )(lim 

h→0 eh 

h 
− 1

) = (e b − 1)(1)(1) = e b − 1. 
h 0n→∞ →

Since the limit of Amin and the limit of Amax exist and are equal, the Riemann integral exists and 
equals, � b 

e xdx = 
0 

eb − 1. 
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r2. The Riemann sum for x . Let r > 0 be a positive real number. The problem is to compute 
the Riemann integral, � b 

r x dx, 
1 

using Riemann sums. For this particular integral, a different partition than usual is more efficient. 
Let n be a positive integer, and let q be the real number, 

q = b1/n. 

Choose the partition of [1, b] into n subintervals with partition numbers, 

k xk = q . 

Observe that, 
1 = x0 < x1 < · · · < xn−1 < xn = (b1/n)n = b. 

The length of the kth subinterval is, 

Δxk = xk − xk−1 = q k − q k−1 = q k−1(q − 1). 

Observe this increases as k increases. So this is not the partition of [1, b] into n equal subintervals. 
The mesh size is, 

mesh = max(Δx1, . . . ,Δxn) = Δxn = (q − 1)b(n−1)/n ≤ q − 1. 

As n tends to infinity, the mesh size tends to, 

lim mesh = lim q − 1 = lim b1/n − 1 = 0. 
n 0 n 0 n 0→ → →

Thus, even though this isn’t the most obvious choice of partition, it can be used to compute the 
Riemann integral. 

r rBecause x is increasing, the minimum value of x on the interval [xk−1, xk ] occurs at the left 
endpoint, 

r yk,min = xk−1 = q(k−1)r . 

Similarly, the maximum value occurs at the right endpoint, 

r kr yk,max = xk = q . 

Thus the lower sum is, 

n n

q(k−1)r · q(k−1)(q − 1).Amin = yk,minΔxk = 
k=1 k=1 
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This simplifies to, 
n

q(k−1)(r+1)Amin = (q − 1) . 
k=1 

And the upper sum is, 

n n

kr Amax = yk,maxΔxk = q q(k−1)(q − 1). 
k=1 k=1 

This simplifies to, 
n

q(k−1)(r+1)Amax = (q − 1)q r . 
k=1 

To evaluate the sum, make the substitution c = qr+1 . Then the sum is, 

n

2 n−1 c k−1 = 1 + c + c + · · ·+ c n−2 + c . 
k=1 

This geometric sum equals, 
n qn(r+1) − 1c − 1 

= . 
qr+1 − 1c − 1 

Thus the upper and lower sums simplify to, 

Amin = (q − 1)(q n(r+1) − 1)/(q r+1 − 1), 

r r+1Amax = q (q − 1)(q n(r+1) − 1)/(q − 1). 

Now back­substitute q = b1/n to get that qn(r+1) = br+1 . Simplifying gives, 

1 
,Amin = (br+1 − 1)

(qr+1 − 1)/(q − 1) 

1 r .Amax = (br+1 − 1)q 
(qr+1 − 1)/(q − 1) 

As n tends to infinity, the quantity q = b1/n tends to 1. The fraction, 

r+1q − 1 
, 

q − 1 

is the difference quotient for y = xr+1 for x = 1. As q tends to 1, the limit of the difference quotient 
is the derivative of y = xr+1 at x = 1, 

qr+1 d(xr+1)
lim 

− 1
= x=1 = ((r + 1)x r |x=1 = (r + 1). 

q→1 q − 1 dx 
|
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rAlso, since x is continuous, 
lim q r = 1r = 1. 
q→1 

Substituting this in gives, 

br+1 

lim Amin = (br+1 − 1) lim 
qr+1 − 1 −1 

= 
− 1 

, 
q→1 q − 1 r + 1 n→∞ 

br+1 

lim Amax = (br+1 − 1) lim q r lim 
qr+1 − 1 −1 

= 
− 1 

, 
q→1 q→1 q − 1 r + 1 n→∞ 

Since the limit of Amin and the limit of Amax exist and are equal, the Riemann integral exists and 
equals, � b 

x r dx = 
1 

(br+1 − 1)/(r + 1). 

3. The Fundamental Theorem of Calculus. There is a single theorem that it is at the heart 
of almost all applications involving Riemann integrals. The theorem answers two question simul­
taneously: Which functions are Riemann integrable? What is the Riemann integral of a function? 
The answer to the first question is: Every function you are likely to encounter is Riemann inte­
grable. Precisely, every continuous function, and every piecewise continuous function is Riemann 
integrable. 

The answer to the second question is more interesting. Assume f (x) is a continuous function. Let 
x = a be a fixed point where f (x) is defined. Form the function, 

x 

F (x) = f (t)dt. 
a 

The function F (x) is defined whenever f (t) is defined on all of [a, x]. If f (x) is continuous, the 
Fundamental Theorem of Calculus asserts F (x) is differentiable and, 

d xdF 
(x) = f (t)dt = f (x). 

dx dx a 

The proof of the second part is very easy. Consider the increment in F from x to x + Δx, � x+Δx x � x+Δx 

F (x + Δx) − F (x) = f (t)dt − f (t)dt = f (t)dt. 
a a x 

Let ymin be the minimum value of f (t) on the interval [x, x + Δx]. Let ymax be the maximum 
value of f (t) on the interval [x, x + Δx]. Then for every choice of partition t0 < t1 < tn of< · · · 
[x, x + Δx], and every choice of values y∗ on the subintervals, k 

ymin ≤ y∗ 
k ≤ ymax, 
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for every k. Thus the Riemann sum is squeezed between, 

n n n

∗Δt ≤kkyminΔtk ≤ y ymaxΔtk . 
k=1 k=1 k=1 

Of course the lower bound is, 

n n

yminΔtk = ymin Δtk = yminΔx, 
k=1 k=1 

because the total length of the interval [x, x + Δx] is Δx. Similarly, the upper bound is, 

n

ymaxΔtk = ymaxΔx. 
k=1 

Thus the Riemann sum is squeezed between, 

n

∗Δ ≤x ykk maxΔx.yminΔx ≤ y
k=1 

Because the Riemann integral is a limit of Riemann sums, it is also squeezed, � x+Δx 

yminΔx ≤ f (t)dt ≤ ymaxΔx. 
x 

Substituting in F (x + Δx) − F (x) and dividing each term by Δx gives, 

F (x + Δx) − F (x) 
ymin ≤ 

Δx 
≤ ymax. 

The middle term is the difference quotient. Consider what happens as Δx tends to 0. Because f (t) 
is continuous, both the maximum and minimum values of f (t) on [x, x + Δx] simply limit to the 
value f (x). Thus, 

lim ymin = lim ymax = f (x). 
Δx Δx 

By the Squeezing Lemma for limits, since these two limits exist and are equals, the middle limit 
also exists and equals f (x), 

F (x + Δx) − F (x)
= f (x).lim 

Δx
Δx 0→

This is precisely what the Fundamental Theorem of Calculus asserts, 

d x 

f (x) .f (t)dt = 
dx a 
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4. Algorithm for computing Riemann integrals. The Fundamental Theorem of Calculus has many 
important applications. The most obvious is to give us a simpler method for computing Riemann 
integrals, under the hypothesis that we can compute the antiderivative. If f (x) is a continuous 
function and G(x) is a known antiderivative of f (x), then, � b 

f (t)dt = G(b) − G(a). 
a 

To see this, observe that, 
x 

F (x) = f (t)dt, 
a 

is also an antiderivative of f (t) by the Fundamental Theorem of Calculus. Thus, since the general 
antiderivative is G(x) + C, there is a constant C such that F (x) = G(x) + C. But also, 

a 

F (a) = f (t)dt = 0. 
a 

Thus, F (x) = G(x) − G(a). Now plug in x = b to get, � b 

f (t)dt = F (b) = 
a 

G(b) − G(a). 


