18.01 Calculus Jason Starr
Fall 2005

Lecture 15. October 18, 2005
Homework. Problem Set 4 Part I: (d) and (e); Part II: Problem 2.
Practice Problems. Course Reader: 3B-6, 3C-2, 3C-3, 3C-4, 3C-6.

1. The Riemann sum for the exponential function. The problem is to compute the Riemann

integral,
b
/ e“dx,
0

using Riemann sums. Choose the partition of [0, b] into a sequence of n equally-spaced subintervals
of length b/n. So the partition numbers are z;, = kb/n. Also the length of each partition is
Az = b/n. Because e is increasing, the minimum value of e* on the interval [x;_1, zx] occurs at

the left endpoint,
Yk min = k-1 — e(kfl)b/n.
Similarly, the maximum value occurs at the right endpoint,

Yk,max = et = 6kb/n~

Thus the lower sum is,
n n b
Amin = Z yk,minAzk = Z e(k—l)b/n_‘
n
k=1 k=1

And the upper sum is,

Amax - zn:yk,maxAxk = zn: €kb/n%.
k=1

k=1

b/n

To evaluate each of the sums, make the substitution ¢ = e”". Then the lower sum is,

-1
b — b <
Amin = E E Cki1 = E E Cl.
k=1 =0

The sum is a geometric sum,
c"—1

(I+c++ 4" 2+ = -
C_

Plugging this in gives,
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This simplifies to,

b/n
. — b —_— —
Apmin = (e l)eb/n —
A similar computation gives,
b/n
. b b/n
Apax = (€ = 1e BT
Now make the substitution, h = b/n. This gives,
h
Amin = (e’ - 1 1
h
Amax = (e’ — 1 h .

Taking the limit of A,;,, respectively A,.x, as n tends to infinity is the same as taking the limit
as h tends to 0.

Now observe that,

is the difference quotient limit giving the derivative of e* at = 0. Since de”/dz equals e”, and
since €° equals 1, this gives,

h
-1
lim &= = 1.
h—0
Inverting gives,
_ h =1\ ! 1
i o = () -0

Also, because e* is continuous,

lim e" = €0 = 1.
h—0

Putting this together gives,

lim A, = (eb — 1) lim

h 1:(eb—1)(1):eb—1.

n— o0 h—>06h—
Similarly,
. _ (b o RY(T: _ (b _ b
i A = (¢~ 1)(lim ) (lim ") = (¢~ 1)(1)(1) = ¢ 1

Since the limit of A,;, and the limit of A,.« exist and are equal, the Riemann integral exists and

equals, )
[ et
0
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2. The Riemann sum for x". Let » > 0 be a positive real number. The problem is to compute
the Riemann integral,
b
/ x'dr,
1

using Riemann sums. For this particular integral, a different partition than usual is more efficient.
Let n be a positive integer, and let ¢ be the real number,

q= b/,

Choose the partition of [1,b] into n subintervals with partition numbers,
T = q".

Observe that,

l=ag<a21 < - - <Tp_ <xn:(bl/")":b.
The length of the k'™ subinterval is,

Az =ap — 11 =¢"— ¢ =¢"qg-1).

Observe this increases as k increases. So this is not the partition of [1, 5] into n equal subintervals.
The mesh size is,

mesh = max(Azxy,...,Azx,) = Az, = (¢ — l)b(”_l)/” <qg-1.
As n tends to infinity, the mesh size tends to,

lim mesh = lim ¢ — 1 = lim /™ — 1 = 0.
n—0 n—0 n—0

Thus, even though this isn’t the most obvious choice of partition, it can be used to compute the
Riemann integral.

Because z” is increasing, the minimum value of 2" on the interval [z)_1,zx] occurs at the left
endpoint,

r kE—1)r
Ypmmin = T = ¢F7I".

Similarly, the maximum value occurs at the right endpoint,

r kr
Ykmax = T, = ¢ -

Thus the lower sum is,

Amin = Z yk,minAxk = Z q(kil)r : q(kil) (q - 1)
k=1 k=1
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This simplifies to,

And the upper sum is,

Amax = Z yk,maxAxk = Z qqu(k_l) (q - 1)
k=1 k=1

This simplifies to,

n
Amax _ (q . 1)qr Z q(kfl)(r+1).
k=1

To evaluate the sum, make the substitution ¢ = ¢"*!. Then the sum is,

ch_l:1+c+02+---+c”_2+c"_1.
k=1

This geometric sum equals,
M —1 qn(r+1) -1
c—1 gt —1"

Thus the upper and lower sums simplify to,
Amin = (¢ = 1)(¢""Y = 1)/(¢"" = 1),
Amax = ¢ (a = (@ = 1)/(¢" = 1).
Now back-substitute ¢ = b'/™ to get that ¢""*+1 = b1, Simplifying gives,
1
(¢ =1)/(g—1)

1
(@' =1)/(g—1)

As n tends to infinity, the quantity ¢ = b*/™ tends to 1. The fraction,

Apin = (0" = 1)

Amax == (br+1 - 1)qr

qr+1_1
qg—1

)

is the difference quotient for y = 2! for # = 1. As ¢ tends to 1, the limit of the difference quotient
is the derivative of y = 2™ ! at © = 1,
qr—l-l -1 d(xr—i—l)

}112} q — 1 - dx |ac:1 = ((T + 1)xr|x:1 = (T + 1)
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Also, since z" is continuous,
limg"=1"=1.

q—1

Substituting this in gives,

r+1 _ 1 -1 bTJrl -1
lim Ap = (0 —1) (imL——~) =2 "~
n—00 =1 q—1 r+1

r+1 _ 1 -1 br+1 -1
lim Apax = (0" = 1) (lim q’”) (lim q—) =—Q,

n—o00 q—1 q—1 q— 1 r 4+ 1

Since the limit of A,,;, and the limit of A,.x exist and are equal, the Riemann integral exists and
equals,

/f de = = 1)J(r + 1).

3. The Fundamental Theorem of Calculus. There is a single theorem that it is at the heart
of almost all applications involving Riemann integrals. The theorem answers two question simul-
taneously: Which functions are Riemann integrable? What is the Riemann integral of a function?
The answer to the first question is: Every function you are likely to encounter is Riemann inte-
grable. Precisely, every continuous function, and every piecewise continuous function is Riemann
integrable.

The answer to the second question is more interesting. Assume f(z) is a continuous function. Let
x = a be a fixed point where f(x) is defined. Form the function,

_ / " fyat

The function F(z) is defined whenever f(t) is defined on all of [a,x]. If f(x) is continuous, the
Fundamental Theorem of Calculus asserts F'(x) is differentiable and,

da; dx/ ) ().

The proof of the second part is very easy. Consider the increment in F' from z to z + Ax,

Flz+ Az) — F(z) = / T b / " F(t)dt = / .

Let Ymin be the minimum value of f(t) on the interval [z,x + Ax]. Let ynax be the maximum
value of f(t) on the interval [x,x + Az]. Then for every choice of partition ¢ty < t; < -+- < t,, of
[z,x + Az], and every choice of values y; on the subintervals,

Ymin S yl: S Ymax;
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for every k. Thus the Riemann sum is squeezed between,

Z yminAtk S Z yZAtk S Z ymaxAtk~
k=1 k=1 k=1

Of course the lower bound is,
Z yminAtk = Ymin Z Atk = yminAxa
k=1 k=1
because the total length of the interval [z, x + Az] is Ax. Similarly, the upper bound is,

Z ymaXAtk - ymaxAx-
k=1

Thus the Riemann sum is squeezed between,
n
yminAl‘ S Z ?JZA% S ymaXAl‘-
k=1

Because the Riemann integral is a limit of Riemann sums, it is also squeezed,
z+Ax
Ymin AT < / fO)dt < ymaxAcx.
xr

Substituting in F'(x + Az) — F(x) and dividing each term by Az gives,

F(x 4+ Az) — F(x)
Ax

Ymin S S Ymax-

The middle term is the difference quotient. Consider what happens as Az tends to 0. Because f(t)
is continuous, both the maximum and minimum values of f(¢) on [z,z + Az] simply limit to the
value f(x). Thus,

M0 Ynin = 0 Yo = f ().
By the Squeezing Lemma for limits, since these two limits exist and are equals, the middle limit
also exists and equals f(x),

F(z+ Az) — F(z)
)P _ .

This is precisely what the Fundamental Theorem of Calculus asserts,

lim
Az—0

[ s |f@)
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4. Algorithm for computing Riemann integrals. The Fundamental Theorem of Calculus has many
important applications. The most obvious is to give us a simpler method for computing Riemann
integrals, under the hypothesis that we can compute the antiderivative. If f(z) is a continuous
function and G(x) is a known antiderivative of f(z), then,

b
/ F(#)dt = G(b) — Gla).
To see this, observe that, .
Pla) = [ (o

is also an antiderivative of f(¢) by the Fundamental Theorem of Calculus. Thus, since the general
antiderivative is G(x) + C, there is a constant C' such that F(x) = G(x) + C. But also,

F(a) = /af(t)dt = 0.

Thus, F(z) = G(x) — G(a). Now plug in x = b to get,

/ f(t)dt = F(b) = [G) = Gla)]



