SOLUTIONS TO 18.01 EXERCISES

Unit 1. Differentiation
1A. Graphing

1A-1,2 a)y=(z-1)2-2
b) y=3(z? +2z) +2=3(x +1)2 -1

2 4 2 ]
1a ) 1b 2a

@u—

1A-3 a) f(—=z) = (l_f):_;;s f . _fs_;fx = —f(z), so it is odd.

b) (sin(~2))? = (sinz)?, so it is even.

c) idg, so it is odd
even ,
d) (1 - z)* # (1 + z)*: neither.
e) Jo((—x)%) = Jo(z?), so it is even.

1A-4 a) p(z) = pe(z) + Po(z), where pe(z) is the sum of the even powers and p,(z) 1s the
sum of the odd powers : _

b) f(z) = & +2f (z2) | fla) = (=2)

2
Pl = 101+ 1C3)

is even and G(z) = f(m_)—zw is odd because

F(-0) = LEDHEED py, gy = HEICD gy,

2
¢) Use part b:
LN S 22 2 oven
g+a -z+a (z+a)(-z+a) a?-a2
1 1 - ~2z —2
z+a -z+a (z+a)(-z+a) a?—z2 odd
1 a Tz

z+a a’-122 a2-2?
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S. 18.01 SOLUTIONS TO EXERCISES

1A-5 a)y = 2 n 3 Crossmultiply and solve-for x, getting z = ::y_-;;, 80 the inverse
function is 3z+1 .
S 1-2z°

bjy=22+2r=(z+1)* -1

: (Restrlct domain to £ < —1, so when it’s flipped about the diagonal y = z, you’ll still
_ get the graph of a function.) Solvmg for z, we get z = /y + 1 — 1, s0 the inverse function
isy=vz+1- 1

\ 8(x)

1A-6 8) A=vIF3=2tanc= ¥, c= % So sinz + v3 cosz =2sin(z + n.
b) v2sin(z - )
1A-7 a) 3sin(2z — ) = 3sin2(z - ;—r), amplitude 3, period 7, phase angle = /2.

b) —4cos(z + -7[) = 4sinz amplitude 4, period 2, phase angle 0.

ANN - AN N
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7b.

1A-8

f(z) odd = f(0) = —f(0) = f(0) = ‘

So f(e) = f(2¢) =--- =0, also (by periodicity, where c is the period).
1A-9 | |

e AT A
7\5/3‘\;%\3A\/ e ‘ ,.
NN T
9ab period =4 9% -

-c) The éraph is made up of segments joining (0, —6) to (4, 3) to (8,—6). It repeats in
a zigzag with period 8. * This can be derived using:
z/2—1=-1 => z=0and g(0) = 3f(~1)-3=—6
z/2-1=1=> z=42and g(4)=3f1)-3=3
z/2-1=3 => z=8and g(8) =3f(3)—-3=-6



1. DIFFERENTIATION
1B. Velocity and rates of change
1B-1 a) h = height of tube = 400 — 1612,

h(2) — h(0) _ (400 — 16.22) - 400 _
2 N 2 -

average speed —32ft/sec

(The minus sign means the test tube is going down. You can also do this whole problem
using the function s(t) = 16t2, representing the distance down measured from the top. Then
all the speeds are positive instead of negative.)

b) Solve h(t) = 0 (or s(t) = 400) to find landing time ¢ = 5. Hence the average speed
for the last two seconds is :

h(5) — h(3) _ 0—(400-16-3%) _
2 2 a

—128ft /sec

h{t) ~h(5) _400—16t2—0 _ 16(5—¢t)(5+1)
t-5 t-5 - t-5
= —16(5 +t) — —160ft/sec ast — 5

" 1B-2 A tennis ball bounces so that its initial speed straight upwards is b feet per second.
Its height s in feet at time ¢ seconds is

s=bt—162
a)
s(t + h) — s(t) _ b(t + h) — 16(¢ + h)? — (bt — 16t2)
' _ bt +bh — 164 —zzth — 16h2 — bt + 1682
_ bh—32th — 16k3 "
h

=b-32t—16h—)b—32._‘,ash—)0

Therefore, v = b — 32t.

b) The ball reaches its maximum height exactly when the ball has finished going up.
This is time at which v(t) = 0, namely, ¢ = b/32.

¢) The maximum height is s(b/32) = b?/64.

d) The graph of v is a straight liné with slope
—32. The graph of s is a parabola with maximum b/32

v
b

at place where v = 0 at ¢ = b/32 and landing time : t 32 b6
att=>5/16. graph of velocity graph of position



S. 18.01 SOLUTIONS TO EXERCISES

v

e) If the initial velocity on the first bounce was b; = b, and the velocity of the second
bounce is by, then b2/64 = (1/2)b?/64. Therefore, by = b1/\/— The second bounce is at
b1/16 + b2 /16. (continued —)

f) If the ball continues to bounce then the landing times form a geometric series

* b1/16 + by /16 + b3 /16 + - - = b/16 + b/16v/2 + b/16(v/2)? +
= (b/16)(1 + (1/v2) + (1/f
/16
T1- (1N‘)

Put another way, the ball stops bouncing after 1 /(1= (1/v2)) ~ 3.4 times the length of
time the first bounce.

1C. Slope and derivative.

1C-1 a)
w(r +h)2 —ar® _ w(r® +2rh +h%) —nr? _ w(2rh + h?)
“h - h - h
=n(2r + h)
= 2rr ash—0
b)
(4m/3)(r + h)® — (4w /3)r® _ (4m/3)(r® + 3r2h + 3rh? + A3) — (dn/3)r® -
h - h
_ (4m/3)(3r%h + 3rh? + B3)
=/ -
= (4r/3)(3r% + 3rh + h?)

— 47?2 ash =0

1C-2 f(.’l)) _f(a’) = (a:—a)g(.'z:) -0 =g(:z:) ___>g(a) as T = a.

r—a xr—a
1C-3 a)

1 1 _ 1 _1 2z+1—‘(2(m+h)+1)]

E[z(z+h)+1 2z+1]_ (2(z + ) + 1)(2z + 1)
17 =2
" h [(Z(a:-i-h) + 12z + 1)]'
] -2
T Re+h+DEz+I)

-2

_)_—_(2z+1)2 ash—0



1. DIFFERENTIATION

b)
2(.'n+h)2+5(m+h)+4 (2x’+5z+4) . 222 + 4zh + 2h% + 5z + 5h — 222 — 5z
h h
2
__4a:h+2hh +5h_4 +2h+5

——+4m+5 ash—0

)

(22 +1) - ((x+ k)2 +1)
| (@ +Rh)2+1)(z2+1)
'z2+1-§:2—2zh—h2—1]
(z+h)2+1)(z2 +1)
—2zh — h?
e
. -2z —h
T (+h)2+1)(22+1)
~2z
D@y

11
‘hl@+h2+1 22+1 -

= = =

ash—0

d) Common denominator:

1[F__]=1[__ﬁ-v/m]
z+h Vz vz +hy/z

Now simplify the numerator by multiplying numerator and denominator by /z + \/z + h,
and using (e —b)(a+b) =a® - b* :

1 (vz)? - (VT +h)? __1_[ z—(z+h) ]

h Ve +hv/a(vVz+ vz +h)] ~ bV +hyz(Va+ Vo +h)
-h

h vV + h/z(z + Vz + h)

B [Vz+hﬁ(:/15+ Vz+h)]

=1 1 s
——)2(‘/5;.)3- 2::; ) ash—0

e) For part (a), —2/(2z +1)? < 0, so there are no points where the 510pe is 1 or 0. For
slope —1,

C2@r 1) = =1 = @z 41 =2 —s 2414V = z=-1/2% V32

For part (b), the slope is 0 at z = —5/4, 1 at z = —1 and —1 at z = —3/2.
1C-4 Using Problem 3,



S. 18.01 SOLUTIONS TO EXERCISES

a) f'(1) =—2/9 and f(1) = 1/3, s0 y = —(2/9)(z ~ 1) +1/3 = (-2 + 5)/9
b) f(a) =24® +5a+4 and f'(a) = 4a+5, s0

y = (4a 4 5)(z ~ a) + 202 + Ba + 4 = (4a + 5)z — 2a% + 4
- -¢) f(0)=1and f'(0) =0;,s0y=0(z-0)+1,0ory= 1: R
d) f(a) =1//a and f'(a) = —(1/2)a=%2, 50 |

3; =—(1/2)a**(z -a)+1/Va = ~a~3% 4 (3/2)a1/?

1C-5 Method 1. /(z) = 2(z — 1), so the tangent line through (e, 1+ (a — 1)?) is
y=2(a—1)(z —a)+1+ (a—1)?

In order to see if the origin is on this line, plug in z=0and y=0, to get the following
equation for a.

0=2(a-1)(-a)+1+(a—-1)2=-2*+2a+1+a?-2a+1=—a®+2
Therefore a = +v/2 and the two tangent lines through the origin are
y=2(v2—-1)z and y = —2(\/—+ 1)z

. (Because these are lines throught the origin, the consta.nt terms must cancel: this is a good
check of your algebra!) -

Method 2. Seek tangent lines of the form y = maz. Suppose that y = ma meets
y =14+ (z—1)? at z = a, then ma = 1 + (a —1)%. In addition we want the slope
v (a) 2(a — 1) to be equal to m, som = 2(a — 1). Substituting for m we find
2(a-1)a=1+(a-1)?

This is the same equation as in method 1: a2 — 2 =0, 80 @ = £v/2 and m = 2(+v2 ~ 1)
and the two tangent lines through the origin are as above, :

y=2(VZ- 1)z and y=-2(v3+1)z

ﬂ\ﬁ\
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1. DIFFERENTIATION

1D. Limits and continuity

" 1D-1 Calculate the followmg limits if they exist.- If they do not exist, then indicate whether
~ they are +oo, —oo or undefined.

c) undefined (both oo are possible)
d) Note that 2 — z is negative when > 2, so the limit is ~c0
e) Note that 2 — = is positive when z < 2, so the limit is +oo (can also be written 00)

f) %’ o -2 — 00
Hz-271- (2/:,,-) =coasz
4z? . 4:c(z —2) &
5):,.---2‘4”‘ z=2  "z-3" (2/)"8*’“"’°°

) z?+2z+3 1+(2/z)+(3/z2)
372 -2z +4 3- (2/:5)-}-4/::3)

asz—»oo

) -2 z—2 1 —»1855;»2
Vet  G-2)=+2) z+2 4
- 1 1

1D-2, ‘f)a?_'f%:‘/i‘o b) Jmoo—y= | Jlimo—=-c

c) liﬂal(z—l)"=oo (left and right hand limits are same)

d) glﬂn$| =0 (left and right hand limits are same)

o m Plo1 wp Bloy |

z—0+ z—0— z. )

1D-3 a) z =2 removable .z = —2 infinite b) z =0, £x, +2, ... infinite

cjz=0removable d)z=O0removable e)z=0jump f)z=0removable

i \_/ _ LY
i 05
; - | %

1D-5 a) for continuity, w_a.ntaa:+b_=1w.henm=1.~. Ans.: all a,bsuch that a +b=1"

b)d—y—d(;;)—2z—2whenz 1. We have alsod(“d:")

ma.ke f'(z) continuous, we want @ = 2. . _
Combining this with the condition a 4 b=1 from part (a), we get finally b = —1, a = 2.

. 1D-4

= a. Therefore, to



S. 18.01 SOLUTIONS TO EXERCISES
1D-6 a) f(0) =0%+4-0+ 1= 1. Match the function values:
f(oo) = ll_l’ﬁ)aﬂ: +b=>, s0b=1 by continuity.

Next match the slopes:
(0P =lim2z+4=4

- T, . z—0 .

and f'(07) = a. Therefore, a = 4, since f'(0) exists.
b) ' '
f)=124+4.141=6 and f(l‘)=,1:ilﬁaz+b=a+b
Therefore continuity implies a + b = 6. The slope from the right is
1+ — 13 -—
'@ )_£1_1I112z+4—6

Therefore, this must equal the slope from the left, which is a. Thus, a =6 and b= 0.

1D-7
fQ)=cl?+4-1+1=c+5 and f(1‘)=;i§11az+b=a+b'

Therefore, by continuity, ¢+ 5 = a + b. Next, match the slopes from left and right:
2oy — 15 . - ' 11—\ 12 _
- F@ )—lzrll2cz+4_2c+4 and f'(1 )5ix_)xr§a—a

Therefore, ,
a=2c+4 and b= —c41.
1D-8
a) .
f(0) =sin(2-0) = 0 and f(0%) = limaz +b=1b

Therefore, continuity implies b = 0. The slope from each side is

fl(o) = lim 2 cos(2z) = 2 and f(oh) = iig}?a =a

Therefore, we need a # 2 in order that f not be differentiable.

b)
f(0) =cos(2-0) =1 and f(0*) = lmaz+b=b

Therefore, continuity implies b = 1. The slope from each side is
1N~y — 18 _ o - 1N+ =k =
F( )—E’% 2sm(2z)50andf(0 ) al:l_r.%a a

Therefore, we need a # 0 in order that f not be differentiable.

1D-9 There cannot be any such values because every differentiable function is continuous.



1. DIFFERENTIATION
1E: Differentiation formulas: polynomials, products, quotients

1E-1 Find the derivative of the following polynomials
a) 102° + 152 + 622
_b) 0 (¢® + 1~ 84 is a constant and the derivative of a constant is zero.)
c)1/2

d) By the product rule: (322 +1)(z® +22)+ (23 + z)(52* + 2z) = 827 + 625 +52* + 3z2.
Alternatively, multiply out the polynomial first to get z® +2%+2%+z*® and then differentiate.

1E-2 Find the antiderivative of the following polynomials
a) az?/2 + bz + ¢, where a and b are the given constants and ¢ is a third constant.
b) z7/7+ (5/6)z® + z* + ¢

c) The only way to get at this is to multiply it out: z° + 2z® + 1. Now you can take
the antiderivative of each separate term to get
gt gt
2 + D} +z+e¢

Warning: The answer is not (1/3)(z® + 1)3. (The derivative does not match if you apply
the chain rule, the rule to be treated below in E4.)

1E-3 ¢ =322 +22-1=0 = (3z—1)(z+1)=0. Hence z = 1/3 or = = —1 and the
points are (1/3,49/27) and (-1, 3)

1E-4 a) f(0) = 4, and f(07) = lim 525 + 32* 4+ 72% 4 8z + 4 = 4. Therefore the function
is continuous for all values of the parameters.

,f'(0+) = lim2az +b=b and f'(07) = lim 25z% +122° + 14z +8 =8

Therefore, b = 8 and a can have any value.
b) f1)=a+b+4 and f(1+) =5+ 3+ 7+ 8 + 4 =27. So by continuity,

a+b=23
1=y — 13 —_— 1r14Y — 12 4 3 —
fia ‘)-dlpl_xﬁ2ax+b—2a+b; i1 )—51_1’11125:1: +122° + 14z 4+ 8 = 59.
Therefore, differentiability implies
. ’ 2a4+b=59

Subtracting the first equation, a = 59 — 23 = 36 and hence b = —13.

1 1- 2az — 22 -z -4z -1
WS arap ¥ mrr O @oip

d) 322 -1/2*
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1F. Chain rule, implicit differentiation

. 1F-1 a) Let u = (g% +2)

—y = —— ——f = — 2 — 43 .
=Y Tt (2z)(2u) = 4z(z* + 2) = 42° + 8z
Alternatively, -
d, 2 2_ G, 4 2 — 4.3
d:z:(m +2) —dz(:z: +4z° + 4) = 4z° + 8z
2 d 100_dud g 99 2 99
b) Let u = (2? + 2); then —u'%® = ———u'% = (22)(100u%°) = (200z)(z® + 2)*°.

dx dz du
1¥-2 Product rule and chain rule;

10z° (z? + 1)10 + z1°[10(z? + 1)°(22)] = 10(3z* + 1)z° (22 + 1)°
1F-3 y=z'/® = y" =z = ny™ 'y’ = 1. Therefore,
7 1 1 l1-n 1 L1

e
1F-4 (1/3)z7%/% + (1/3)y~%/3y' = 0 implies
y = —m'2/3y2/3

Put u=1~-z!/3. Then y = 43, and the chain rule implies

dy =3y g du
de dz

The chain rule answer is the same as the one using implicit differentiation because

3(1 _ $1/3)2(_(]:/3)x—-2/3) = ’__z—2/3(1 _ .’E1/3)2

(1 31/3)3 = y (1 121/3)2

1F-5 Implicit differentiation gives cosz + y'cosy = 0. Horizontal slope means y' = 0,
so that cosz = 0. These are the points £ = /2 + kr for every integer k. Recall that
sin(m/2 + kr) = (~1)¥, e, 1 if k is even and —1 if k is odd. Thus at z = 7/2 + kr,
~ %1 +siny = 1/2, or siny = F1 4 1/2. But siny = 3/2 has no solution, so the only
solutions are when k is even and in that case siny = =1+ 1/2, so that y = —n/6 + 2n7 or
y = Tx/6 + 2nx. In all there are two grids of points at the vertices of squares of side 2,
namely the points

(7/2 + 2km,—m/6 + 2n7) and (w/2 + 2kx, 7% /6 + 2n7); k, n any integers. -

1F-6 Following the hint, let z = —z. If f is even, then f (:z:) f(z) Differentiating and
using the chain rule:

f'(z) = f'(2)(dz/dz) = —f'(2) because dz/dz = —1

But this means that f' is odd. Similazly, if g is odd, then g(z = —g(z). Differentiating and
using the chain rule:

9'(z) = —¢'(2)(dz/dz) = ¢'(2) because dz/dz = —1



1. DIFFERENTIATION

1F-7 a) % = —;-((z — a)® + 5% Y3(2(z - é))-é ﬁ
‘b) %" = Tl(l P[22 —czv 21 _":,2’},_.2)3/2
) G =ma (g4 2 = h
@G- e e~ e
11}8 ) V= %m’zlf = 0= %w(er’h'Jr r)=r'= % '5;:'
b) PV® =nRT = P’V°+P Vel=0=P = _PVe_ P

Ve |4
c) ¢ = a® + b? — 2abcos@ implies '

~2b+2cosf-a _acosf—bd
2a —2cosf-b a—bcosh

0= 2aa’ +2b — 2(cos8(a’d + a)) => o’ =

1G. Higher derivatives -

-10 - -10

1G-1 a)6-3~%/2 b) @rop © (z+5)3

d)o

1G-2 If " = 0, then 3" = co, a constant. Hence 3 = coz + ¢;, where ¢; is some other
" constant. Next, y = coz2/2+ ¢1% + c3, where c3 is yet another constant. Thus, y must be
a quadratic polynomial, and any quadratic polynomial will have the property that its third
derivative is 1dent1ca.lly zero.

1G-3 '

22 2z 2yy’

TAl o1 = B W oy = e

e (3) (5)--(3) (o)

=~ () W1+ 2o = s

Thus,

1G4 y=(z+1)"%, 50y = —(z+1)73, y@ = (-1)(-2)(z +1)"3, and
¥ = (<1)(-2)(~B)(a + 1)~4.

The pattern is :
- ¥ = (1P (a(e+ )



S. 18.01 SOLUTIONS TO EXERCISES

1G-5 a)y' =uv+w' = y'=u"v+2uv +ur

b) Formulas above do coincide with Leibniz’s formula for n = 1 and n = 2. To calculate
y#+9) where y = 2P(1 + )%, use u = z? and v = (1 + £)?. The only term in the Leibniz

formula that is not 0 is ( & u®(®, since in all other terms either one factor or the other

is0. fu=2z?u® =pl, so

: n n! '
,y(p+q) - (p) plg = W - plgl = nl

1H. Exponentials and Logarithms: Algebra

1H-1 a) To see when y = yo/2, we must solve the equation %0 = yoe*, or L = e,
In2
Take In of both sides: —In2 = kt from which t = __n_ (k < 0 since stuff is decaying).
Kt : . =In2 .. +,\) Kti kA —In2 1
b) y1 = yoe™ by assumption, X = ——yoe" 1 = yoe™ - =y; e =y

1H-2 pH = —logy,[H*]; by assumption, [H+]a = $[HY)orig. Take —log,, of both sides
(note that log2 =~ .3):

—log[H*]aq = log2 —log [H*]oriy => pHuii = pHorig + log,.
1H-3 a)In(y + 1) +In(y — 1) = 2z + In ; exponentiating both sides and solving for y:
(y+1)-(y—-1)=e¥® .z = y?-1=ze®® = y=+ze%* + 1, sincey > 0.
b) log(y+1)—log(y—1) = —2?; exponentiating, %—% = 10", Solve for ¥; to simplify

A+l 107%" 41
A-1"10"2* -1
¢) 2lny — In(y+ 1) = z; exponentiating both sides and solving for y:

y? < 2 : e*\/e?® + deT

the algebra, let A = 10~ Crossmultiplying, y+1= Ay-4 — y=

y+1=e = yY'—-e"y-&=0 = y= 3 ,sigcey—1>0.
1H-4 E']'-g—c = lna=clnbd = a=e"=¢"" =p°, Similarly, loﬂ-:-c = a=10"
Ind logb
A S . u?+1 o
1H-5 a) Put u = e® " (multiply top and bottom by e® first): 1= this gives
2_1/+1_ 2z, . . — .y._+1 —_ y+1
u =1 = ¢°*; taking In: 2z—ln(y_.1), l ( )

, 1 _
b) e®+e~% = y; putting u = e® gives u+a =y ; solving for u gives u?—yu+1=0

JuiE—4 r—
so that ”=E2y—_4=e" taking In: a:=1n(———yi2y 4)

H

1H-6 A=loge-In1l0 = 1n(101°s=)—1n() 1; similarly, logya-log, b=1



1. DIFFERENTIATION
1H-7 a) If I, is the intensity of the jet and I is the intensity of the conversation, then

. n/L
og10(01/12) = Togio (2472 ) =1ogso(1/ 1) = ogsa( 1/ Io) =13 =6 =7

" . Therefore, I; /I, = 107.

b) I=C/r? and I = I, when r =50 implies
L=C/50* = C=150P = I=L50/r
This shows that when r = 100, we Ha.ve I=1,502/100% = I, /4 . It follows that
1010g; (I/1o) = 101og;q (11 /41o) = 10log,o(Ji/To) ~ 101og,o 4 = 130 — 6.0 s 124

The sound at 100 meters is 124 decibels.

The sound at 1 km-has 1/100 the intensity of the sound at 100 meters, because 100m/1km =
1/10. '
101og;q(1/100) = 10(~2) = —20

so the decibel level is 124 — 20 = 104.

11. Exponentials and Logarithms: Calculus

1I-1 a) (z+1)e* b)4ze®® c) (-22)e™>" d)Inz- &) 2/z f)2(nz)/z g) dze®
h) (%) = (ezlnz)' = (zlnz)lezlnz =(nz + l)ezln:n =(1+Inz)z®
) (e -e=)/2 j)(e+e=)/2 k) -1/z 1)-1/z(nz)® m)-2e*/(1+e")?

© 112 E I i
1

1I-3 a,)Asn—)oo,h=1/n-)0.. o)

In(1+h) _In{1+h)—In(1) . d
A h h—0 dz

nln(l + -1-) = In(1 + z) =1
n £ 4

=0
Therefore, :
lim nln(1 + l) =1
n—o0 n

b) Take the logarithm of both sides. We need to show

lim 1n(1+;1;)"=lne=1

n—oo

But - 1 1
~\n 3 r a—
In(1+ n) nln(l + n)

50 the limit is the same as the one in part (a).
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()= (o)) =

b) Put m = n/2. Then

Com s ) 5n 1 10m 1 m 10 -.
(1+—) =(1+—) =((1+—) ) —s el asm — oo
n m m

c) Put m = 2n. Then
1\ 1 5m/2 'llm'5/2
(o 2) (o 2) " (o)) e

1J. Trigonometric functions

1I-4 a)

1J-1 a) 10zcos(5z2) b) 6sin(3z)cos(3z) c¢) —2sin(2z)/ cos(2z) = —2 tan(2x)

d) ~2sinz/(2cosz) = — tanz. (Why did the factor 2 disappear? Because In(2 cos z) =
In2 + In(cos z), and the derivative of the constant In2 is zero.)

rcosz —sinz

e) — f) —(14+¢)sin(z+y) g) —sin(z+y) h) 2sinz cos g™’ *
., (@?sinz)’ _ 2zsinz+a?cosz _ 2 )
i) Foma g g == + cotz. Alternatively,
In(z?sinz) = In(z?) + In(sinz) = 2Inz + Insinz
p e 2 cosz 2
Differentiating gives -+ =— + cotz

z sinz
j) 2€** sin(10z) + 10e?* cos(10z) k) 6 tan(3z) sec2(3z) 6sinz/cos®z
1) —m(l £2)~1/2 sec(v/1 - z2) tan(v/1 — z2) :
. m) Using the chain rule repea.tedly and the trigonometric double angle formulas

cos? z — sin?z)’ = ~2coszsinz —2sinz cosz = —4 coszsinz;
( Y = ~2cosasing —2 4

(2 cos? z)’ = —~4coszsinz;

(cos(22)) = —2sin(2z) = ~2(2sinz cos ).

The three functions have the same derivative, so they differ by constants. And indeed,
cos(2z) = cos® z —sin® z = 2cos’z —~1,  (using sin?z = 1 — cos? z).-
n) _ ‘
a 5(sec(5z) tan(Swj) tan(5z) + 5(sec(5z)(sec?(5z)) = 5 sec(5z)(sec?(5z) + tan?(5x))

Other forms: 5 sec(5x)(2 sec?(5z) — 1); 10sec®(5z) — 5sec(5z)



1. DIFFERENTIATION |
c;) 0 because sec?(3z) — tan?(3z) = 1, a constant — or carry it out for practice. 4
p) Successive use of the chain rule:
(sin(Vz? + 1)) = cos(\/ar:2 +1)- -(:c:2 +1)72 .2
cos (vz2 + 1)

\/__

q) Chain rule several times in succession:

(cos® /1 —22 '=2c08\/1—z2-(—sinv1—z’)- \/1;1:?

T
= in(2v/1 - 22
s ol )
r) Chain rule again:
2 _ .z A z+1-2
(t"m( +1)"2tan(z+1) sec” z+1) (@+1)?
-2 z 2
_(:r.'+1)31:-m(::7+1)sec (z+1)
1J-2 Because cos(7/2) = 0,
o sz . conz—cos(n/2) . __
z-+1r/2$—1r/2-z-1-l>rnl:1/2 z—7/2 dzcoszlz w/2 = = Silemr/y = —1

1J-3 a) (sin(kz))’ = kcos(kz). Hence
(sin(kz))" = (kcos(kz))’ = —k? sin(kz).

Sumla.rly, differentiating cosine twice switches from sine and then ba.ck to cosme with only

one sign change, so
: (cos(kz)" = —&? cos(kz)

Therefore, ' .
: sin(kz)"” + k?sin(kz) = 0 and cos(kz)" + k2 cos(kz) = 0
Since we are assuming k > 0, k = v/a. _ ‘
b) This follows from the linearity of the operation of differentiation. With k2 = d,

(c1 sin(kz) + ca cos(kz))" + k(cy sin(kz) + ¢; cos(kz))
= c1(sin(kz))" + cz(cos(kz))” + k¢ sin(kz) + k?cq cos(kz)
= ¢1[(sin(kz))" + k? sin(kz)] + ca[(cos(kz))" + k? cos(kz)]
=c-0+c-0=0



'S. 18.01 SOLUTIONS TO EXERCISES
c) Since ¢ is a constant, d(kz + ¢)/dz = k, and (sin(kz + @)’ = kcos(kz + ¢),
(sin(kz + ¢)" = (kcos(kz +¢))’ = —K*sin(kz + ¢)

Therefore, if a = k2, .
(sin(kz + ¢)" + asin(kz + ) =0

d) The sum formula for the sine function says

sin(kz + ¢) = sin(kz) cos(@) + cos(kz) sin(¢)

In other words
sin(kz + ¢) = ¢y sin(kz) + ¢ cos(kz)

with ¢; = cos(¢) and ¢c; = sin(g).
1J-4 a) The Pythagorean theorem imi)lies that
¢ =sin® 6 + (1 — cos9)® = sin® @ + 1 — 2cosf + cos? § = 2 — 2 cos §

Thus,

¢=v2—2cosf =2/ ';’°56 = 25in(6/2)

b) Each angle is § = 2 /n, so the perimeter of the n-gon is
n sin(2n /n)
As n — o0, h = 2r/n tends to 0, so

i h — sin0
nsin(2r/n) = 2% sinh = 21rsthsm - 27%1— sin ;=0 = 27 CO8 T|z=0 = 27



2. Applications of Differentiation

2A. Approximation

| 2A-1 —\/ + ﬁ = f(m)z\/_+2\/_z by formula.

By algebra: va +bz = /a 1+—¢s\/_(1+ ), same as above.

b b An. L 1l/a 1..b
2A-2 D( +bz) (@t ba) *f(’)“z"zf“" OR: % “T+bjas ~ al 3%
(1+zp2  (1+22)-2-(1+2p2-Q+gp2.2 = 1
2A-3 D(Cy )= T (1+22) = f0)=
1 (1+2)%/2 3 oy 1
= f(:c)ssl—ia:, OR, by algebra, WN(I+§.¢)(I 2m)~1 Ez.

h_ e __ 9 2 o 2h
2A-4 Put F=6 then w = Tt ep ~ g(l-¢€)® = g(1=2¢)=g(1 R).
2A-5 A reasonable assumption is that w is propotional to volume v, which is in turn propor-
tional to the cube of a linear dimension, i.e., a given person remains similar to him/herself,
for small weight changes.) Thus w = Ch®; since 5 feet = 60 inches, we get

w(60+¢) _ C(60 +¢)®
w(60) ~— C(60)3

[Or you can ‘calculate the linearization of w(h) arround h = 60 using derivatives, and
using the value w(60) to determine C. getting w(h) ~ 120 + 6(h — 60)

— £ 13 p . . 3_5 . l
= (1+60) = w(60+¢) =~ w(60)-(1+ &) 120 (1+20) 5 126.

_snf 6 2
secx 1 1 1
2A-7T —= 2
AT V1 -—z2 cosa:\/l—a:zN(l—%z’)(l,—%z’)“l—zzml-*-w
1 _ 1 12

2A- = = =
A =10 +hs) " T-hs 1-%A%

~ 2(14+ 2z + 4(Az)%) ~ 2+4(z—3)+8(z—- 1) '
2A-10 y=(1+2),y =r(Q+2) Ly =r(r-1)Q1 +..1:)""2
Thefefme ¥O) =Ly (0 =ry"(0) =r(r - 1), giving (1+2)" » 1+rz+——— rir . —1) 2.
2A-11 po* = ¢ = p=cv* = (o + Av)™* = cvo*(1 + *voﬂ)_k

¢ Av k(k+1) Av,,
Ll —fp—p T 7T
R’vo( vo+ 2 (vo))

k

: €e® , z? 3 5
2A-12 a) i3 §(1+:{:+—2-)(1+x+z )ns1+2a:+§z2



5. SOLUTIONS TO 18.01 EXERCISES

In(1 + :1:) T
ze? :c(l + x)

-

b)
c)e® m1-z? [Substitute into €® ~ 1+ 1]

d) ln(cos x) ~In(l - —) N —— [smce ln(l + h) h)
B2 (z —1)?
e)zlnz = (1+h)In(1 +h)-m (1+h)(h- —2—) ~ h+7 = zhzs (z—1)+——2—-
2A-13 Finding the linear and quadratic approximation |
a) 2z (both linear and quadratic)
b) 1, 1 — 222 |
c)1, 1+a:2/2 (Use (1+wu)~ = ~ 1 - u with u=z?/2:
secx = 1/ cosz & 1/(1-2%/2) = (1-22/2)7) m142%/2

d)1,1+22
" e)Use (1+u)tal—u+u?
7 (a+bz)! = a'I(I + (bz/a))"! ~ a7 (1 - bz/a + (bz/a)?)
Linear approximation: (1/a) — (b/a?)z
Quadratic approximation: (1/a) — (b/a?)z + (5 ./aa):z:2

f) f(z) = 1/(a+ bx) so that f'(1) = —b(a+b)~2 and F(1) = 2b%/(a + b)~3. We need
to assume that these numbers are defined, in other words that a + b # 0. Then the linear
approximation is

1/(a +b) - (b/(a+ b)*)(z —1)
and the quadratic approximation is

1/(a+b) = (b/(a+ b)) (z — 1) + (b/(a + b)*)(z - 1)?
Method 2: Write
1/(a+bz)=1/(a+b+b(z - 1))

Then use the expansion of problem (e) with a+b in place of a and b in place of b and (z—-1)
in place of z. The requlrement a#0in (e) corresponds to the restriction a + b # 0 in (f).

2A-15 f(z) =cos(3z), f'(x)=—3sin(3z), f"(z)=—9cos(3z). Thus,

f(0)y=1, f(x/6)=cos(n/2)=0, f(n/3)=cosm=-1
f'(0) =-3sin0=0, f'(x/6)=—3sin(n/2) = -3, f’(7r/3) =-3sinT=0
'@ =-9, f'=/6)=0, f"(x/ 3) =
Using these va.lues, the linear and quadratic approximations are respectively:
forz~0: f(r)~1 and f(z)~1-(9/2)z®
forz ~m/6: both are f(z)~ —3(z—7/6)
forzm~w/3: f(z)~ -1 and f(z)~ —1+ (9/2)(z — 1r/3)2



2. APPLICATIONS OF DIFFERENTIATION

2A-16 a) The law of cosines says that for a triangle with sides a, b, and ¢, with 8 opposite
the side of length ¢, -
. & =a® + b? — 2abcosf

Apply it to one of the n triangles with vertex at the origin: a = b =1 and 6 = 2r/n. So
the formula is
¢=+/2—2cos(2w /n)
~ b) The perimeter is ny/2 — 2cos(2%r/n). The quadratic approximation to cos near 0
is ) .
cosf 1 -6%/2
Therefore, as n — oo and 6 = 27/n = 0,

nv/2 — 2cos(2m/n) m ny/2 — 2(1 - (1/2)(27/n)2) = nv/(27/n)? = n(2n/n) = 2x
In other words,
: ,.111,20 ny/2 — 2cos(27 /n) = 2m,

the circumference of the circle of radius 1.

2B. Curve Sketching

2B-1 a)y=23-3z+1,9y' =322 -3=3(z - 1)(z+1). y’=6 => g ==I.
Endpoint-val-ues: y— —00 a8 % — —00, and y = 00 a8 T — 00.
Critical values: y(-1) =3, y(1) = -1. ' 1,3
Ixia'ea_sing on: ~co<r<-1,1<z<o0.
Decreasing on: ~1 <z < 1.

Graph: (—00,-00) 7 (-1,3) \ (1,~1) / (o0,00), 1a
crossing the z-axis three times.

b)y=z*—4dz+1,y =2°-4. ¢y =0 = z =413,

-1

Increasing on: 41/3 < z < 00; decreasing on: —o0 < z < 41/3,

Endpoint values: y — 00 as z — %oo; critical value: y(4!/%) = 1.

Graph: (.;oo,oo) \(4*//3,1) /% (c0,00), never crossing the z-axis. (See beloﬁ.) -
. c)' y'(z) = 1/(1 + 2?) and 9(0) = (. By inspection, y' > 0 for all z, hence always
increasing. ~ :
Endpoint values: y — ¢ a3 & = oo and by symmetry y — —c as z = —oo. (But it is

not clear at this point in the course whether ¢ = oo or some finite value. It turns out (in
Lecture 26) that y -+ c¢=7/2.

Graph: (~o00,—¢) /* (00,¢), crossing the z-axis once (at z = 0). (See below.)
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&y =2/(x-1), ¥ = (2a(e-1)~2?)/(z-1)? = (@ -22)/(x-1)* = (z-2Ds/(c-1)".
Endpoint values: y — oo as £ — oo and y =+ —00 as £ = —00.
* Singular values: y(1+) = +00 and y(l ) = —c0.
Critical values: »(0) = 0 and y(2) = 4.
- New feature: Pay attention to sign-changes in the denominator of y'.
Increaging on: —00 <z < 0 and 2< z < 0

. Decreasingon: 0<z<land 1<z <2

Graph: (—00,—00) 2 (0,0) \ (1,—00) 1 (1,00) \« (2,4) * (00, ), crossing the z-axis
once (at z = 0).

G’ommentary on sm_qulanmes Look out for sign changes both where y' is zero and also
where y' is undefined: y' = 0 indicates a possible sign change in the numerator and y'
undefined indicates a possible sign change in the denominator. In this case there was no
sign change in y' at = = 1, but there would have been a sign change, if there had been an
odd power of (z — 1) in the denominator.

e)y=z/(z+4),y = ((z+4) - z)/(z+4)* =4/(z + 4). No critical points.
Endpoint values: y —+ 1 as z — *o0. '
Increasing on: —4 < z < oo.
‘Decreasing on: —o00 < & < —4.
Singular values: y(—4%) = -0, y(—4~) = +o0.
‘Graph: (—o00,1) / (—4,00) | (—4,—00) 7 (00, 1), crossing the z-axis once (at z = 0).

f)y =vz+1/(z-3), ¥y = =(1/2)(z + 5)(z + 1)"*/%(z — 3)~? No critical points
because z = —35 is outside of the domain of definition, z > —1.

Endpoint values: y(—1) =0, and as z — oo,

1+1 1
R A
Singular values: y(3%) = +00, (3~ ) = —00.
Increasing on: nowhere
Decreasing on: —1 <z < 3 and 3 < z < c0.

Graph: (-1,0) \ (3, —oo) 1 (3,00) \« (00,0), crossing the z-axis once (at z = -1).
. g) y = 3z* — 162° +18z2+1 y = 12z3-48z2+36z =12z(z—1)(z — 3) y=0=
z=0,1,3.

Endpoint values: y — oo as £ — %oc0.

Critical values: y(0) = 1, y(1)-= 6, and y(3) = —188.
" Increasingon: 0 <z <land 3<z < c0.



2. APPLICATIONS OF DIFFERENTIATION

, .
1f l U 1g - h -
o Yoae : '
" Decreasingon: ~co<z<0and1<z<3. - =
Graph: (—o00,00) \ (0,1) /‘ (1,6) \y (3,—188) * (00, 0), crossing the z-axis once.
hy=e",y = —2ge* y—0=>w 0.

Endpoint values: y —+ 0 as z — +00.
Critical value: y(0) =1.
Increasing on: —00 < £ < 0

Decreasing on: 0 < £ < 00
Graph: (—00,0) * (0,1) \ (00,0), never crossing the z-axis. (The function is even.)

i) ¥ = e~ and y(0) = 0. Because 3/’ is even and y(0) = 0, y is odd. No critical points.

Endpoint values: y — ¢ as £ — oo and by symmetry y =+ —c as £ & —o0. It is not clear

at this point in the course whether ¢ is finite or infinite. But we will be able to show that c

is finite when we discuss improper integrals in Unit 6. (Using a trick with iterated integrals,
“a subject in 18.02, orie can show that ¢ = /7/2.)

Graph: (—00,~¢) /* (c0,c¢), crossing the z-axis once (at z =0). |

2B-2 a) One inflection point at z = 0. (3" = 6z)

b) No inflection points. y” = 3z2, so the function is convex. z = 0 is not a point of
inflection because " > 0 on both sides of z = 0.

c) Inflection point at z = 0. (" = -2z/(1+ x’)z)

d) No inflection points. Reasoning: 3" = 2/(z ~ 1)3. Thus.y” > 0 and the function
is concave up when z > 1, and ¥” < 0 and the function is concave down when z < 1. But
z =1 is not called an mﬂectlon point because the function is not continuous there. In fact,
z =1 is a singular point. .

e) No inflection points. y" = —8/(z + 1)3. As in part (d) there is a sign change in 3",
but at a singular point not an inflection point.

f) ' =-(1/2)[(z+1)(z~3) - (1/2)(z +5)(z-3) - 2(-""'*'5)(-"1‘'*'1)](5'7'l‘-1)_?'/2(-""-,3)3
= —(1/2)[~(3/2)z? — 15z — 11/2](z + 1)~3/%(z - 3)®
Therefore there are two inflection points, z = (~30+ 1/768)/6, ~ 9.6, .38.

" g) ¥" = 12(3z2 — 8z + 36). Therefore there are no inflection points. The quadratic
'equatlon has no real roots.

h) 4" = (~2+ 422)e~=". Therefore there are two inflection points at £ = £1//2.
i) One inflection point at z = 0. (y" = —2ze~*")
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éB—s a)y' =322+ 2az+ b. The roots of the quadratlc polynomial are distinct real numbers
if the discriminant is positive. (The discriminant is defined as the number under-the square
root in the quadratic formula.) Therefore there are distinct real roots if and only if

(2a)* ~4(3)b>0, or a®-3b>0.

From the picture, sincey + 0o as ™~ oo and y = —o0 as o o

T = —oo, the larger root of 3z% + 2az + b = 0 (with the Since y <<-1 when x <<-1

plus sign in the quadratic formula) must be the local min, /\/andy>> 1whenx>>1, the

and the smaller root ‘must be the local max. * local max. is to the left of the local min.
b) y"” = 6z + 2a, so the inflection point is at —a/3. Therefore the condition ¥’ < 0 at

the inflection point is

y'(—a/3) = 3(—a/3)? + 2a(—a/3) + b= —a?/3+b < 0,

which is the same as -
: a®-3b>0.

If y' < 0 at some point o, then the function ‘is decreasing at that point. But y —= 0o as
Z — 00, 80 there must be a local minimum at a point z > z,. Similarly, since y —» —o0 as
T — —00, there must be a local maximum at a point z < zo.

. Comment: We evaluate y' at the inflection poini: of y (z = —a/3) since we are ti'ying
to decide (cf. part (b)) whether 3’ is ever negative. To do this, we find the minimum of y’'
(which occurs where y" = 0).

] 4/()\ ;8 /Lo_ Maxisatx=50rx=10;
\__/4

Minisatx=0orx=38.
2B-4 :

Graph of function

)
!
w_
L
w

.

Graph of derivative; note that
local maximum point above corresponds
to zero below; -
point of inflection above corresponds to
local minimum below.




~ 2. APPLICATIONS OF DIFFERENTIATION

2B-6 a) Try ¥ =(z+1)(x—1) =22 - 1. Then y = 2°/3 — z + c. The constant ¢ won’t
maiter 5o set ¢ = 0. It's also more convenient to multiply by 3:

y=1°-3z

_ . . b) This is an odd function with local min and max: (1) = —2 and y(~1) = 2. The
endpoints values are y(3) = 18 and y(~3) = —18. It is very steep: 3'(3) =8 .

c)

3 3 ' .
Ay
!
2B-7 a,) fl(a)= im .
If y increasis i:hen Bu>0=A5>01 o in both cases 22 > 0
| y increasing Ay<0=>Az<0} in ca.ses-A-;> .
Therefore, lim Ay 5,
oAz.=
b) Proof brea.ks down at the last step. Namely, 2 > 0 doesn’t imply hm 1—2—% >0

- [ants don’t preserve strict inequalities, only weak ones. For example, u? > 0 for u #0,
but lu:%u =020, not>0]

Counterexample: f(z) = z® is increasing for all x, but f’ 0)=

¢) Use f(a) > f(z) to show that Alur%,+ Ay/Az < 0 and Ahfﬂa Ay/Az > 0. Since
: z— z—+0-
the left and right limits are equal, the derivative must be zero.

2C. Max-min problems

2C-1 The base of the box has sidelength 12 — 2z and the : x

height is z, so the volume is V =z(12 — 2z)3. 12-2x
At the endpoints z = 0 and z = 6, the volume is 0, so

'the maximum must occur in between at a critical point. x

V! = (12 - 22)? + 2(2)(12 - 22)(-2) = (12 — 22)(12 — 2z — 4z) = (12 — 2z)(12 — 6z).

It follows that V' = 0.when z =6 or z = 2. At the endpomts z =0and z = 6 the volume

is 0, so the maximum occurs when z = 2.
y

2C-2 We want to minimize the fence length L.= 2z + y, where
the variables z and y are related by zy = A =20, 000.

Choosing z as the independent vaua.ble, we have y = A/z, so that L = 2z + A/z. At the
endpoints £ = 0 and z = oo (it’s a long barn), we get L = 0o, 50 the minimumof L must
occur at a critical point.

D=2-4 L=0= 2=

X X

5 =10,000 = z = 100 feet
T

o b
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2C-3 We have y = (a —1z)/2, so zy = z(a — z)/2. At the endpoints z = 0 and z = g, the
product zy is zero (and beyond it is negative). Therefore, the maximum occurs at a critical
point. Taking the derivative, ‘

dz(a—1) a—2z

P this is 0 when z = a/2.

2C-4 Ifthe lengthis y and the cross-section is a square with sidelength z, then 4z+y = 108.
" Therxefore the volume is V = 22y = 10822 — 423. Find the critical points:

(1082? — 42%)' = 2162 — 122> =0 = z =18 orz =0.
The critical point z = 18 (3/2 ft.) corresponds to the length y = 36 (3 ft.), giving therefore
a volume of (3/2)%(3) = 27/4 = 6.75 cubic feet.

The endpoints are z = 0, which gives zero volume, a.nd when z = y, ie.,, z = 9/5 feet,
which gives a volume of (9/5)® cubic feet, which is less than 6 cubic feet. So the critical
point gives the maximum volume.

2C-5 We let r = radius of bottom and h = heighf;, then the voluine is h
V = nr2h, and the area is A = nr? + 27rh.
Using r as the independent variable, we have using the above formulas, r
- A-ar? 2 A 74 &V A 3r,
h= e V'—m.h_(ir_ir) a2 2T
A—mr?
Therefore, dV/dr = 0 implies A = 3xr2, from which h= S =T

Checking the endpoints, at one h = 0 and V = 0; at the other, rlix‘z,x+V = 0 (using the
expression above for V in terms of r); thus the critical point must occur a.t a maximum.

(Another way to do this problem is to use implicit differentiation w11;h respect to r.
Briefly, since A is fixed, dA/dr = 0, and therefore

ﬁ=2'lrr+21rh+27rrh'=0 = h’=...r+h;
dr : r
av

o = 2arh +7r?h! = 2arh — ar(r + h) = mr(h —r).

It follows that V! =0 when r = hor r = 0, and the latter is a rejected endpoint.

2C-6 To get max and min of y = z(z + 1)(z ~1) = 28 - g, first find the critical points:
y=38z2-1=0 if z=ii;
1 -2 1 V? 2 2°
—) =—=(-7) = rel. min. -—)=——(-2) = —=, rel. max.
W) = (- =1 W-g) = a3 =55 ©
Check endpoints:  y(2) = 6 = 2 is absolute max.; y(—2) = —6 => —2 is absolute min.

(This is an endpoint problem. The endpoints should be tested unless the physical or
geometric picture already makes clear whether the max or min occurs at an endpoint.)



2. APPLICATIONS OF DIFFERENTIATION

- 2C-7 Let r be the radius, which is fixed. Then the height a of the rectangle is in the
interval 0 <a < 7. Smce b=2v/r? — a3, thea.reaA1sg1venmtermsofaby

A= 2am. : [@

The value of A at the endpoints a = 0 and a = r is zero, so the -
maximum occurs at a critical point in between. b

_ 2(r* - a?) — 247
____21/2._ 2 _ g
e \/r—a.2 V2 =a?

Thus dA/da = 0 implies 2r? = @2, from which we get a= %, b=rv2.
(We use the positive square root since a > 0. Note that b = 20 and A = r2.)

2C-8 a) Letting a and b be the two legs and z and y the sides of the rectangle, we have
'y = —(b/a)(z — a) and the arez A = zy = (b/a)z(a — z). The area is zero at the two ends
z = 0 and z = a, so the maximum occurs in between at a critical point:

=(b/a)((a—2)-2); =0ifz=a/2
Thus y = (b/a)(a — z) = b/2 and A = ab/4. b
b) This time let = be the point shown on the accompanying figure; y X
using similar triangles, the sides of the rectangle are a
=2./2 b !
_ 4 Va +52 and £ m(a z) b
Therefore the area is X N/ aX

A=44 = (b/a)z(a — )

This is the same formula for area as in part (a), so the lérgest area is the same, occurring
when z = a/2, and the two maximal rectangles both have the same area; they have different
dimensions though, since in the present case, one side length is half the hypotenuse:

1 =va?+b?/2 and £ = ab/2+/a? + b2.

.2C-9 The distance is b
=vV22+1++/(a-2)2 + 1
The endpoint values are x — o0, for L — 00, so the minimum 8 82
value is at a critical point. X a-x
e a-z _zy (a-2)2+P - (a-z)VaZ +1
Va3 +1 \/(a )3+ 52 vz +1y/(a —z)? + b2

Thus L' = 0 implies (after squaring both sides),

P(a-2+b0*)=(a—-2)*(a’ +1), or 2’ =(a-2)* or bz=(a—z);
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we used the positive square roots since both sides must be positive. Rewriting the above,

b
a—-%

§lm

s or tanf; = tané,.

Thus 6, = 0;: the angle of incidence equals the angle of reflection.

- - - - . - . l ’ B .t cOm————
2C-10 The total time is ' R ]mo o
ro VIOFS?  /I0F (a2 g
5 2 1 Jottoad
As z = £o00, T ~ 00, 50 the minimum value will be at a critical point. A

T = z (a - z) ' _ sina sinf
. 5/1002 27  2,/1002 + (a — z)? 5 2’
Therefore, if T =0 , it follows that

sina . sinf sina
= or —
5 2 - sinf

2C-11 Use implicit differentiation:

gy’ =d = U+y'=0 = y'=-a/y. |
‘We want to maximize zy®. At the endpoints z = 0 and y = 0, the strength
is zero, so there is a maximum at a critical point. Differentiating, X

0= (zyS)l = ys + 3$y2y' - ys + 3a:y2(—a:/y) - y3 - 3z2y
Dividing by z°,

(w/z)® -3(y/z) =0 = (y/z)> =3 = y/z=V3.

2C-12 The intensity is proportional to

sind _ z/vV1 -in

= - =2(1 2\—3/2
V= 14+x2 1422 a(1+27)

Endpoints: (0) =0 and y — 0 23 z - 00, 80 the maximum will

be at a critical point. Critical points satisfy P. 1
Y =122 (1427 =0 = 1-22=0 = z=1/V2

The best height is 1/+/2 feet above the desk. (It’s not worth it. Use a desk lamp.)

.2C-13 a) Let p denote the price in dollars. Then there will be 100 + (2/5)(200 — p)
passengers. Therefore the total revenue is :

R =p(100 + (2/5)(200 — p) = p(180 — (2/5)p)
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At the “ends” zero price p = 0, and no passengers p = (5/2)180 = 450, the revenue is zero.
So the maximum occurs in .between at a critical point.

R = (180~ (2/5)p) — (2/5)p = 180 — (4/5)p =0 => p= (5/4)180 = $225

-b) - S )
© P =zp - (10 - 2/10°) with z =10°(10 — p/2)

Therefore, the profit is cents is
P =10%(10 - p/2)(p ~ 10+ (10 — p/2)) = 105(10 - p/2)(p/2) = (10°/4)p(20 - p)

dP

% = (0 /2)(10-p)

The critical point at p = 10. This is z = 10%(10 — 5) = 5 x 10° kilowatt hours, which is
within the range available to the utility company. The function P has second derivative
—108/2, so it is concave down and the critical point must be the maximum. (This is one of
those cases where checking the second derivative is easier than checking the endpoints.)

Alternatively, the endpoint values are:

z=0 = 10510—p/2)=0 = p=20 = P=0.

z=8x10° = 8x 10° = 10°(10 ~ p/2)
= 10-p/2=8 = p=4
= P =(10°/4)4(20 — 4) = 16 x 10%cents = $160, 000

The profit at the crit. pt. was (10°/4)10(20 - 10) = 2.5 x 10%cents = $250, 000

(15, 112¢)
2C-14 a) Endpoints: y = —z%In(z) = 0 as  — 0% and y = —00 as z = .

Critical points: ' = ~2zlnz ~z=0 = Inz=-1/2 = z=1/\/e
Critical value: y(1//e) = 1/2e.
Maximum value: 1/2e, attained when z = 1/+/e. (min is not attained)

b) Endpoints: y = —zIn(2z) — 0 as z — 0+ and y = —00 as z — 0.
(2, 120)
‘ . 12

l4a

Critical points: 3’ = —In(2z) - 1=0 = z =1/2e.
Critical value: y(1/2e) = —(1/2e)In(1/e) = 1/2e. | \
Maximum value: 1/2e, attained at z = 1/2e. (min is not attained) 14b
2C-15 No minimum. The derivative is —ze~* < 0, so the function decreases. . (Not needed

here, but it will follows from E13/7 or from L’Hospital’s rule in E31 that ze=* — 0 as
T — 00.) '
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2D. More Max-min Problems

2D-3 The mﬂk will be added at some time #;, such that 0 < #; < 10. In the interval
0<i<ty the temperature is

y(t) (100 20)e~ (=010 4 20 = 80e /1% + 20
' Tlierefoée, _
Ty =y(t)) = 80e-‘1/?° +20

We are adding milk at a temperature T = 5, so the temperature as we start the second
interval of cooling is

0T1+ 0T;;—72e +18+2

Let Y (t) be the coffee temperature in the interval {; < ¢ < 10. We have just calculated
Y(tl)a

Y(t) = (Y(t) — 20)e~¢—41)/10 4 20 = (72e~41/10 — 1.5)~(:~11)/10 | 90

The final temperature is
T=Y(10)= (723"1/10 1.5)¢~(10-#1)/10 4 90 = e-! (72 (1 5)et1/10) +20

We want to maximize this temperature, 8o we look for critical pomts

dr

= ~(1.5/10e)e"/*° < 0
1

Therefore the function T'(t;) is decreasing and its maximum occurs at the left endpoint:
t=0.
" Conclusion: ‘The coffee will be hottest if you put the milk in as soon as possible.

2E. Related Rates

2E-1 The distance from robot to the pomt on the ground directly below the street lamp is
z = 20t. Therefore, z' = 20.

z+y
30

Therefore, . X y

(similar triangles) 30

ol

(@' +9')/30=y'/5 => y' =4and (z+y)' =24

The tip of the shadow is moving at 24 feet per second a.nd the length of the sha.dow is
increasing at 4 feet per seoond .
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2E-2 T
tand = i and df/dt = 3(2n) = 67

with ¢ is measured in minutes and measured in radians. The light makes an angle of 60°
with the shore when 8 is 30° or # = 7 /6. Differentiate with respect to ¢ to get
]
- - (sec? 8)(dd/dt) = (1/4)(dz/dt) - - /] y

Since sec?(w/6) = 4/3, we get d:n/dt = 327 miles per minute. shoreline

2E-3 The distance is z = 10, y = 15, 2’ = 30 and 3’ = 30. Therefore,

(@ +922) = (/2) (22" + 29/)a + 42
' = (10(30) + 15(30))//102 + 152 Fe g
Yy

x4y
= 150/v/13miles per hour
2B-4 V = (x/3)r2h and 2r = d = (3/2)h implies & = (4/3)r. *
. Therefore,
V = (n/3)rh = (4n/9)r® .

Moreover, dV/dt = 12, hence

Y _dVdr _(d ey d - 2(12) = 167r? - |n=g

i ( - (4x/9)r )) i (47w [3)r*(12) = 16xr°. . @y

. av 8. s :

When h =2, r = 3/2, so that i 36mm® /minute. T r

2E-6 The information is
224+102 =22, =4

. We want to evaluate z' at £ = 20. (Derivatives are with
respect to time.) Thus

2z’ = 222" and 2% = 20% + 10® = 500

o ]
_ z' = (32')/z = 4V/500/20 = 2V ’ _ /r;2
266 o'=50andy =400and ' oy
= 2 S - F
=4y + . s \/;w
The problem is to evaluate 2’ when z = 50 and y = 400. Thus boat :
222' = 2z2' + 2yy' = 2 = (zx' + yy’) / P

and z = /502 + 4002 + 4 = v/162504. So z' = 162500//162504 ~ 403mph. -

(The fact that the plane is 2 miles up rather than at sea level changes the answer by only
about 4/1000. Even the boat speed only affects the answer by about 3 miles per hour.)

Therefore,
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9E-7 V = 4(h? + h/2), V' = 1. To evaluate h' at h = 1/2,
h 172 h

1=V'=_8hh'+2h' = 8(1/2)h’ +2h' = 6A' < b :' ;

Therefore, Cross-sectionsl area=h #1/2

k' =1/6 meters per second

2E-8 z' =60, y' = 50 and z = 60+ 60t, y = 50¢t. Noon ist = 0 and ¢

is measured in hours. To find the time when z = /22 + y2 is smallest, we

_ may as well minimize 2% = 2% + 2. We know that there will be a minimum  x

at a critical point because when ¢ — *oo the distance tends to infinity.

Taking the derivative with respect to ¢, the critical points satisfy y

2zz' +2yy' =0
This equation says
2((60 + 60£)60 + (50t)50) =0 == (60% + 50%)t = —60?

Hence
t = —-36/61 ~ —35min

The ships were closest at around 11 : 25 am.

2E-9 dy/dt = 2(z — 1)dz/dt. Notice that in the range = < 1, z — 1 is negative and so
(z - 1) = —/4. Therefore,

dz/dt = (1/2(z - 1))(dy/dt) = —(1/2v)(dy/dt) = +(/A)(1 - ¥)/2=1/4V2
.Metl.xod 2: Doing this directly turns out to be faster: -
z=1—§ = d/dt=1—(1/2)y~/2dy/dt
and ﬁie. rest is as before. .
2E-10 r = Ct!/2, The imblicit assumption is that the volume of oil is constant:
ar*T =V or 2T = (V/x) = const
Th&efore, differentiating with respect to time %, |
2T) =2rP'T+72T" =0 = T'=-2r'/r
But ' = (1/2)Ct~*/2, so that r'/r = 1/2t. Therefore |
| T = -1/t

(Although we only know the rate of change of r up to a constant of proportionality, we can
compute the absolute rate of change of T'.)
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~ 2F. Locating zeros; Newton’s method
2F-1 a) y = —sinz — 1 < 0. Also, §' < 0 except at a discrete list of points (where

sinz = —1). Therefore y is strictly decreasing, that is, z1 < 22 => y(z1) < y(z2). Thus
y crosses zero only once.

. Upper and lower bounds for z such that y(z) = 0: ) il.:p?::imn
y(0) = 1 and y(n/2) = —n /2. Therefore, 0 < z < 7/2.
b) Tnt1 = Zn — (COS Ty — 2p)/(sin 2y + 1) N
n=1 . zs = 750363868, .
T3 =.739112891, =z, =.739085133 -am2p

Accura.te to three decimals at z3, the second step. Answer 739.

¢) Fixed point method takes 53 steps to stabilize at 739085133. Newton’s method
takes only three steps to get to 9 digits of accuracy. (See z4.)

2F-2
y=2zx— 4.-&-(__1)2 —0<T<®
r_g_ 2 A(z-1)P%-1)
MRS R PRV

y' = 0 implies (z — 1) = 1, which implies  — 1 = 1 and hence that = = 2. The sign changes
of y' are at the critical point z = 2 and at the singularity £ = 1. For z < 1, the numerator -
and denominator are negative, so 3’ > 0. For 1 < z < 2, the numerator is still negative,
but the denomma,tor is positive, so ¥’ < 0. For 2 < z, bot.h numerator and denominator are
positive, 80 y > 0

"n_ _6_
. (z—1)
Therefore, y" > 0 for z # 1. ' ]
Critical value: y(2) =1
Slngula.r values: y(17) =y(1+) = | ‘ . Y
Endpoint values: y-—+ooasx—+ooa.ndy—) —00 a8 T = —00.

Conclusion: The function increases from —oco to co on the interval (—co,1). ‘Therefore,
the function vanishes exactly once in this interval. The function decreases from oo to 1 on
the interval (1,2) and increases from 1 to co on the interval (2, co). Therefore, the function
does not vanish ‘at all in the interval (1 00). Finally, the function is concave up on the
intervals (—o0, 1) a.nd (1, 00)
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2F-3

. 228 -1
L. -2 _
y—2a:—a; ==X

Therefore y' = 0 implies 23 = 1/2 or £ = 2-1/3. Moreover, 3’ > 0 when = > 2-1/3, and
4’ < 0 when z < 2-1/3 and z # 0. The sign does not change across the singular point z = 0
‘because the power in the denominator is even. (continued —)

- 2(z3 +1
yll=2+223= (za )

Therefore y” = 0 implies 2 = ~1, or z = —1. Keeping track of the sign change in the
denominator as well as the numerator we have that y" > 0 when z > 0 and y” < 0 when
-1 < 2 < 0. Finally, ¥ > 0 when z < -1, and both numerator a.ni denominator are
negative. o ‘

Critical value: y(271/3) =22/ +21/3 x5 19 . :

Singular value: y(0*) = +00 and y(0~) = —o0 . ‘ o \ P the ccal point
Endpoint values: y — oo as z — +o0 ‘

Conclusions: The function decreases from oo to —co in the interval (~o0,0). Therefore
it vanishes exactly once in this interval. It jumps to co at 0 and decreases from co to
2-2/8 4 91/3 in the interval (0,2~%/%). Finally it increases from 22/3 + 21/3 to co in the
interval (2-1/3, 00). Thus it does not vanish on the interval (0, c0). The function is concave
up in the intervals (—oo, —1) and (0, ¢0) and concave down in the interval (—1,0), with an
inflection point at —1.

2F-4 From the graph, z° — z — ¢ = 0 has three roots for any small value of ¢. The value of -
¢ gets too large if it exceeds the local maximum of 25 — z labelled. To calculate that local
‘maximum, consider.y’ = 5z* — 1 = 0, with solutions z = +:5-%/4, The local maximum is at
£ = —5~1/4 and the value is

(- 5—1/4)5 (- 5—1/4) 5-1/4 _ 5‘5/453 535 -./.\i-----zl =

Since .535 > 1/2 there are three TOOtS. I\/

2F-5 a) Answerz T = il/\/-. f(g) =z — 28, s0 f'(z) =1- 3z? and

Tn4+1 = Tn — f (xn)/ f '.(mn)

So z; is undefined if f'(z1) =0, that is z; = +1/V/3.

b) Answer: z; = £1/v/5. (This value can be found by experimentation. It can be
also be found by iterating the inverse of the Newton method function.)

Here is an explanation: Using the fact- that f is odd a.nd that 3:3 = z; suggests that
T9 = —z1. This greatly simplifies the equation..

2mi
—3z2

Tpt1 = Tp — (a"n - zn)/(l 397,‘) =
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Therefore we want to find z satisfying

—2z3

E={Tm

This equation is the same as z(1 — 32’) = 223, which implies z = 0 or 5z = 1. In other
words, z = il/\/_ Now one can check that if z; = 1/\/_, then z5 = —1/\/5_ T3 = +1/\/_
ete.

c) Answers: If 2, < —1/v3, then z, = —1. K z; > 1//3; then 2, = 1. If
-1/ VE< 3 < 1/\/5, then z, — 0. This can be found experimentally, numerically. For a
complete analysis and proof one needs the methods of an upper level course like 18.100.

2F-6 a) To simplify this problem to its essence, let V = 7. (We are looking for ratio r/h
and this will be the same no matter what value we pick for V.) Thus r?h =1 and
A=ar? +2n/r
Minimize B = A/~ instead. ’
' B=r*4+2r"! = B' =2r-2r"2

and B' = 0 implies r = 1. Endpoints: B — oo as r — 0 and as r — 0o, so we have found
the minimum at 7 = 1. (The constraint r2h = 1 shows that this minimum is achieved when
r = h = 1. As a doublecheck, the fact that the minimum area is acmeved for r/h = 1 follows
from ' 2 ¢-5; see part (b).)

The minimum of B is 3 attained at r = 1. Ten percent more tha.n the

minimum is 3.3, so we need to find all r such that : U
_ B(r)<33 BINg s

1.3)
Use Newton’s method with F(r) = B(r) — 3.3. (It is unwise to start New- :

ton’s method at r = 1. Why?) The roots of F' are approximately r = 1.35 mm
and r =.72. r-interval

Since r2h = 1, h = 1/r? and the ratio,
Crfh=1r3

Compute (1.35)3 = 2.5 and (.72)3 = .37. Therefore, the proportions with at most 10 percent
extra glass are approximately _
37<r/h<25

b) The connection with Problem 2C-5 is that the minimum area r = h is not entirely
obvious, and not just because we are dealing with glass beakers instead of tin cans. In E10/5
the area is fixed whereas here the volume is held fixed. But because one needs a larger surface
area to hold a larger volume, maximizing volume with fixed area is the same problem as
minimizing surface area with fixed volume. This is an important so-called duality principle
often used in optimization problems. In Problem 2C-5 the answer was r = h, whlch is the
proportion with minimum surface area as confirmed in part (a).
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" 2F-7 Minimize the distance squared, z2 + y2. The critical points satisfy
20 4+2yy' =0

The constraint y = cosz implies ' = — sinz. Therefore,

0=z+yy' =z —coszsinz

There is one obvious solution z = 0. The reason why this problem is in this section is that
one needs the tools of inequalities to make sure that there are no other solutions. Indeed, if

f(z) =z - coszsinz, then f'(z) =1—cos? z +sin’ z = 2sin?z > 0

Furthermore, f'(z)0 is strictly positive except at the points z = k1c;, so f is increasing and
crosses zero exactly once.

There is only one critical point and ‘the distance tends to infinity at the endpoints z --).
00, 50 this point is the minimum. The point on the graph closest to the origin is (0,1).

Alternative method: To show that (0,1) is closest it suffices to show that for —1 <z < 0
and0<z<1, .

1-22 <cosz

Squaring gives 1 — 22 < cosh_m. This can be proved using the principles of problems 6 and
7. The derivative of cos? z — (1 — z?) is twice the function f above, so the methods are very .
similar. '
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2G. Mean-value Theorem
2G-1 2) slopechord =1; f/(z) =25 = f'(c) = 11fc—.-;—

b) slope chord =In2; f'(z) = % = fll)=h2ifc= L

b2
e £2) = £(=2) _ 6=(=6) /\
c) for 2% — z: slope chord = (9 - 4 =3; Y

fl(z) =32 -1 = fl)=3@~1=3= c=%5%

From the graph, it is clear you should get two values for c. (The /
axes are not drawn to the same scale.) : 26

| 2G-2 a) f(z) = f(6) + f(S)(z - 0) ; Takea=0; f(¢) =sinz, f'(z) = cosz
= f(z)=0+cosc-z = sinz <z (since cose < 1 for 0 < ¢ < 27)

Thus the inequality is valid for 0 < z < 2; since the function is periodic, it is also valid
for all z > 0.

1 1 .
b) -—V1+z ‘/—z = V1+$—1+2—m2 < 1+§z, since ¢ > 0.
2G-3. Let s(t) = distance; then average velocity = slope of chord = -1112713- = 66.

Therefore, by MVT, there is some time ¢ = ¢ such that &’ (c) =66 > 65.
(An application of the mean-value theorem to traffic enforcement...)

2G-4 According to Rolle’s Theorem (Thm.1 p.800: an important special case of the M.V.T,
and a step in its proof), between two roots of p(z) lies at least one root of p'(z). Therefore,
between the n roots ay,... ,an of p(z), lie at least n — 1 roots of p'(z).

There are no more than n — 1 roots, since degree of p/(z) = n — 1; thus p/(z) has exactly
n — 1 roots. .

2G-5 Assume f(z) =0 at o,b,c.
By Rolle’s theorem (as in MVT-4), there are two points g1, ¢; where f'(g1) = 0, f'(g2) =0

By Rolle’s theorem again, applied to ¢ and g2 and f' (z) there is a pomt p where
J"(p) = 0. Since p is between ¢; and ¢, , it is also between a and c.

2G-6 a) Given two points z; such that a 5 71 < 22 < b, we have

f(z3) = f(z1) + f'(c)(z2 — 71), where z; < ¢ < zj.

Since f'(z) > 0 on [a, b, f'(c) > 0; also 3 — 21 > 0. Therefore f(z2) > f(z1), which
shows f(z) is increasing .

b) We have f(z) = f(a) + f'(c)(z — o) wherea < c < z.
Since f'(c) = 0, f(z) = f(a) for @ < z < b, which shows f(z) is constant on [a, b].






Unit 3. Integration
8A. Differentials, indefinite integration

3A-1 a) 7z%dz. (d(sin1) = 0 because sin1 is a constant.)
" b) (1/2)z%de

c) (10z° — 8)dz

d) (3e32sinz + €%* cos z)dz

e) (1/2yz)dz + (1/2,/y)dy = 0 implies

_ 13VEds _ i, _ 1-yE _( 1
dy.= -———1/2\/!_,. = \/Edz_ 7z dz={(1 dz

3A-2 a) (2/5)z® +2° +2?/2+ 8z +c

b) (2/8)2%/2 + 2212 4 ¢ _

c¢) Method 1 (slow way) Substitute: u =8+ 9z, du = 9dz. Therefore

/ V84 9zdz = f ul/?(1/9)du = (1/9)(2/3)u*’? + ¢ = (2/27)(8 + 92)°/* + ¢

Method 2 (guess and check): It’s often faster to guess the form of the antiderivative and
work out the constant factor afterwards: '

Guess (8 + 9z)%/%; %(8 +92)%/2 = (3/2)(9)(8 + 9z)'/% = %(8 +9z)1/2,
So multiply the guess by —2?,; to maké the derivative come out right; the answer is then
3(8 +9z)%2% 4 ¢
27 :

d) Method 1 (slow way) Use the substitution: u = 1 — 1224, du = —48z3dz.

[ 2= 1204000 = [ (1748 = - (819008 + 0 = — (1 — 126478 1 c

Method 2 (guess a.nd‘check): guess (1 - 12z%)%/8;

;;(1 ~1224)%/8 = %(-—48:::3)(1 —1224)}/8 = —54(1 — 12z4)1/8,
So multiply the guess by —-512 to make the derivative come out right, getting the previous -
e) Method 1 (slow way): Use substitution: u = 8 — 22, du = —4zdz.

/ i / W1/ = ~3 20 4=~ 28~ 227 4
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Method 2 (guess and check): - guess (8 — 222)%/%; diﬂ'erentia.ting it:

%(8 - 22?2 = %(-4a=”)(8 — 22%)/% = —6(8 - 22%)'/7;

1.
so multiply the guess by r to make the der1va.t1ve come out right.

-The next four questions you should try to do (by Method 2) in your head. Write down
the correct form of the solution and correct the factor in front. .

f) 1/7e™ +¢

g) (7/ 5)6ass +c

h) 2¢V% + ¢ .

i) (1/3) In(3z + 2) + c. For comparison, let’s see how much slower substitution is:

u=3z+2, du=3dz, so

/ 3:: 3= / (1/3)du ;-(1/3)1nu+c = (1/3)In(3z +2)+e

/”Isdz=/(1.+§)dz=z+51nz+c

/z+5dz /(1__)dz=z—5ln(m+5)+c

In Unit 5 this sort of algebraic trick will be explained in detail as part of a general method.
What underlies the algebra in both (j) and (k) is the algorithm of long division for polyno-
‘mials.

1)'u. Inz, du dz/z, so

k)

/lnzdz /udu (1/2)u? +c—(1/2)(lnw)2+c )

m) u = Inz, du = dz/z.

/ = —_]nu+c—1n(1na;)

zlnz
3A-3 a) —(1/5) cos(5a:) +ec .

b) (1/2) sin? z + ¢, coming from the substitution u = smz or —(1/2) cos? z+¢, coming
from the substitution u = cosz. The two functions (1/2)sin® z and —(1/2) cos® z are not
the same. Nevertheless the two answers given are the same. Why? (See 1J-1(m).)

c) —(1/3) cqs3z+c ’
d) —(1/2)(sinz) 2 +ec=—(1/2)csc’z +¢



3. INTEGRATION
e) Stan(z/5) + ¢
f) (1/7)tan" z + c.

g) u = secz, du = secz tan zdz,

/sec”ztanzdz /(sec:c)8 secz tan zdz = (1/9)sec® z + ¢

3B. Definite Integrals

3B-1 a)1+4+9+16=30 b) 2+4+8+16 + 32 + 64 = 126
¢) —1+4-9+16-25=—15 - d) 1+1/2+1/3+1/4=25/12

3B;2 a)_i(—l)"“@n +1) b) il/k2 c) zn:sin(ka;/n)
k=1

n=1 . =1
'8B-3 a) upper sum = right sum = (1/4)[(1/4)® + (2/4)® + (3/4)® + (4/4)®] = 15/128
lower sum = left sum = (1/4)[0% + (1/4)® + (2/4)® + (3/4)%] = 7/128
b) left sum = (—1)2 +02+12+22 =6;  right sum = 02 +12 4+ 22 +- 32 = 14;
upper sum = (-1)* +12 +22+32 =15;  lower sum = 0% +0% +12 + 22 =5.

_ c) left sum = (/2)[sin 0 + sin(x/2) + sin(7) + sin(37/2)] = (x/2)[0+ 1+ 0—-1] = 0;
right sum = (r/2)[sin(r/2) + sin(x) + sin(37/2) + sin(27)] = (r/2)[1+0-1+0]=0;
upper sum = (7/2)[sin(7/2) + sin(r/2) + sin(x) + sin(27)] = (x/2)[1+ 1+ 0+ 0] = 7;
lower sum = (7 /2)[sin(0) + s'in(1r) + 8in(3x/2) + sin(37/2)] = (1!-/2)[0 +0-1-1]= -7

8B-4 Both 22 and 23 are increasing functions on 0 < z < b, so the upper sum is the rigﬁt
sum and the lower sum is the left sum. The difference between the right and left Riemann
sums is

O/ (a1 + -+ F(a)] = G/ o+ -+ F(zn-)] = B/ (za) = F(z0)]

' Inbothcaseézn=bandzo =0, so the formula is
(b/n)(f(5) - £(0))

a) (b/n)(b* — 0) =3 /n. Yes, this tends to zero as n —+ oo.
b) (b/n)(b® — 0) = b*/n. Yes, this tends to zero as n — oo.

" 8B-5 The expression is the right Riemann sum for the integral

/01 sin(bz)dz = —(1/b) cos(b:c)ﬁ, = (1 —cosb)/b

so this is the limit.



S. SOLUTIONS TO 18.01 EXERCISES
3C. Fundamental theorem of calculus
3C-1 , , . -
/3 (z—2)"dz = 2z - 2)"’*‘[3 =9[(4)/2 — 1Y% =2

- 302 a) (2/3)(1/3)(3z + 5)3/5|: = (2/9)(1i3/2 - 5%/%)

b) If n # —1, then | |

(1/(n + 1)(1/3)(3z + 5[ = (1/3(n+ )((11"+! - 574)

If n. = —1, then the snswer s (1/3)In(11/5).
o) /ey = A/ - (VB =12
3C-3 a) (1/2)In(z? + )|} = (1/2)[ln5 — 1n2] = (1/2) n(5/2)

b) (1/2)In(z? + B[ = (1/2)[n(56?) — In(26%)] = (1/2) In(5/2)
" 8C-4 As b — 00,

f z 4z =--—(1/9)z‘9|i =—(1/9)(b"° - 1) —» —(1/9)(0—1) = 1/9. |
A .

This integral is the area of the infinite region between the curve y = 2710 and the z-axis
forz>0. - : :

Topw
3C-5 a)/ sinzdz = —cosz|; = —(cos T — cos0) = 2
0

w/a
b) / sin(az)dz = —(1/a) cos(az)|3/® = —(1/a)(cos® — cos0) = 2/a
0 .
3C-6 ) 22 — 4 =0 implies 7 = +2. So the area is

2 ' 2 P 2 3
(x2—4)da:=2/ (P—t)dz="% —tz| =2 _4.2=—16/3

(We changed to the interval (0,2) and doubled the integral because z> — 4 is even.) Notice
that the integral gave the wrong answer! It’s negative. This is because the graphy =22 —4
is concave up and is below the z-axis in the interval —2 < z < 2. So the correct answer is
16/3.

b) Following part (a), 22 — a = 0 implies z = +/a. The area is

Ve Ve 31ve 3/2' I
/ (a—a:z)dz=2/ (a —2?)dz = 20z — = =2(a3/2_2__)=_’§a3/2
Va 0 3 o 3 3



3. INTEGRATION
3D. Second fundamental theorem

3D-1 Differentiate both sides;

left side L(z): L’(a:) J&%F . 1+zz’ by FT2;
right side R(z): B'(z) = -—(ln(a;-[- Va1 27) —na) = 14 oo 1

P~ o R~ Er
Since L'(z) = =R (2), we have L(z) = R(z) + C for some constant C = L(z) — R(z). The
constant C may be evaluated by assigning a value to-z; the most convenient ch01ce isz=0,
which gwes , .

L(0) = / =0; R(0)= n(0+ \/0+a3) Ina=0; therefore C =0 and Lie) = ).
b) Put £ = c; the equa.tlon becomes 0 = ln(c + v/ + a?); solve this for ¢ by first

. exponentiating both sides: 1 = ¢+ V/c2 + a?; then subtract ¢ and square both sides; after
some algebra one gets ¢ = 3(1 — a?). o y 1-f

: - 1_42
3D-3 Sketchy = i+ :, first, as shown at the right.

: 3D-4 a) / zsin(ts)dt,ﬁythé FTé. b) / zsi.n(ts)d.t—l;Z c)' / zsin(ts)dt—l
A T

3D-5 Thls problem reviews the idea of the proof of the FT2. 22

i
)f() ’_1+t4 _ 0 |
1 %85 hadedares ., . .. _ ' T R
1 [iAs . .shaded area _ 1
Jm, g [ o = m m——h“‘gh*—f‘”- 7

b) By definition of 'deriva.tiwie, :
F 14 Az)-F(1 1+Az

byFT2 F(1) = f(1)—7

3D-6 a) IfFl(.'z:') -—/ dt and Fg(z) / dt, then Fl(a:) = 2 —a; and Fg(z) =z — ay.
Thus Fi(z) — Fa(z) = a2 —a,, 8 constant. :

b) By the FT2, F{ (a:) f(a:) and F} (x) f(z); therefore Fy =R+ C, for some
constant C. . ’ ’




S. SOLUTIONS TO 18.01 EXERCISES

3D-7 a) Using the FT2 and the chain rule, as in the Notes,

o / Vu sinudu = Va2 sm(mz) ) = 222 sm(zz)

sinz
-cosz =1. (Sof dt =1z)
1] .

b) = 1-2

1
vi1i- sin’z
d [ '
c) 3;/ tanudu = tan(z?) - 2z — tanz
z

3D-8 a) Differentiate both sides using FT2, and substitute z = 7/2: f(7/2) =4

b) Substitute £ = 2u and follow the method of part (a); put v = 7, get finally
f(1r/2) 4 —4m.

3E. Change of Variables; Estimating Integrals

ladt
3E-1 L(- ) f —. Putt—— dt————du -Then
S NN L(l')_/lla@__ di".._L(
t w2 ")t o a)

SE-2 a) We want —t2 = ¥u2/2, 80 u = tv/2, du = v/2dt.

z/V2 z/V2
L/ ..2/2du__f e‘*’x/idt:—l—/ -
var Jo Vor VT Jo
— B(z) = %F(z/\/i) and Jim E(x) = VTl
b) The integrand s even, so

| S 2 N
\/—2_1;-/_Ne" /2du,=\/ﬁ./0 e Pdu=2E(N) — 1 asN—fgo
. E:PwE(z) =-1/2 because E(z) is odd.

b
-L\/ﬁ_ / e /2y = E(b)— E(a) by FT1 or by “interval addition” Notes PI (3).
7T Ja : :

Commentary: The answer is consistent with the limit,

1 N _ap
ﬁf.neﬂ/ du=E(N) - B(-N) =2B(N) — 18 N0



3. INTEGRATION

' e S 1 1
3E-3 a) Usingu = Inz, du = ga:_, 2y = / Vudu = 2pnlt = 2
k4 1 T 0 3 0 3
b) Using u = cosz, du = —sinz,
/" sinz . _ /"1 —du 1 '—1 _ l(i 1) _ 4
o (2+cosz)3 . T i (2+w)? T 22+w)2h T 2'12 32 9"
. . . 1 ' % cosu /2 g
¢) Using = = sinu, dz = cosudu, /0 ﬁ = /o o=y, =3

3E-4 Substitute £ = t/a; then z = +1 = ¢ = =*a. We then have

1 2 dt 1
= / V1-z2dz / 1——- = \/ — t2d¢.
-1 ’ -a

Multiplying by a? gives the value ma?/2 for the integra.l, whlch checks,
since the integral represents the area of the semicircle.

3E-5 One can use informal reasoning based on areas (as in Ex. 5, Notes FT), but it is
better to use change of variable.
a) Goal: F(~z) = —F(z). Let t = —u, dt = —du, then
F-o)= [ = [ f-u)(-du
0 0
Since f is even (f(—u) = f(u)), F(-z) = / f(u Ydu = —F(z).
b) Goal: F(-z) = F(z). Let t = —u, dt = —du, then
F-)= [ f@= [ f(-u)(-du
0 0
Since f is odd ((f(-v) = —f(u)), F(-z) = /== F(u)du = F(z).
_ 0

1 1
1+58 ~ 1+s

1 1
dz dz 1
-/0 T+ > /0 11z — 111(1+$)|0 = In2 = .69

b) 0 < sinz < 1 on (0,7) = sin’?z < sinz on (0, x); therefore

3E-6 a) 2% <z on (0,1) = on (0,1); therefore

™ T m™
/ sin? zdr < / sinzdz = —-cosz' = —(-1-1)=
0 0 0

20 : 20 2 1 _
c)/ Vz? + ldz > / Vaids = —I = (400 — 100) = 150
10 10 2 l1wo 2 .

/1 sm:c
1

N
3E-7

fl sinz dz dx — _%

= -%+1<1




S. SOLUTIONS TO i8.01 .EXERCISES
3F. Differential Equations: Separation» of Variables. Applications
3F-1 a) y = (1/10)(2z + 5).5 +c |
b) (y+1)dy =dr = '/(y+1)dy = /d:c = (1/2)(y+1)? = 2 +c. You can leave
this in implicit form or solve for y: y = —1% +/2z + a for any constant a (a = 2¢) '
c) yl/zdy =3dz = (2/3)y*? =3z +c¢ = y=(9z/2+ a)*/?, with a = (3/2)c.
d) y~2y = zde = -y~ =22[24+c = y=-1/(z%/2+0)

3F-2 a) Answer: 3elS.
y~ldy = 4zdz = Iny =2z’ +¢

y(1)=3 = In3=2+c = c=In3-2

Therefore '
Iny =22z’ + (In3 -2)

'At T = 3’ y= e18+ln3—2 — 3616

b) Answer: y = 11/2+ 3v/2.

(y+1)2dy =dz = 2Ay+1)"/* =z +c

y(0)=1 = 21 +1)"2=¢c = c¢=2v2
Atz =3, .

Ay +1)12=3+2v2 = y+1=(3/2+V2)?=13/2+3V2
Thus, y = 11/2+ 3v/2.
c) Answer: y = 1/550/3
ydy = 2dz = y*/2=(1/3)z% +¢

y(0) =10 = ¢=10?/2=50

Therefore, at £ = 5, :
v2/2 = (1/3)5° + 50 = y = 1/550/3

d) Answer: y = (2/3)(e** — 1) _
(By+2)'dy=dz => (1/3)In(8y+2) =z+c

y(0)=0 = (1/3)In2=c
Therefore, at z = 8§,

(1/3)In(3y +2) =8+ (1/3)In2 = I8y +2)=24+In2 = (3y +2) = 2%

Therefore, y = (2¢2* — 2)/3



3. INTEGRATION
e) Answer: y = —In4 at z = 0. Defined for —c0 < z < 4.
eVdy=dz = —eV=z+c

y(3)%0 = —'=3+c = ¢c=-4
. Therefore, . e L
y=-In(d-z), y(0)=-Id

The soliztion  is defined only if = < 4.
8F-3 a) Answers: y(1/2) =2, y(~1) =1/2, y(1) is undefined.
Sy lMy=dz = -y l=z+c

y0)=1 = -1=0+4+¢c = c=-1

Therefore, —1/y =z —1 and )
l-z ' .

The values are y(1/2) = 2, y(—1) = —1/2 and y is undefined at z = 1.

b) Although the formula for y makes sense at z = 3/2, (y(3/2) = 1/(1 - 3/2) = -2),
it is not consistent with the rate of change interpretation of the differential equation. The
function is defined, continuous and differentiable for ~o0o < z < 1. But at £ =1, y and
dy/dz are undefined. Since y = 1/(1 — z) is the only solution to the differential -equation
in the interval (0, 1) that satisfies the initial condition y(0) = 1, it is impossible to define a
function that has the initial condition y(0) =1 and also satisfies the differential equation in
any longer interval containing z = 1.

Y=

To ask what happens to y after z = 1, say at z = 3/2, is something like asking what
happened to a rocket ship after it fell into a black hole. There is no obvious reason why
one has to choose the formula y = 1/(1.— z) after the “explosion.” For example, one could
“definey =1/(2—z) for 1 < z < 2. In fact, any formula y =-1/(c — z) for ¢ > 1 satisfies the

differential equation at every point z > 1. :

3F-4 a) If the surrounding air is cooler (T, —T' < 0), then the object will cool, so dT'/dt < 0.
Thus k& > 0.

. b) Separate variables and integrate.

Exponentiating, -

T -T, =+e‘e ™ = e ™™

The initial condition T{(0) = Tp implies A = Ty — T;. Thus
T =T, + (Ty - T.)e "
¢) Since k > 0, e~ — 0 as ¢ = 00. Therefore,

T=T.+(To~T)e ™ —T. a8t 00
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d)
T-T,=(Tp-T)e*

The data are Tp = 680, T, = 40 and T'(8) = 200. Therefore, _
200 — 40 = (680 - 40)e % =— ¢~ =160/640=1/4 == —8k = -In4.
The number of hours t tl;at it takes to cool to 50° satisfies the equatiox; |
50 — 40 = (640)e™* = ¢™¥ =1/64 =—> —kt = —3In4.

To solve the two equations on the right above simultaneously for ¢, it is eagiest just to divide
the bottom equation by the top equation, which gives

=3, t=24.

o} e+

e)
T~T,=(To—T)e

The data at t =1 and ¢t = 2 are
800 — T, = (1000 — T.)e™®* and 700 - T. = (1000 — T, )e~2*

_Eliminating e™* from these two equations gives

700-T. _ (800—T, )’
1000—T. ~ \ 1000 — T,
(800 - T%)? = (1000 — T.,)(700 — T¢)
800% — 16007, + T2 = (1000)(700) — 17007, + T2
1007, = (1000)(700) — 800?
T, = 7000 — 6400 = 600

f) To confirm the differential equation:
) =T to) = k(T ~ T~ ta)) = KT ~ y(1)
The formula for y is’ ‘ _
| y(t) = T(t —to) = Te + (To — Te)e~¥t=%) = a + (y(to) — a)e(¢~t)
with k = ¢, T, = a and T = T'(0) = y(to).
3F-6 y = cos®u — 3cosu, v =sinu

dy = (3 cos? u - (—sinu) + 3sinu)du, dz = 4sin® u cos udu

dy _ 3sinu(l—cos’u) 3
dr =~  4sin®ucosu  4cosu




3. INTEGRATION
SF-7 a)y' = —ay; y(0) =1
W e = Iny= —-1—z2'+c
Y 2 _ .
Tofindc,put 2=0,y=1:Inl1=0+c=c=0.
' =‘>lny='—%z’=>y=e"”’ LT
b) cosz sin ydy = sinzdz; y(0) =0
. sinz
sinydy = mdz => —cosy = —In(cosz) + ¢
Find c: put £ =0, y = 0: —cos0= —In(cos0) + ¢ => ¢ = ~1
=> cosy = In(cosz) + 1

3F-8 a) From the triangle, ' = slope tangent = !1’.

=>.%-=dz=>lny=z+c1 =y =e*t°1 = Ae® (A =¢%)

b) If P bisects tangent, then P, bisects OQ (by euclidean geometry)
So PoQ = z ( since OF = z). : P
- dy dz

S N e _ _4az
Slope tangent = y" = — = ” ~
= hy=-lnz+¢

U P
Exponentiate: y = Z e = >0
Ans: The hyperbolas y =,\£, e>0
' 3G. Numerical Integration

. 3G-1 Left Riemann sum: (Az)(yo~+ 31 + ¥2 + ¥s)
Trapezoidal rule: (Az)((1/2)y0 + y1 + y2 + ¥s + (1/2)34)

Simpson’s rule: (Az/3)(yo + 4y1 +2y2 + 4ys +y4) -

a) Az =1/4 and,
' Y0o=01=1/290=1/V2 ys=V3/2,ye=1.
Left Riemann sum: (1/4)(0 +1/2+ 1/v2 + V3/2) ~ .518
Trapezoidal rule: (1/4)((1/2)-0+1/2 + 1/v3 + v3/2+ (1/2)1) ~ .643
Simpson’s rule: (1/12)(1-0 + 4(1/2) + 2(1/v2) + 4(v3/2) +1) ~ .657
| as compared to the exact answer .6666. ..

b) Az =7/4
Y%=0,11=1/vV2y=19s =1/V2,y, =0.
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Left Riemann sum: (/4)(0 + 1/v3 + 1+ 1/v3) = 1.896

Trapezoidal rule: (x/4)((1/2)-0+1/v2 +1+1N‘ +(1/2)-0) ~ 1.896 (samea.sRlema.nn
sum)

Simpson’s rule: (r/12)(1 -0 +4(1/v3) +2(1) +4(1/v/2) +1-0) ~ 2.005
as compared to the exact answer 2 _ -
c) Az =1/4 '

Yo =1, 31 = 16/17, yg = 4/5, s = 16/25, ya = 1/2.

Left Riemann sum: (1/4)(1 +16/17 + 4/5 + 16/25) ~ .845

Trapezoidal rule: (1/4)((1/2) - 1+ 16/17 + 4/5 + 16/25 + (1/2)(1/2)) ~ .8128
Simpson’s rule: (1/12)(1- 1+ 4(16/17) + 2(4/5) + 4(16/25) + 1(1/2)) = .785392
as compared to the exact answer 7 /4 ~ .785398

(Multiplying the Simpson’s rule answer by 4 gives a passable a.pprc:umatmn to w, of
3.14157, accurate to about 2 X 1075.)

d) Az=1/4
W=Ln=4/5p= 2/3, y3 =4/T, y = 1/2.

 Left Riemann sum: (1/4)(1+4/5 +2/3+4/7) .76
Trapezoidal rule: (1/4)((1/2)-1+4/5+2/3 +4/7(1/2)(1/2)) = .697
Simpson’s rule: (1/12)(1-1+ 4(4/5) + 2(2/3) + 4(4/7) + 1(1/2)) ~ .69325
Compared with the exact answer In 2 » .69315, Simpson’s rule is accurate to about 10™4.

b 4 . .
3G-2 We have / zidz = bz Using Simpson’s rule with two subintervals, ‘Az = b/2, so

: 0
that we get the same answer as above:

b -b (3 bt
3y _ 0 Sy =2(2p )=,

S@) = JO+46/2° +5) = § (2b ) ’
Remark. The fact that Simpson’s rule is exact on cubic polynomials is very-significant to
its effectiveness as a numerical approximation. It implies that the approximation converges

at a rate proportional to the the fourth derivative of the function times (Az)?4, which is fast
enough for many practical purposes.

3G-3 The sum ) y=1x
S =v1+v2+...++/10,000

1 04 1

is related to the trapezoidal estimate of Vzdz :
)

10,000.



3. INTEGRATION

wt ‘
%) | VEtsn 36+ VI 4 VT = 5 - LY
0 X
But
104 10*
2 3/ 2 .06
Vzdz = =z ==-10
A 35|, 3
From (1),
. 2 .6
2) . 210 550
Hence
@) S ~ 666,717

In (1), we have >, as in the picture. Hence in (2), we have >, 80 in (3), we have <, Too

high.

1
1 =¥
3G-4 As in Problem 3 above, let .
1 1 1
S—»i+§+m+;
Then Ey trapezoidal rule, ‘ 1 2 3 n-1
de 11 1 1 11 1 1
Lz e tetytete TS m

n .
Since / d;a:_ =Inn, we have S~ Inn + % + —2-1; (Estimate is too low.)
1 .

3G-5 Referring to the two pictures above, one can see that if f(z) is concave down on
. [a, ], the trapezoidal rule gives too low an estimate; if f(z) is concave up, the trapezoidal
rule gives too high an estimate..






Unit 4. Applications of integration
4A. Areas between curves.
. 1 )
4A-1 a) / (32 - 1 - 25%)d = (3/2)a3 —z - (2/3)a"|L , = 1/2
/2

b) 2% = az => & = +a or = 0. There are two eaclosed pieces (~a < z < 0 and
0 < z < @) with the same area by symmetry. Thus the total area is:

2 / ﬁ(az - 2%)dz = az® - (1/2)z4|;." = a?/2
0 .

1.2) Pk 3
1

—

-l

(1/2,1/2) BT az 12

/ . . ‘ _g3/2

la’ ‘b lc | 1d
c)z+1/z=5/2 = z*+1="5z/2 = z =2 or 1/2. Therefore, the area is

/2 [5/2 - (z + 1/2))dz = 5z/2 — 22/2 — ln:):ﬁ/2 =15/8 —2In2

1/2

N 1 : ’ -
d) /o (v —v?)dy = v*/2 4 /3), = 1/6 .

. y=1x
4A-2 First way (dz):

-1 1 1
1 1
: f (1-2%)dz = 2/ (1-2?)dz =2z —2:::3/3|;'= 4/3
-1 0 .

Second way (dy): (z=+vI—y) S .
! | | x=T % -
| 2= = @ma-v) <43 _é

F A(L3)

4A-3 4-22=3z = z=1or —4. Firstway(dz): x=Fy /?
1 .
1
_4(4 -2? - 3z)de = 4o - 2°(3 - 32°/2|_, =125/6

Second way (dy): Lower section has area

/ 312(”/ 3+V4-ydy = 4*/6-(2/3)(4 —y)“’”lim =76 4
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Upper section has area

| 2T = /-] = 473
3 . .

_(See picture for limits of integration.) Note that 117/6 + 4/3 = 125/6.

4A-4 sinz =cosz => z =x/4+km. So the area is

S5nf4
/’r/‘1 (sinz — cosz)dz-= (f cosz — sinz) fr'}f =2v2

4B. Volumes by slicing; volumes of revolution

1 1 1
4B-1 a) f Tylde = f w(l — z%)2de = 2nr / (1-22% 4+ z%)dz
-1 -1 0

= 2n(z — 22°/3 + 28 /5) g = 167/15
- b) [2 mldz = [°, w(a® — 2*)2dz = 27 [ (a* — 20722 + 2*)dz
= 2n(a‘z - 20%2° /3 + 28 /5)|; = 161ra.5/15

c) f nzidz = 7/3
d) / m:zdz ma®/3

e) / 7(2z — 2?)?ds = / n(42? — 42% + 2*)de = 7(42%/3 - = +:z:5/5)| = 16r/15

(Why (e) the same as (a)? Complete the square-and translate.)

) L 1d f

y=da*- y=x y=2ax~ xz y2 (1 - x%a?)
(for la, seta=1) (for Ic, seta = 1) (for le, seta = 1)

f) f: * 7(2az — 22)%dz = f: * 7(4a%z? — 40z® + z*)dz
= w(da?z/3 - az* + o° /5)|3 =16ma%/15
(Why is (f) the.same as (b)? Complete the square and translate.)

a
g) f azdz = ma®/2
o . :



4. APPLICATIONS OF INTEGRATION

h) /a'lryzd:c = /G 7 (1 — 2*/a?)dz = nb?(z — 2°/30%)|; = 27b%a/3
0 0 , .

1 a?
4B-2 a) / (1 -y)dy = /2 b) / n(a? — y)dy = na*/2

1 0 oa

¢ / 7(l - y?)dy = 27/3 d) / n(a® — y*)dy = 27a%/3

(] (]
e) 22—2z+y=0 = z =1=%./T—y. Using the method of washers:
’1 1
[t VIR - - VT = [T

= —(8/3)n(1 - — 42|, = /3

(In contrast with 1(e) and 1(a), rotation around the y-axis makes the solid in 2(e) different
from 2(a).)

&8
A

A TA

i a
x=¢a2-—y x=y x=a+ az—y x=y2/a = a1 - }?/bz)
(for 2a, seta = 1) (for 2c, seta=1) (for2e,seta=1)

f) 22 -2az+y=0 => z=a*+/a? —y. Using the method of washers:

/“ @+ V“z'ﬁz-(a-vaz—y)z]dy=/a 4na+/a? - ydy
0 o - .

= ~(8/3)ra(a® ~y)*"*|, =8mat/3

g) Using washers: / n(a® - (y’/a)“)dy = n(ay - ¥°/5a%)|; = 4ma® /5.
Jo

h) f nzidy = 21r/ a*(1 -2 /0*)dy = 2x(a’y —a y3/3b2)| = 4ma?b/3 (The answer in
2(h) is double the answer in 1(h), with & and b reversed. Can you see why?) L

4B-3 Put the pyramid upside-down. By similar triangles, the base of the
smaller bottom pyramid has sides of length (z/h)L and (z/h)M. d

The base of the big pyramid has area b = LM; the base of the smaller i
pyramid forms a cross-sectlonal slice, and has area

(2/R)L- (z/h)M = (z/h)* LM = (z/h)*b
Therefore, the volume is '

/ " (a/)bdz = b2® /3K3|; = bh/3
o .

NY
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4B-4 The slice perpendicular to the zz-‘pla.ne are nghf triangles 1 ide view of
- with base of length = and height z = 2z. Therefore the area of a  jiosview of :V"fd‘;f:'l:,fg sheev;f;g
slice is z2. The volume is y-as zaxis y-axis

[ sy = [ a-va=4s

4B-5 One side can be described by y = v/3z for 0 < z < a/2.
Therefore, the volume is

a/? a/2 )
2 / ny da2 / m(V3z)%dz = ma®/4 .
. Y 0
'4B-6 If the hypotenuse of an isoceles right triangle has length A, ' . ‘ 2l
then its area is h%/4. The endpoints of the slice in the zy-plane . d : :
are y = +v/a2 — 22, 50 h = 2v/a? — z2. In all the volume is : EWE O
| S . N
(h®/4)dz = | (a® ~2%)dz = 4a®/3 top view slicp
—-a : —-a

"4B-7 Solving for z in ¢ = (z — 1)? and y = (z + 1)? gives the values x=-mly I x=1-1y
x—l:hf and z=-1%y

/[

The hard part is deciding which sign of the square root representing o
the endpoints of the square. _ 2 (x-\p)

Method 1: The point (0, 1) has to be on the two curves. Plugin y = 1 and z = 0 to see
that the square root must have the opposite sign from 1: z =1~ ,/§ and z = -1+ /.

Method 2: Look at the picture. z = 1+ /¥ is the wrong choice because it is the right
half of the parabola with vertex (1,0). We want the left half: z = 1 — ,/y. Similarly, we
want £ = —1 + ,/Fj, the right half of the parabola with vertex (—1,0). Hence, the side of
the square is the interval —1 + /¥ < £ < 1— /7, whose length is 2(1 — /), and the

1 : 1 : .
Volume = /0' 2Q1 - y)’dy = 4[0 (1-2yy+y)dy = 2/3 .

4C. Volumes by shells

4C-1 a)
Shells: / (2rz)(2y)dz = / dnz+/a? — (z — b)2dz
b—a

b) (2—b)2=a2—-y =}z=b_—_h1/a2_y .
a

Washers: [ x(af = sty = [ (o4 VP - 6= VI
‘ =1r/ 4b\/a? - y3dy
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y~é-a-p? "x=b-yaty?
a a .
ba
-a | : -a
=-‘I Ax-b 2
te-b Washers

Shells

a .
c) v/a? — y?dy = wa? /2, because it’s the area of a semicircle of radius a.
-a

Thus (b) => Volume of torus = 27%a%b

dz=z-bdz=dx

b+-a a . a :
/ dnz/a? - (z—-b2dz = [ 4w(z+b)Va? -2z = / dnbva? - 22z
b —a -a

because the part of the integrand with the factor z is odd, and so it integrates to 0.
1 1 :
4C-2 / 2rzydz = / 2rzlds = /2
0 (]
?7- 1 7
1 : 1 '
y=x2 {) y=% {) 'x=y2
4C-2 (shells) 4C-3a (shells) 4C-3b (discs)

- 1 1
4C-3 Shells: / 27z(1 — y)dz = / 21z(1 — /z)dz = 7[5
0 Jo
1 1
Disks: / nzidy = / wyldy = /5
0 0
. 1 - 1 . .
4C-4 a) / 27y(2z)dy = 4w f yy/1— ydy
0 0
: az 0.2 .
b) / 2ry(2z)dy = 4n / yva? - ydy
0 0
1
c) fo 2my(1 - y)dy

- d) /0 ’ 2my(a — y)dy
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e) 22 -224y=0 = z=1+/T—y.

The interval 1—-4/1-y<z<1+4/1—y haslength 2/1 -y
1 1
= V=/ 27r'y(2\/1—y)dy=47r/ yv/1—ydy
0 - 0

f) ‘ 22 -2x+y=0 = r=a++/a2—y.

The interval a— a2 -y <z<a++/a®—-y haslength 2¢/a% —y
a? @ .
= V-—-/ 27y(2v/a? - ydy =41r/ yva? — ydy
. o

0

4d
:(a.a
a
| a :)
x=yal-y (right) xX=y x= a+ a?
x = -\a%y (left) x=a- a2 y

g) /0 ’ 2ry(a — y*/a)dy

b
B [ 2mveis= [ ny(o 20— gy
(Why is the lower limit of integration 0 rather than —b?)

1 1
4C-5 a) / 27z (1 — 22)dz c) / 2rzyde = / 2rzdz
0
a
b) / 2rz(a? -:L'z)dz / 2nzyde = / 2nz2d

St

/ 2rzydz = / 2z (2z — z2)dz
I

: (l)/sé(l
-a/m ol a
y = 2ax-x2

{for 5a, set a=1) for5c, seta=1) (for 5e, seta=1)
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2a 2a

f) 2nzydr = | 2nz(az — z%)dex g) / 27 zydz =/ 2rz+/azds
0 0

B) / 9ma(2y)do = / * oz (1 — o2 /ad)da
0 0
(Why did y get doubled this time?)
4C-6
/ 27z(2y)dz = / 27z(2/ 5 - 2?)dz

= ~(4/3n(t? ~ 2] = (4 /8)(5" — 7))

4D. Averége value

4D-1 Cross-sectional area at £ is = 1y? = 7 - (z%)2 = nz*. Therefore,

2 - 512 1
average cross-sectional area = 1 / xztds = 22 br
2 10 5
2a 2a
dz 1 2a In2
- - == In =1 = —
4D-2 Average = al 7 alna:‘l (ln2a a) = n(a) .

4D-3 Let s(t) be the distance function; then the velocity is v(t) = &'(2) -
Average value of velocity = ——/ §(t)dt = s_(u by FT1

= average velocity over time interval [a,b]

4D-4 By symmetry, we can restrict P to the upper semicircle.

By the law of cosines, we have |PQ|? =12 +1% — 2cos6. Thus
1

average of [PQ[* = -/ @ —2cos6)df = %[29-2@9]3:2 CJQ

(This is the value of |PQ|* when 6 = 7/2, so the answer is reasona.ble.))

4D-5 By hyp'othems, g9(z) = 1 / f(t)dt To express f(z) in terms of g(z), multiply
thourgh by z and a.pzply the Sec. F\md Thm:
[t =ssa) = 1(0)=o(s) +25/c) by FT2.

v 1T rt 1 4o rt|T Ao rT
4D-6 Average value of A(t) = T Age™dt = m—e™|g = ﬁ(e -1)
. 0

Tr
- » R (T)? .
If rT is small, we canapprommaw e N1+rT+ 5 s Sowe get
At) (rT+ ('12") = 40+3).
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(If T =~ 0, at the end of T years the interest added will be AgrT; thus the average is
approximately what the account grows to in 7°/2 years, which seems reasonable.)

b
4D-7 -2- / oz = /3
0

. 4D-8 The average on each side is the same as the average :
~ over all four sides. Thus the average distance is TV (a2
a2
' 1 o2 N
1 / VZF (@) 2Rdz 7
QJ_qaf2

Can’t be evaluated by a formulé until Unit 5. The average of the square of the distance is

1 a/2 2 a/2
" ‘/_.alz(zz + (a/2)%)dz = - /o (@® + (a/2)?)dz = a?/3

1 /o 1 x/a
4D-9 — / sinaz dz —— cos(az)
0 x 0

r/a =2/r

4E. Parametric equations
4E-1 y-z =13,y - 9z = —t. Therefore,
' y—za(y—%)z = y? —4zy+4z —~y+z=0 (parabola)
4E-2 o? = 13+2+1/t and y? = 2 — 2+ 1/£%. Subtract, getting the hyperbola 22 —y? = 4
4E-3 (z - 1) + (y — 4)? =sin’6 + cos? ¢ =1 (circle) C
4E-4 1+tan’t = sec?t => 1+ 22 =y? (hyperbola)
4E-5 z = sin2t = 2sintcost = +24/1 — y2y. This gives z? = 4y? — 4g*.

4E-6 y' =2z,s50t =2z and )
o z=t/2, y=t2/4

4E-7 Implicit differentiation gives 2z + 2yy' = 0, so that y=- I/y. So the parameter is
t =—z/y. Substitute z = —ty in z* +3* = a® to get

B+’ =a® = y® =d?/(1+1?)

Thus
a —at

= T =
V=Tivae Vit
For —o0 < t < 00, this parametrization traverses the upper semicircle y > 0 (going clock-

wise). One can also get the lower semicircle (also clockwise) by taking the negative square
root when solving for y,

y= —a z= at
. VIFE 1+

3

2
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4E-8 The tip @ of the hour hand is given in terms of the angle 8 by @ = (cos#,sin )
(units are meters).
Next we express 6 in terms of the time parameter ¢ (hours). We have

R S 8 de linearly with t
. -' 7l'/3,t =1 ecreases linearly wi :

T _F-%-(t-0)
=b0-g="TTo

Finally, for the snail’s position P, we have

- Thus we get 6 = 7 — £t.

P = (tcosb,tsinf) , where ¢ increases from 0 to 1. So,

z= tcos(g - %t) =tsin %t, y =tsin(§ ~ §t) = tcos 5t

4F. Arclength
4F-1 a)ds = \/’1+_(y')_?éz = 1/26dz. Arclength = /0 1 \/i'édx = v/26.
b) ds = /1 + (¢")2dz = /1 + (9/4)zdz.
Arclength = fo 1 V1+O/4)zds = (8/27)(1+ 9x/4)3(ﬂ|: = (e;/2~7)((13/4)3/2 ~1)

. o)y = -z V31 — £?/3)V2 = _\/z-2/3 _ 1, Therefore, ds = z~'/3dz, and

1 1
Arclength = / Yy = (3/2)ar,-2/3|0 =3/2
A :

d) y' = z(2 + 2?)'/2. Therefore, ds = v/1+ 222 + zdz = (1+ z*)dz and
2
Arclength = / (1+2%)dz =z + 3:3/3|f =10/3
1 :

4F-2 o = (&® — €™%)/2, so the hint says 1+ (¥')? = y? and ds = /1 + (¥')2dz = ydz.
" Thus, : :

Arclength = (1/2j /b(e” +e”%)dz = (1/2)(e® - e'“)|g =(eb —eb)/2
0 .

, b :
4F-3 y' = 2z, \/1+ (y')? = V1 + 422, Hence, arclength = / V1+4z2dz. 4F-4 ds =
0
V/(dz/dt)? + (dy/dt)2dt = /442 + 9t dt. Therefore,

2 : 2
Arclength = / V42 + 9thdt = / (4+96%)"/ 2t
0 0 .

= (1‘/27)(4..+'9t2)3/2|z = (40%/%2 - 8)/27
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4F-5 dz/dt=1-1/t? dy/dt =1+ 1/t*. Thus

ds = \/(dz/dt)? + (dy/dt)2dt = /2 + 2/t4dt and

2 . .
Arclength = / 2+ 2] thdt
: .

4F-6 a) do/dt =1 cost, dy/dt = sint.

ds/dt = \/(dz/dt)? + (dy/dt) = v/2 - 2cost (speed of the point)
Forward motion (dz/dt) is largest for ¢ an odd multiple of 7 (cost = ~1). Forward motion
is smallest for ¢ an even multiple of 7 (cost = 1). : (continued —)
Remark: The largest forward motion is when the point is at the top of the wheel and the
smallest is when the point is at the bottom (since y = 1 — cos?.)

b) | \/2 —2costdt = / 2sin(t/2)dt = —4 cos(t/2))2" = 8

0 0

27 .
4F-7 / Va?sin? t + b? cos? tdt
4F-8 dz/dt = e*(cost — sint), dy/dt = et(cost + sint).

ds = \/e?t(cost — sint)? + e?(cost -+ s1nt)3dt = etv/2cos? t + 2sin’ tdt = v2e'dt
Therefore, the arclength is

10 . ’

/ V2etdt = V2(e!® - 1) yoitat
0 ' ' b ‘
4G, Surfaqe Area fa ;b 3

4G-1 The curve y = VRZ — 22 for a < z < b is revolved around the x—axis.K ! :
Since we have y' = —z/vVR? — 22, we get

= y/1+ (y')2dz = /1 + z2/(R? — 3?)dz = \/R?/(R? - z?)dz = (R/y)dz

Therefore, the area element is

' dA=2ryds = 2nRdz

and the area is b
/ 2nRdz = 27R(b — a)
o \

4G-2 Limits are 0 < z < 1/2. ds = v/5dx, 50

1/2 -
dA = 2nyds = 2r(1-2z)Vbdz = A= 2#\/5/ (1-2z)dz = V57/2
(]
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4G-3 Limits are 0 <y < 1. o = (1 — y)/2; dz/dy = ~1/2. Thus’
ds = \/1+ (dz/dy)2dy = \/5/4dy;

dA =2myds = (1 - 9)(vE/2)ds = A= (VBr/2) [ (1~ y)dy = VBr/4
4G-4 A= /'21ryds;-/042“1r-.'52\/1+4z2dz
4G-5 z = /Y, dz/dy = -1/2,/y; and ds = Vit 1/4ydy
: o
A= /27ra:ds = / 2m/yv/1 4+ 1/4ydy
-Jo

= fo 2 2n/y + 1/Ady
= (n/3)(y + /4], = (4 3)((9/4°" - (1/°%)
=137/3 '
4G-6 y= (/5 — P3P = o = g~V /3(g¥/3 _ z2/%)1/2 Hence ' A—
| ds= \/14;3"/3(0-3/3 — 22/%)dz = a*/3z~ 34y 2 T a.
Therefore, (using symmetry on the interval —a < z < a) y = (a®* x2/5 7

A= / 2myds = 2 / ’ 2m(a?/3 — 2?/3)326M 35 3y
0

= (4m)(2/5)(—3/2)a™/3(a*/® — 2B/
= (127/5)a?

4G-7 a) Top half: y =+/a2 - (z - 1),y = (b— z)/y. Hence,

ds = /1+ (b—2)?/y?dz = /(42 + (b — 2)?) /y?dz = (a/y)dz
Since we are only covering the top half we double the integral for area: . symmetrical and cqual

a
0

b+a zdr

b—a \/ﬂz—"(z"'b2

A= / 2rzds = 4wa
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b) We need to rotate two curves 33 = b+ /a2 — 33

" andz =b— \/62 — y? around the y-axis. The value QI) m= b +\/a2-7

dzy[dy = —(dz, /dy) = —y/Va? ~— 42 7 =/
_ So in both cases, : x=b-
3 /(a2 — 2 _ o2
. =v1+1?/(a® - ?)dy = (a/\/a y2)dy inmer and outer surfaces are
The integral is : not symmetrical and not equal
A= /21ra:2ds+ /21rz1ds = /a 2n(zy + mg)a;dy
—a Ja—y?
"But 23 + 22 = 2b, s0 '
' A=tmab [ - __
. —a v/ a? — yz.
¢) Substitute y = asinf, dy = acosfdf to get
x/2 /2
A =4mab acosOd0~47r b df = 4x%ab
—-x/2 GCOS 6 —x/2
4H. Polar coordinate graphs
4H-1 We give the polar coordinates in the form (r, 8):
a) (3,7/2) b) (2,7) c) (2,7/3) d) (2v2,3r/4)
e) (V2,—/4 or Tr/4) . ) (2,—w/2 or 37/2)
g) (2,~-7/6 or 117/6) _ h) (2v2, ~37/4 or 57/4)

4H-23) (i) (z—a)®+1? =a® = 22-2az+4* =0 = r®—2arcosfd =0 => r =2acosd.

(ii) ZOPQ = 90°, since it is an angle inscribed in a semicircle.
In the right triangle OPQ, [OP|=|0Q)|cosd, ie., r = 2acosd.

b) (i) Analogous to 4H-2a(i); ans: r = 2asind.
(if) analogous to 4H-2a(ii); note that ZOQP = 0, since both angles are complements
of ZPOQ. i

c) (i) OQP is a right triangle, |OP| =r, and ZPOQ = a — 6.
The polar equation is rcos{a —8) =a, or in expanded form,
r{cosacosf +sinasind) =a, or finally,
T Yy
. . 1 + -B— =1,
. since from the right triangles OAQ and OBQ, we have cosa = %, sina =cos BOQ = 2

ik
d) Since |OQ| = sin 6, we have:

if P is above the z-axis, sinf >0, OP| =|0Q| - |QR)|, or r =a —asind;

if P is below the z-axis, sinf < 0, OP| = |0Q| + |QR|, or r =a+a|sinf| =a — asiné.

Thus the equation is r = a(l —sin#).



4. APPLICATIONS OF INTEGRATION

e) Briefly, when P = (0,0), |PQ||PR| = a-a = a?, the constant.

Using the law of cosines,

|PR]2 = r2 + a? — 2ar cosb; :

|PQ|? = r2 + a® — 2ar cos(w — ) = r> + a® + 2arcosf
Therefore

, |PQIP|PRP? = (r* + a’)2 — (2arcosf)? = (a®)?
which simplifies to
= 242 c0s24.

4H-3 a)r=secd =>rcosf=1=z=1 b) r = 2aco86 => 1?2 =r-2acosf =
2ez => 22 + y? = 2az

¢} r = (a + bcosf) (This figure is a cardiod for @ = b, a limagon with a loop for
0 < a < b, and a limagon without a loop fora > b>0.) °

r2=ar+br- cos0-ar+bz=>z2+y3—a,/$2+y2+bz

: 7\7\”‘
S

. limacon a<b cardioid (a=b) hmacon ab
. 8a 8b 8c 8d

]

/

(d) r=af(b+ccosf) => r(b+ccosf)=a = rb+cz=a
= rb=a-cz => rb® =a?—2acz+cPal
= a®—2acz+ (2 -F)2® ~ %2 =0

= r=2asinfcosd = 2azy/r?
= =2y = (2®+1*)%?=2azy

r'=aco.r26 r=asin2e F:azcosm = JA@

y

| (e) _ r = asin(26)

92 ‘
f) r=acos(2) =a(2cos?0-1) = a(% - 1) = (2% +y?)*? = a(z? - 3?)
g) r? =a?sin(20) = 2a?sin @ cos = 242 =>r = 2azy = (22 + 9°)? = 2azy

2%
z? + 42
i) r=e*=>Inr =0 =>In/22+y2 =atan™? ¥

h) r? = a? cos(26) = a¥( -1) = (2% +3?)® = a®(2? - ¢?)

T
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4I. Area and arclength in polar coordinates

a1 /@B ¥
a) sec’ 6do
. D)2dh .
c) Va2 + b2 + 2ab cos 66

av/b? + ¢? + 2bccosf
9 (b+ ccosh)? df

) ay/4cos?(26) + s_in2(20)d9

£) ay/4sin?(26) + cos?(26)dd
g) Use implicit differentiation:
2rr' = 2a% cos(26) => ' = a’cos(26)/r = (r')? = a® cos?(26)/ sin(26)

Hence, using a common denominator and cos? 4 sin® = 1,

a .

\/sin(26) 46

ds = 1/ a2 cos?(26)/ sin(26) + a2 éin(26)d6 =

h) This is similar to (g):

a

= ———df
? \/cos(28)
i) V14 a2edg

41-2 dA = (r?/2)df. The main difficulty is to decide on the endpoints of integration.
Endpoints are successive times when r = 0.

cos(38) =0 = 30 =n/2+kr = 6 =n/6+kn/3, k an integer. - Q=6
‘ /6 ‘ n/6 .
Thus, A= | (a®cos?(36)/2)dd = a? / cos?(36)dd. v
. /8 0 three-leaf rose
(Stop here in.Unit 4. Evaluated in Unit 5.) three empty sectors

41-3 A = / (r?/2)do = / _1r(e69/2)d0 = (1/12)e®|] = (" -
1)/12 ’ .

4I-4 Endpoints are successive time when r = 0.

sin(20) =0 => 20 =kn, k an integer.

Thus, 4 = / (r?/2)d6 = / " @2 sntat)as =~ 1) cos(26)[/* =
A _
a?/2. '
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4I-5 r = 2acosb, ds = 2adf, —7w/2 < 6 < w/2. (The range was
chosen carefully so that r > 0.) Total length of the circle is 27a. Since
the upper and lower semicircles are symmetric, it suffices to calculate
the average over the upper semicircle:

2a
r=2acosB

n/2 4a

1 /2
‘ —/ ~ 2acosf(2a)df = 4—a'sin0
wa Jo T o T : p
4I-6 a) Since the upper and lower halves of the cardiod are symmetric, / %
it suffices to calculate the average distance to the x-axis just for a point Uo

on the upper half. We have r = a1l — cosf), and the distance to the

z-axis is rsinf, so
T : w ' .

l/ rsinfdf = l/ a(l - cos6) sin6df = —(1 ~ cos§)? "o

T Jo T Jo 2w o

() ds=/{@r/a0) +r2d6 = ay/(1 - cosh)? +sin’ 98
= av2 — 2cos0df = 2asin(f/2)d0, usmg the half a.ngle formula.
27
arclength = / 2asin(26)df = —4a cos(0/2)|0 =8a
0

For the average, don’t use the half-a.ngle version of the formula for ds, and use the interval
-r<f<m, where sind is odd »

Aver.ag' / |r sin 8lav/2 — 2 cos @ lsm 8]v2a*(1 — cos8)/2d8
o i
= -\—/74——9/ (1- cos9)3/2 sinfdf = —@(1 cos9)®/?| = i;-a
0
0
41-7 dzr = —asinfdf. So the semicircle y > 0 has area
/ ydz = / asinf(—asinf)df = az/ sin? d6
—-a g 0
But
T 1 L
/ sin? 0 = = / (1= cos(26)dd = /2
0 o2y -
So the area is 7ra%/2 as it should be for a semicircle. '
Arclength: ds? = dx? + dy? o
= (ds)? = (—asin6dh)? + (acos 6d6)? = a?(sin® db + cos? do)(dﬂ)2 : /’?
= ds = adf (obvious from picture). -a

27
/ds:/ adf = 2wa
0



S. SOLUTIONS TO 18.01 EXERCISES
4J. Other applications

4J-1 Divide the water iﬂ the h'?le into n equal circular discs of thickness Ay.
Volume of ea.ch disc: w(l) Ay .

. .Energy to raise the disc of water at depth y; to surface: Eky;Ay
Adding up the energ;es for the different discs, and passing to the limit,

AT 100 k1'% klo4
= nh-{réo;Zky‘Ay = /; W = T . "8

4J-2 Divide the hour mto n equal small time intervals At.

At time ¢;, i = 1,... ,n, there are zoe™** grams of material, producing approximately
reoe ¥ At radlatxon units over the time interval [t;, ¢; + At].
Adding and passing to the limit,

R o e *1%  pg
R = lm ) rzee At = / razge X dt = rmo—] = T2 (1 gm00k),
‘ - . Jo k

n—oo k

4J-3 Divide up the pool into n thin concentric cylindrical shells, of radius r;, i = 1,...,n,
and thickness Ar.
The volume of the i-th shell is approximately 27 r;D Ar.

The amount of chemical in the i-th shell is approximately
Adding, and passing to the limit,

k
T+72 2nr;D Ar.

R
A = ’Hoozl_,_‘rz%r,DAr = _/0- 21:'kD1
R

r
e dr

= 7kD ln(l +r?)| = nkDIn(l+ R?) gms.

e .
o

4J)-4 D1v1de the time interval into n equal small intervals of length At by the points t;,
i=1,.

. The a.pproxlmate number of heating units required to maintain the temperature at 75°
over the time interval [t;,¢; + At] is

A)

7t;
75 10(6 - cosﬁ)] -k At

Adding over the time intervals and passing to the limit:

total heat 2

it

3.

38
HM3

75-—10(6 cosﬁ-)] kAL

Il
S~
N
. -~
E o
—~

15+ 10cos = ) dt = k 15t+1—29sm“—t ~ 360k
12 ), = °



4. APPLICATIONS OF INTEGRATION

43-5 Divide the month into n equal intervals of length At by the points t;, i =1,... ,n.
Over the time interval [t;.t; + At], the number of units produced is about (10 + ¢;) At.
The cost of holding these in inventory until the end of the month is c(30 t‘)(10+t.) At.
Addmg and passing to the limit,

total cost = _lim ; (30 — £;)(10 + ;) At |

30 : ts 30
/ c(30 —t)(10+t)dt = ¢ [300t +10t% - '?T] = 9000c.

0 ' ) 0.






Unit 5. Integration techniques

5A. Inverse trigonometric functions; Hyperbolic functions

5A-1 a.)"tazn"1 V3= g— b) sin‘l(g) = %

c) tanf = 5 implies sinf = 5/+/26, cosf = 1/1/26, cotd = 1/5, csc§ = /26/5,
secf = /26 (from triangle) .

0~ cos(™) = sin=1(V3) = T “Lgan(Ty = T
d) sin cos(6) =sin™"( 5 )= 3 e) tan t3»11(3)— 3
2m ' -7 - ‘ -r
-1 —) = -1 —_—) = — i -1y =
f) tan™" tan( 3) tan ta,n(~ 3 ) 3 | g) z_)hm_oota.n z=—
, :
* dz _ -1_12 _ -1 i
5A-2 a) /1. P tan™ z|] = tan™' 2

B_do__ P d(y) O R
b)/b z2+b2—/g, (by)? + 2 (puta:-by)-/l. m—z(tan 2—-‘1-)

c)/.l—d—z———sin‘lzﬂ1 =X _T_,
.-1\/1—1;2_ _1—2 2 h

z—-1 1 (z+1)
e 1-y2= 2 = .
$+1,so v =4z/(z+1) ',a.nd Ty WS Hence

2 (z+1)
T&+1)? 2z
1

RGN
b) sech?z = 1/ cosh® z = 4/(e® 4 e~%)2
)y=z+V72+1,dy/dz=1+z/V2 +1.

ilny— dy/de _1+z/vVz2+1 1
dz y z+vVe2+1 2P+l -
d) cosy =z = (—siny)(dy/dz) =1

€) Chain rule:.



S. SOLUTIONS TO 18.01 EXERCISES

f) Chain rule:

4 6ni(a/z) = s - 2= 8

e -G & wa-a

g). y=z/V1-22,dyfde=(1- :;:2)"3/2, 1+y2=1/(1-z2). Thus.

d,  _, _dyfdz _
& VST =

1_2—3/21_2=
-0 = L

Why is this the same as the derivative of sin™* z?
- h) y=+vz -1, dy/dz = ~1/2/x =1, 1 - y? = z. Thus,
isin—l — dy/dz - -1

N e YT

5A-4 a)y = smh z. A tangent line through the origin has the equation y = mz. If it meets
the graphat z = a, then ma = cosh(a) and m = sinh(a). Therefore, asmh(a) = cosh(a) .

b) Take the difference:

F(a) = asinh(a) — cosh(a)
Newton’s method for finding F(a) = 0, is the iteration
Gn41 = Gn — F(an)/F'(an) = an —tanh(an) + 1/an
Wlth a; =1, ap = 1.2384, a3 = 1.2009, a4 = 1.19968. A serviceable a.pprouama,tlon is
am~12

(The slope is m = sinh(a) =~ 1.5.) The functions F' and y are even. By symmetry, there is
another solution —a with slope —sinha.

5A-5 a)
y =sinhz = ¢ _28_2
y' =coshz = e +23—= V t/
‘ y" = sinhz . / ‘ /\
y' is never zero, so no critical points. Inflection point = = 0; slope
of y is 1 there. y is an odd function, like e2/2 for z >> 0. y=sinkx y = sink™x

b)y= sinh™} z <= z =sinhy. Domain is the whole z-axis.
c) Differentiate z = sinh y implicitly with respect to z:

dy
1 =coshy- dz
dy 1 1
dz ~ coshy  \/ginh? y+1
dsinh*z 1 '

dz 2 +1



5. INTEGRATION TECHNIéUES
/ dz _/ dz

Wl AW
dzfa)
d Vifa)?2+1

=sinh™ (z/a) + ¢

5A-6 a) %/:sinede =2/ -
b)y=v1i-22 = y' =-z/Vi-22 => 1+(¥")> =1/(1 - z?). Thus
ds = w(z)dz = dz/v/1 — z2.

Therefore the average is -

/\/_ﬂ/ -1\/1_9:‘5

A 1 .
“The' numerator is | dz = 2. To see that these integrals are the same as the ones in part

-1 .
(a), take z = cosf (as in polar coordinates). Then dz = — sinfdf and the limits of integral
are from 8 = 7 to 6 = 0. Reversing the limits changes the minus back to plus:,

\/_7 / sin §df

/_m——f/o @ =

(The substitution z = sin ¢ works similarly, but the limits of integration are —« /2 and 7/2.) .
c) (z =sint, dz = costdt)

/2
1/ V1= zzdz— cosztdt=/ cos® tdt
—n/2 0
3 /"/’ 1+c0s2
0 2
=7/4

5B. Integration by direct substitution

Do these by guessing and correcting the factor out front. The substltutlon used 1mpl1c1tly
is given alongside the answer.

5B-1 /z\/.’nz —ldz = 5(.7;2 -1 +¢(u=22 -1, du = 2zdz)
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5B-2 / e¥%dr = 8 ®® + ¢ (u = 8z, du = 8dz)

5B-3 /lnxda: '%(lnm)2+c( =Inz, du=dz/z)

5B-4 coszdr 1n(2 + 3sinz)

+c (u=2+3sinz, du = 3 cos zdz)

2+ 3sinz 3
. 3 .
5B-5 / sin? z cos zdz = su;z + ¢ (u = sinz, du = cos zdx)
5B-6 /sin?xdm = — cc’>737a: +c(u="Tz,du= 7dm)
" 6zdx N
5B-7 ﬁ=6\/z2+4+c(u=m + 4, du = 2zdx)
T

5B-8 AUse u = cos(4z), du = —4 sin(4z)dz,

/ tan dzde = /sm (4z)dz _ —~du

cos(4z) 4y
_Inu te= _ In(cos4z)
ST TS 4

| o .

5B-9 /e’(l +e) Ve =Z(1+e*)*Ptcu=1+¢ du= e®dz)

5B-10 /sec Ozdz = %ln(sec(gx) + tan(9z)) + ¢ (v = 9z, du = 9dz)

an 9z

5B-11 / sec’ 9zdz = ke +c¢ (u =9z, du = 9dz)

2

-
2
5B-13 u = 23, du = 3z%dz implies

'/.'z:zda:A_/ du _ta.n‘lu+c :
1+z8  J 3(1+w?) 3 :

5B-12”/:z:e“"'2dz == + ¢ (u = 22, du = 2zdzx)

t —1(,3
- _an3_(x) te
w/3 ) sin /3
5B-14 / sin® z cos zdz = vddu (u = sinz, du = coszdz)
0 sin0 |

vi/2
9.
84

Vv3/2 4
= / uddu = u* /4
0 :

0

e 3/2 ine
5B-15 / M = / u3?du (u =Inz, du = dz/z)
1 I

nl



5. INTEGRATION TECHNIQUES
1 i 2
=/ vy = /51 =z
0 : 0

1 -1 tan~'1 : '
5B-16 / ta“—”’;ﬁ = udu (u = tan~ z, du = dz/(1 + z2)
i l+z tan-1 (1)

w/4 02
= f udu = il
—-r/4

w/4
=0

~nf4
(tanz is odd and hence tan™! z is also odd, so the integral had better be 0)

5C. Trigonometric integrals

501/sm zdz = /ﬂdx=g__'8m42z+c

5C-2 | sin®(z/2)dz = (1 — cos?(z/2)) sin(z/2)dz = /—2(1 - u?)du
(put u = cos(z/2), du = (—1/2)sin(z/2)dz)

2u3 2 2)°
= —2u+ —%— +c¢=—2cos(z/2) + —59-8-(;#-

; = - 2
5C-3 /ssm4xdz=/(l_(f2£)ﬁ)2dz=/1 2 cos 2z + cos Zxdz

4
) .
/cosfz)! =/1+?s4zdz=

Adding together all terms:

+c

z sindz
3T 32

+c

/-sin4 zdz = 3—:- - -l-sin(2:z:) + 1 sin(4z) + ¢

4 32
5C-4 f cos3(3a:)dz / (- sm2(3z))cos(3z / 1-u? du (u. = sin(3z), du =
3cos(3z)da:)
~w v’ sin(3z) sin(3z)®
=379t T3 T Tt

5C-5 /sm zcos? zdz = /(1 - cos? z) cos? gsinzdzr = / (1 —w?)uldy (v = cosz,
du = —sinzdz)

ud WS cosz®  cosz
=——t—tec=-

3 5 3 5

5

+c

5C-6 /sec4 zdz = /(1 + tan?® z) sec? zdz = /(1 +u?)du (u = tan z, du = sec? zdz)

ud tan® z
=u+-3—+c=ta.nx+ 3 +c

sin® 8zdz / (1 —cos 163:)d:c _1_sinléz

2 2
5C-7 / sin (4z)cos (42)dz = f ~8 7 T128
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A slower way is to use

s’ (42) cos*(42) = (1-'028(805)) (1+c;s§sz))

multiply out and use a similar trick to handle cos?(8z).
5C-8

. . )
[ tan?(az) cos(az)dz = S:: ((:':)) de

1 - cos?(az)
cos(az)

= / (sec(az) — cos(az))dz

= %ln(sec(am) + tan(az)) — %sin(az) +e

5C-9

-/sinazsec“zdar::/l—-—co%zsinzdz

cos?

=/—1—2u2du (u = cos z, du = ~ sin zdx)
u
=u+%+c=qosz+secz+c
5C-10 |
/(tanz+cotz)2dm=/tan2x+2+ootzzdz=/sec2z+ csc? zdz

- =tanz —-cotz+¢
5C-11 / sin z cos(2z)dz

= /sinz(2 cos’z ~ 1)dz = /(1 —2u?)du (u = cosz, du — sin zdz)

;u—§u3+c=cosz—§co$3$+c

k3

" 2 -2 '
5C-12 / sin z cos(2z)dz = cos — 3 cosz| = 3 (See 27.)
0 0
5C-13 ds = +/1+ (y")2dz = V1 + cot? zdz = csczdz.
T pm/2 ®/2 - ’
arclength = csczdz = —In(cscz +cotz)| = In(l +v?2)
/4 . n/4

/e

5C-14 /'/a wsin?(az)ds = 1r/ (1/2)(1 — cos(2az))dz = 7% /2a
: 0 ]



5. INTEGRATION TECHNIQUES

5D. Integration by inverse substitution
5D-1 Put z =asinf, dz = acosfdp:

dz 1
/m /seczedé-——ta.n0+c—

5D-2 Put z =asind, dx = a cosfdf:

z
———tc
a2va? —z3

-as/s'insﬂda=a3/(1—cos20)sin0d9
= a®(—cosd + (1/3) cos® 6) + ¢

-a®va? - 2% + (a® - 2?)%% /3 + ¢

5D-3 By direct substitution (u = 4 + 22),

k=

[ o = )+ ) e

Put z = 2tan6, dz = 2sec? 0df;
_1

| 4+ . /do 6/2+c
In all, '
(z+1)dz
4443

5D-4 Put z = asinhy, dz = acoshydy. Smce 1+ sinh? y = cosh®y,

/ V@1 ddz = / cosh? ydy = & / (cosh(2y) — 1)dy

= (1/2)In(4 + 2*) + (1/2) tan" (2/2) + ¢

= (a?/4) sinh(2y) — a®y/2 + ¢ = (a?/2) sinhy coshy — a®y/2+ ¢

. =zva?+22/2 —a®sinh ™ (z/a) + ¢
5D-5 Put z = asind, dz = acosfdl:

/\/F—de /t’ode

/(cscza 1)d8 = —In(csc8 + cot) — B + ¢

= —In(a/z + Va2 — 22/z) - sin"}(z/a) + ¢
5D-6 Put z = dsinhy, dz = acoshydy. .

/ \/a2+z3dz—a/smh2ycosh2ydy

= 72 [ ity = o/ [ coshla) -
= (a*/16) sinh(4y) — a*y/4 + ¢
- = (a*/8)sinh(2y) cosh(2y) — a*y/4+c
= (a*/4) sinhy coshy(cosh” y + sinh® y) — a®y/d+¢c -
= (1/4)zV/a? + 22(22? + 6®) - (a*/4) sinh~}(z/a) + ¢
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5D-7 Put z = asecf, dz = asecftan 0df:

/ Vi® —dPdz _ / tan? 98
z2 ) sec
20 —
e =/§is%€§&d2=/(sec0—cosa)da

=In(secd + tanh) —sinf + c.

=1In(z/a + /22 —a?/a) — /2% - a’/a:'+ ¢

=In(z + V22 —a?) - V22 —a%/z+c, (¢; =c—Ina)

5D-8 Short way: u = 2 — 9, du = 2zdz,
/ 2v/2? — 9dz = (1/3)(z® ~ 9)*/3 +¢ direct substitution
Long way (method of this section): Put z = 3sec8, dz = 3sec tan 6d6.

/n:\/:a:2 - 9dz = 27/sec’(91;a.n2 0do

= 27ftan29d(f.ane) =9tan® 0+ ¢
= (1/3)(z? - 9)*/? + ¢

- (tan@ = vzZ —9/3). The trig substitution method does not lead to a dead end, but it’s
not always fastest. . , :

5D-9 y' = 1/z, ds = \/1+ 1/22dz, 80
. b |
arclength =/ V1+1/z%dz
1 .

Put z = tan#8, dz = sec? §df,

/Vm§+1d$=/secesec20d9
z tané
=/Sec9(1+tan’8)de
tand
=/(csc0+sec0ta.n0)d9
= —In(csc + cot §) + secl + ¢

=-In(Vz3 +1/z+1/z)+ V22 + 1 +¢

=-In(vV22+1+1)+Inz+V22+1+¢

udeﬁgth =—1n(\/59+1+1)+1nb+ Vb2 +14+In(vV2+1) - V2
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Completing the square

dzr dzr
°b-10 / @+ 4z + 1372 / (@ + 2y 3oy (©+2=3tanb, do = sec 0d5)

(z+2)

1 1
e .= = [ cosfdf = —sinf+c= ———e=ta— +
9/ 9 W +dz+13

5D-11 ) :
/m\/ -8+ 6z — z2dz = /z\/l - (.i -3)%dz (z-3=sinf, dv = cosGd_H)
= / (sin 8 + 3) cos? 8df

= (~1/3)cos® 8 + (3/25 / (cos 20 + 1)df
=—(1/3)cos® 8 + (3/4) sin 26 + (3/2)8 + c
—(1/3) cos® 8 + (3/2) sinf cosf + (3/2)0 + ¢
= —(1/8)(—8 + 6z — z2)%/2 .
+(3/2)(z — 3)V -8+ 6z — 22+ (3/2)sin"}(z - 3) +¢

5D-12 | |
' /mdm=/mdz (z — 3 =sinf, dz = cosfdf)
= / cos? 9 |
1/(cos20+1)d0 '

2
= —sin20+g+c
T 4 2

1
1, 8
_§s1n0c039+-2-+c
_ (w—3)\/—2+6m—z2 + sin'l(z:z:—3) +e

o dz dz
5D-18 [ ——— = [ ——=—— . Put = — 1 =sind, dz = cos0d.
] /m / ]_—(3;—]_)2 u 12‘ sin COSs

=/do=o+c=sm-1(z—1)+c

zdz zdx -
5D-14 = Pubz+2 = 3tand. d = 3sec? 8.
./m / Groire oot and, dz = 3sec

= /(3ta.n€— 2) sec8df = 3secd — 2In(secd + tanf) +c

=2 + 4z + 13 - 2In(v/z? +4z+13/3+ (2 +2)/3) + ¢
=vzi+4r +13-2In(vV22+4x+ 13+ (z+2))+ 1 (& =c—In3)
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5D-15/ 4z 4x+17da:=/ 2z — 1)2 + 4%dz

22 —1 2z -1 ]
(put 2z — 1 = 4tan, dz = 2sec? 6df as in Problem 9)

: secfd ,
f2/tanesec 6dé

g / sec6(1 + tan? ) P
tand
—2 /(csc9 + sectan 6)do
= —2In(csc§ + cot ) + 2sech + c
= —2In(v/42? — 4z +17/(2z — 1) + 4/(2z — 1)) + V4a? — 4z + 17/2 + ¢
= —2In(v/42% — 4z + 17+ 4) + 2In(2z ~ 1) + V422 — 4z + 17/2 + ¢

5E. Integration by partial fractions

1 _ 15 -1
5E-1 Z-9@+d) -2 + 713 (cover up)
/(T,,-T;)i(nﬁ?) = (1/5) 111(-’87—_2) —(1/5)In(z +3) +¢
z _2/5 . 3/5
5E-2 - D@id -2 + z13 (covgr up)

zdz
/m = (2/5)In(z — 2) + (3/5) In(z 4 3) + ¢

z 110, 1/2  —3/5

SE-3 (z —2)(z +2)(z +3) “z-27z+27z13

{cover up)

| mtTs ~ V10hE -2+ (1/D)hE+2) - 3/5)h( +3)

322 + 4z~ 1 -2
z? + 4z — 11 2 -2 .3 - (coverup)

SE-4 @E-1)z-2) -1 z+1 z-

=2In(z—1)—2In(z+1) +A31n(z -N+e

/ 2dz +—2da:+ 3dz
z—1 z+1 z-2
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3z+2 2 B 1 '
5E-5 2@t 1) ;+$+1+(m+1)2 (coverup); to get B, put say z = 1:
5 B 1
-=24—=+4- B=-2
1i- Tzt =

f 3z+2 , , " 1

2z -9 Az + B C
5 =
E-6 (x2+9)(z+2) 2249 +m+2
By cover-up, C = —1. To get B and A4,

9 B 1
z=0 = 9—'2-—‘-9-—§=>B—-0
-7 A 1
e=l= g3~ 103 — 4=
2x—9 1
/(z2+9)(m+2)da: E]n(a:2+9)-—ln(:z+2)+c

SE-7 Instead of thinking of (4) as arising from (1) by multiplication by  — 1, think of it
as arising from :
z—-7=A(z+2)+B(z—-1) _
by division by z + 2; since this new eqﬁation is valid for all z, the line (4) will be valid for
T # —2, in particular it will be valid forz =1 .

6E-8 Long division:

2) zzmi1=1+z21-—1
b) mz'i1=m+a:2?—_1_
)-3--"51I z/3+1/9+ 1/91
EE- 21 %* 3:/—31
ca H—A4z4+A3m3+A2x2+A1z+Ao+BS$3+B‘2$2+BIT'+B°

¢) (z+2)2%(z-2)2 : (z+2)%(z - 2)?
B5E-9 a) Cover-up gives

1 1L _ 12 -2
22-1" (z-1)(x+1) z-1 z+1
From 8a, '2 . .
\ z /2 -1/2
e R A T
#o1 taoitayr =

/% =z+(1/2)In(z - 1) - (1/2)In(z + 1) +¢
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b) Cover-up gives

X z _ 12 1/2
' z2-1 (z-1)(z+1) z-1 z+1
From 8b, . /
S T sy -1/2. . 172 .
Py e e
-Tsdz 2
=z*/24+(1/2)In(z- 1)+ (1/2)In(z + 1) + ¢
21
c) From 8c, ) '
/ sodn = /64 2/9+ (1/27) ln(3z ~ 1) + ¢
d) From &d,

2
/ X dn =23+ (7/9)InEz — 1)
e) Cover-up says that the proper ratlona.l function will be written as

a1 az b b2
z—2 1 (z—2)2+:c+2+ (z +2)2

where the coefficients a; and by can be evaluted from the B’s using cover-up and the coef-

ficients a1 and b; can then be evaluated using £ = 0 and £ = 1, say. Therefore, the integral
has the form '

Agz®[5+ Asz®/4+ Agz®/3 + Aiz?/2 + Aoz +¢
ag by '
+ a‘l-ln(m - 2) - 'z_'__2 + bl ln(z + 2) -— m

5E-10 a) By cover-up,

1 1 e SRR V. SO
-z z(z-1)(z+1) =z z-1 z+1

dx 1 1 »
/;3-_—1.=—1nx+§ln(a:—1)+§1n(z+1)+c

(.'c + 1) ’3 4,
COVer- . fo:
NCES ) ISP
@)= 3) =—-3In(z - 2) +4In(z - 3) +¢ )
(@+z+1) . —Tz+1 i
) 22 4 8z =1+ z2 48z By cover-up,

—Tz+1  —Tz+1 1/ ~57/8
72 +8z  z(z+8) z+8
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(z?+z+ 1)
P +(1/8)Inz — (57/8)In(z + 8) + ¢
d) Seeing double? It must be late.
e) .1 = 1 = é o+ .B; 4+ _...C_’__
3+22 zz+1) =z 22 z+1
Use the cover-up method to get B =1 and C =1. For A4,
1

=1 = %=A+1+§ = A=-—

In all, 4 .
dz 1 1 1 1
/m—/(—;+x—2+x—ﬁ)dz——1na:+1n(.7:+1)—;+c
) 2+1 2?41 _A, B  _C
B+202 4z z(x+1)? z  z+l (z+1)2.
By cover-up, A =1 and C = —-2. For B,

2 B
5.0—1 = Z-——1+5

z?+1 1 2 2
—_—dr = - d.
/z3+2x2+w /(z @ +1)2) e=let
g) Multiply out denominator: (z+1)%(x—1) = z34-z2 —z—1. Divide into numerator:

z? 1+ —z?+z+1
B4+ar2—z-1" B 4z2-z-1

[

=> B=0 and

Write the proper rational function as

-?4+z+1 A LB . C
(z+1)2(z—-1) z+4+1 (z+1)2 =z-1

By cover-up, B =1/2 and C = 1/4. For A,

) 1 1 5 .
= -1 = - =_2
z=0 = -1 A+2 4;>A 1 and

| 2 ~5/4 12 1/4
| erme=n- (l+z+1+(x+1)2+x—1)”’“
=¢-(5/4)1n(m+1)—EGITI—)+(1/4)1n(z-1)+c
(x + 1)dz 1+2z ‘ 2y — )dy
V] #vara /( o+ 2z +2)dm_$—/_y'~*+_1 (put y =z +1)

‘ =z—In(y?+1)+tan"ly +c
=z—In(z® +2z+2) +tan"Y(z + 1) +¢
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5E-11 Separate:
dy
— =z
y(1-y)

Expand using partial fractions and integrate

_/(i_y_i_l)dy=/dz -

Hence, ’ 7
ny-In(y-1)=z+c
Exponentiate:
v =¥t = Ae® (4 =¢
y—1 e Ae® ( e°)
_ Ae
V=2 1

(If you integrated 1/(1 — y) to get —In(1 — y) then you arrive at

A€
y_Ae’-i-l

This is the same family of answers with A and —A4 traded.)
5E-12 a)1+2%2=1+tan?(8/2) = sec2(0/2). Therefore,

1 1 z?
2 — ‘2 e __%
cos“(6/2) = T2 and sin*(8/2)=1 T2 - 1122
Next, |
1 22 1- 22
= cog? — sin? = - =
cosd = cos*(8/2) — sin*(6/2) 77 132- 112 and
. . o[ 1T [ 2
| sinf = 231n(9/2)vcos(0/2) =2 T2V ITZ — T2
Finally, .
| dz = (1/2) sec®(6/2)d8 = (1/2)(1 + 22)df = df = I%
b)

/" o _ /“"/2 2dz/(1 + 2%)
o l+sind = fano 1+2z/(1+22)

_/°° 2dz _/°° 2dz
Ty 2+1+2z Jy (z+1)?

—9 |*

1+2 =2

0



5. INTEGRATION TECHNIQUES.
c) -

/* g [ 2dz/(1+2%) [P 201+2%)dz
o . (1+sinf)? —/mo (1+22/(1+22))2 " Jo (1+2)*
/ 2(1+ y 1)’)dy

(puty=2+1)

= /-oo (2y . 431 + 4)dy = /w(zy-z - 4y;~3 + 4y"‘)dy
1 vt 1

= -~ + 27 - (4/3)y~°|; =4/3

® 22 X dzdz
¢ 4 ./smado / 1+.z31+z2 /o. 1 +2%)2

1+z3°

5E-13 a) z = tan(0/2) => 1+ cosf = 2/(1 + 2%) and 0 < § < /2 corresponds to
0<z<1.

deé 1 2dz/(1+ 22)
A= / TR

) + cos 0)3 o 8/(1+22)2

= /o (1/4)(1+ 2)de = (/4 + B3], =1/3

b) The curve r = 1/(1 + cosf) is a parabola:
r+rcosf=1= r+z=1= r? —(1 ) = y’=1-2

This is the reglon under y = /1 — 2z in the first quadrant:

= [ A mmds = _(1/3)(1-29;)3“]:/ P13
0 .

5F. Iixtegration by parts. Reduction formulas

5F-1 lsds = [ 1n = g+l gotl. ]
- a.)/ nay / $d( ) x- a+1—/m;
ot Inz z° z“"‘l lnz  gzot!
T a+l _[a+1 T e+l (a+1)2+c(a# -1)

b) /z-l Ingdz = (nz)/2+¢ (u=Inz, du = dz/)

5F-2 a)/xe’dz:/zd(e’)=a:-e’—/e”dz=z-e’—e’+c _

b) /mze”da: = /zzd(e"’) =gz?.€" -/e” - 2zdx
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=zzoe‘°~2/zezdz=z2-e"’—2z-e’+26”+c

c) /m%”d:z::/zsd(e”)=a:3-e”—/e’-3m2dx
=2%-e® -3 [zledz =3 - €° —3::: re”+6z-e” - 6e” +c

d)f " “d.'z:=/ "d(—)-— -z —/—— -nz" ldz

n _
=—-a:”——/:z:" 1e"”d:z:
a a

5F-3
. / sin~!(4z)dz = z - sin~!(dz) — / zd(sin~'(4z)) = z - sin~} (4z) — / \/—-(W

=z- ‘1(4z)+/8\/_ (putu—1—16x du = ~32zdz)
=z -sin"(4z) + —\/E+ c
=.:z:-s1n 1(4:1;)+ 1-16z2+¢

5F-4 4
. /e’” coszdr = /e"’d(sin z) =e"sinz — /e” sinzdz

| =e”sing — /;“d(f cos )
=¢e”sinz + e* cosz — [ e® coszdz

Add / e® coszdz to both sides to get.

2/6“p coszdz = e’ sinz + e®cosz +¢
. Divide by 2 and rebla,ce the arbitrary constant ¢ by ¢/2:
/e" coszdz = (e®sinz + e® cosz)/2 + ¢
5F-5 .
/ cos(lnz)dz =z cos(lnz) — / zd(cos(In a:))
=z -cos(lnz) + /sin(lnz)dm
=z -cos{lnz) + z-sin(lnz) — / zd(sin(ln z))

| =g-cos(lnz) + z-sin(lnz) — /cos(ln z)dz
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Add / cos(In z)dz to both sides to get
2 / cos(ln z)dz = zcos(lnz) + zsin(lnz) + ¢
Divide by 2 and replace the arbitrary constant ¢ by ¢/2:
| / cos(inz)dz = (& cos(lnz) + zsin(lnz))/2 + ¢
5F-6 Putt=e® = dt = e*dr and z = Int. Therefore

/ zte’dr = / (ln t)"dt

Integrate by parts:
/ (nt)ydi=t- (nt)" - / td(lnt)" = t(ln)" —n / (Int)™dt

because d(Int)"® = n(lnt)* "1t~ 1dt.






Unit 6. Additional Topics

6A. Indeterminate forms; L’Hospital’s rule

6A-1 a) lim SIN3T . i 300837 _ 4
T T z—0 1 .
b) li cos(a:/2) ( 1/2) sm(:c/2) . (-—1/4) cos(z/2) - -»1/8
T z—ro z—-rO 2
¢) lim 1-’3 tim 22 =g
z—+00 I z—»oo 1
2 _ 3y —
d) lim = =32=% _ _4  Can't use L’Hospital’s rule.
z-—vD z+1 o ]
. tan~'z . 1/(1+2%)
°) alzl-f»rclJ 5¢ . :}:1—% 5 =1/5
. T—sing . l-cosz . sing COST _
D= = —am ~ImG ~Im— =16
_ -1 . az*!
) I o5y = I ey = o
. tan(z) _tanl , , 1y
h) ;1_)1 m 3 Can’t use L’Hospital’s rule.
i) lim Insin(z/2) = lim (1/2) cot(z/2) -0
=T T —T -7 1
: _ 2
) lim Insin(z/2) = lim (1/2) cot(z/2) = lim (—1/4) csc?(z/2) —_1/8

Tz (a: )% a=r 2z —) z—7 2

6A-2 a) 2° = €*% o ¥ =1 as £ — 0% because

hm zlnz = lim 1—I—l—"{0-= lim 1/_:z:= lim —z=0
20+ 1/.’17 z—0+ -1/3’:2 z—0+

b) z'/® = 0 as £ — 0 because z — 0 and 1/z — oo.
Slow way using logs:
g% = ¢"5* 5 e=® =0 as z = 0F because
Inz -o0

— = = —00. . ) 2ol .
im — o 00. (Can’t use L’Hospital’s rule.)

c) Can’t use L’Hospital’s rule. Here are two ways:
(1/z)ln:z Y (oo)-oo =0 or (l/m)lnz = elnzln(l/z) = e-—(lnav:)2 Se~® =0

d) (cosz)/® =e"%** - € =1 as £ — 0" because

. Incosz . —tanz
lim = lim =0
z—0+t T z—+0+ 1
lna
e) s/ = ¢'s" = €% = 1 as  — oo because

lim 22 = lm—§—=o

Treo —+00
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n l’
f)l+z)/e= e 0 =1as50F because

2 : 2
lim In(1+2%) _ im 2.'1:/(1+:1:)=0

z—0+ z z—0+ 1

g) (1+3z)10/7 = e,y 90 55 5 O because .

i 100 +32) _ . 10-3/(1+33) _ .0
20+ z a0+ 1
h) lim ztcosz _ (?) lim 1-sinz But the second limit does not exist, so L’Hospital’s
T =00

rule is inconclusive. But the first limit does exist after all:

. T+cosz ] cosz
lim ZF%% _ him 14988 2
Z—r00 T 00 T
because | 1
cosz| .
-'—I- <==20 asz—roo
T z

Commentary: L'Hospital’s rule does a poor job with oscilla;tory functions.
i) Fast way: Substitute » = 1/z. '

lim zsinl=1imﬂ=lim—coﬁ=1
Z—300, 2 u=0 u u=0 1
Slower way:
, . 2
lim zein~ = im S22 _ py, CUY)esW/z) oy
Z—r00 z soo 1/z Z—+00 —1/2:2
1/ 2 n(a/ sina . .
j) (_x_) T = ™™, o} because
sinz
i 2(2/8i02) :““’) =1/6
z—0t z

This is a difficult limit. Although it can be done by L’Hospital’s rule the easiest way to
work it out is with quadratic (and even cubicl) approximations:

T % 1
sinz z-23/6 1-z2/6

~1+2%/6

Hence, :

In(z/sinz) ~ In(1 + 7%/6) ~ z2/6

Therefore, 1
a -Fln(a:/sinz)—)l/G asz—+0

k) Obvious cases: If the exponents are positive (or one 0 and the other positive) then

the limit is infinite. If the exponents are both negative (or one'0 and the other negative)
then the limit is 0. Also if both exponents are 0 the limit is 1. (continued —)
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The remaining cases are the ones where a and b have opposite sign. In both cases a wins.
In other words, ¢ < 0 implies the limit is 0 and @ > 0 implies the limit is c0. To show this
requires only one use of L’Hospital’s rule. For o > 0,

Fraad . aza-—l )
—_—= —— = lim az* =
s lng 200 1fz Z—+00

Kfa>0and b<0,let c=-b>0. Then

- gole \ ¢ .
z“(ln:c)"=(E—;) ~+00 a8Z— 00

using @ = a/c > 0. The case a < 0 and b > 0 is the reciprocal so it tends to 0.
6A-3 Using L'Hospital’s rule and a%a:“"’l =z Ing,

zgotl 1 L ozetlo . z*llng
m ( =

a]—lr-l a+1l a+1 T a1 a+1 a-»n—lx

-—)=

0A-4 z%tlng gotl 1

a = -
/1_“‘"‘”‘ arl  @+ip T arip

Therefore, using L'Hospital’s rule and %m‘“ =z Ing,

e . (a+ 1)zt ing — 20t 41
. a — .
al—l»rgl 1 #*Intdt = al-lﬂl (a+1)?
_ (a+ 1)zo*(In z)?
=% 2(a+1)

= (az/2= [ “lnsd

6A-5 You can’t use L’Hospital’s rule for hm bz 2: because the nominator and denom-

inator are not going to zero as z — 0. The ﬁrst equality is true, but the second one is
false.

8A-6 a)y = ze~? is defined on —o0 < z < .
Y =(0~-2z)e®andy" = (-2+2z)e”"®

Therefore, ' >0forz<landy <Oforz>1;4” >0forz>2and g < 0forz < 2.

Endpoint values: y - —oo as £ — —o0, because e~ — 00 as £ —+ —00. By L’Hospital’s
rule,

lim y= lim = = lim = =

T—>00 z—00 e¥ z—r00 T
Critical value: y(1) = 1/e.
Graph: (—o0,—00) 7 (1,1/€) \ (o0,0).
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Concave up on: 2 < z < 00, concave down on: —oo < z < 2. Cy=zxe*X

b) ¥y = zlnz is defined on 0 < z < oo.
yY=lhz+l, y'=1/z

Therefore, ¥’ > 0 for z > 1/e and ¥ <0for:c<1/e,y”>0forallz>0

Endpoint values: As z — o0, both = and ln:r: tend to infinity, so y — c0. By L’Hosplta.l’
rule,

hmxlnz—hmy—hml/z =0

T z—0+ 1 ife

1
1fe
Critical value: y(1/e) = —1/e. _— y=xinx

Graph: (0,0) \, (1/e,—1/e) /" (o0, o0), crossing zero at = = e. Concave up for all z > 0.

c) y =z/Inz is defined on 0 < z < oo, except for z =1.
' ; _lnz~1
"~ (nz)?
' Thus,y <0for0<z<landforl<z<eandy >0forz>e¢

Endpoint values y — 0 as £ — 0% because z — 0 and 1/Inz — 0. L’Hépital’s rule
implies

lim = = lim -
z-—ﬂ»lnx z—oo 1/z

=00
Singular values: y(1*) = o0 and y(17) = —oo.

Critical value: y(e) =e.

Graph: (030) \a (11 _°°) T (1100) \u (ev e) / (°°1 °°)'

To determine where it is convex and concave:
2-Inz
I S e—————
y'= z(lnz)? -
We have y”" = 0 when Inz = 2, i.e., when.z = 2. From this,
y"<0for0<z<landforz>elandy”’>0forl<z <ed.
Concave (down) on: 0<zr<landz>e?.

Convex (concave up)on: 1<z < e? . ) \1 e

Inflection point: (¢?,e?/2) (too far to the right to show on the

y =7
graph) Inx
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6B. Improper integrals

1 __i_:c_ ——forz>0
v‘:z;3 +5 Va3
—575 Which converges, by INT (4
e s by INT (4
Answer: converges
g?ds 1
6B-2 — — if £ >> 1, so we guess divergence.
T +2 z
z’ds 3 1/3
> —1f2:v >z +2ora: >2o0rz>2
z3 42 _

oo zzdz 1 I dz . .
/2 Fr2 5/2 5+ Which diverges by INT (4).
2

. 224y ® z2dg
/2 P diverges, by comp.test, and so does /0 p

by INT (3).

. .
6B-3 / ;E% integrand blows up at z = 0
0

11
B +2° (z+1)  z?

So we guess divergence.

when z ~ 0

1
P g %iif2x2>z3+m2 orz? >z trueif 0 <z < 1.
L
;%% / do which diverges by INT (6)
0

v odz |
6B-4 ————=Dblowsupatz=1.
/o V1-28 pat
1 1 1
== ~ forz~1
VI—2® A -z)(1+z+22) V3/1-z
So we guess convergence.
1
Ve \/_

1 1
. converges by INT (6), so ———— also converges by comp.test.
iy ges by A( )» 80 iy ges by ! p

fr? <z OKif0<z <1’

: ® e~%dy '
6B-5 / p is improper at both ends.
0

At the oo end it converges, since
e *dr

z

oo .
<e ®ifz>1and / - e~ ®converges.
0
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At the 0 end: trouble! £ z‘i”

1
~ = So we guess divergence. .

e %dz

e %dr 1 T
>—onl<z<l =
) 0

>l/°°§£-diver ent
z 4z 4/ = gent.

® e~ *dz :
= / T diverges —one end is infinite (the 0 end!)
0

®© Inzde

" 6B-6
B s

" Herg Inz grows so slowly, that we suspect éonvetgence.

Ea_: < Z is not convergent.
m’ z? &

Howabout 1 —=1ifz>>1 Thlssaysl'n—<11fm>>1andth1s1strue,smce
<= B vz
. lnz . 1/z . e
Nyl Vo A i, 7 =0

“ In zdx

z :
= — < 373 converges, by INT (4).

1
o [
These have been written out in detail, to review the rea.somng Your own solutions don’t
have to be so detailed.

convergee by comp.test.

_ - _
6B-7 a) / e %%dx = —(1/8)e‘“|:°=1/8 convergent

- -—n+1
b) / w= 5|

=— converget#: (n> 1)

c) divergent

? gdz 2 :
J T = ~=F)P| =2 convergent
) (4] 4-.—$ ( m) |° . nver

2
|o =2v2 convergent

2
€) / \/fx_— =
f) / z(ln (e =~ —(nz)"1|> =1 convergent

103
g)/ gy (3/2):::2/3|0=-2- convergent

. h) divergent (at z = 0)
i) divergent (at = = 0)

j) Convergent because Inz tends to —oo more slowly than any power as z — O%.
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Iﬁtegrate by parts .
i / lnzdz:zln:c—a:|(1,=-l
0

(Need L’Hospital’s rule to check that zlnz — 0 as z — 0%.)
k) Convergent because |e~2* cosz| < e~?%. Evaluate by integrating by parts twice (as
in E30/4). '

o ' 1 2 o
/ e 2 coszds = —¢ **sinz — —e P cosz| =2/5
A who =y 5 .

. ® dg oo
1) divergent (/e e Inlnz|” = o0)

m) /o " (z;fﬁ = (-1/2)z+2"%C =1/8 convergent
n) divergent (at z = 2) -

o) divergent (at z = 0)

p) divergent (at z = 7/2)

6B.8 a) lim % edt _ lm & = lim L = 0 (L'Hospital and FT2
- 6B-8 a) lim 20— = lim o7 = lim o =0 (L'Hospital and FT2)
Tedt e’ 1 1

b) s, e’ [z = 2z2e%” — e2* (2 =2 2-(1/=2) -2

c) lim e¥'dt = A a finite number > 0 because the integral is convergent. But

Z—00 0

€ — o0, 80 the whole limit tends to infinity.

= i f: z_:l/zdm'_ : "—1/\/5 _ 15 — y : p .
d) = al_l_'rg_'_ YA al_%lf Ci/2)a= — al_lf& 2a = 0 (L'Hospital and FT2)

= lim Lzl _ a3

)= T S Cijaeren = 2 (LHospitel and FIZ)
( 9 lim (b—-1r/2)/b__dz_____- h %
. b= (x/2)* o 1—sinz  bsa(x/2)+ 1/(b—m/2)
| : 1)l -sinb)
= oy 1= a/27
(b—m/2)?
" ba(x/2)+ sinb—1
Ab—m/2).

" b=(n/2)* cOSD

= lim - =
b—(x/2)+ —Sinb
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GC. Infinite Series

1 1 ' 1 1 1 5
6C-1 2) 1 =1 =3
a) +5+25+ trtg =1T71

1 1 1 . 6B

b)8+2+-2-+- 8(1+ +42+---)=8(1—_—;)=-—3—

11 1 . 1 5
c)4+5+ Z(1+ +()+) 4(1_%)_2
d) 0.4444 .-+ = 0.4(1 + 0.1+ 0.12 + 0.13 + +)=04(7—57) = 0455 )=g-
e)0.0602602602 +++=0.0602(1 + 0.001 + 0.000001 +---) = 0.060'2(1—_;—0(-ﬁ)
_ 0.0602 _ 301
0.999 ~ 4995
6C-2 a)1+1/2+1/3+1/4+---
1, 1 31
clearly, we have1>/ —dx,—>/ ~dz,.
1 2 2 2 T
2 3 44 5
sowewi]lhave1+l+l+l+--->/ -l-dz+/ —1-d:c+f lda:+/ lda:+-~-=
: 2 3 4 1 X 2. T 3 T 4 T

o0
/ ;da:, which is divergent, so the infinite series is divergent.
1

)Z

n—l

' 1 n+1d.’27
l:p<1. — —
Case p_lnp>/1;

~——>Z——>/1

(o]
Z: , which is divergent, so the infinite series is divergent.

n=1
Case2: p>1
1 " dx N | Cdr .. P .
— < [ —= Z — <1+ f —, which is convergent. So the infinite series is
ne n—1 TP~ one 1 P
convergent.

€)1/2+1/44+1/6+1/8+4---=(1/2)1+1/2+1/3+1/4+ +++). So from a), the
series is divergent. .

d)1+1/3+1/64+1/7+ .-
1>1/2,1/3>1/4,1/5>1/6,1/7> 1/8,--

So1+1/3+1/5+1/7+--->1/241/4+ 1/6+1/8+ -which is divergent from c) Thus
the series diverges.
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peddeb o eg-hod-ho-
( o =Tty tegt
- <ptgtmto

which is convergent by b). So the infinite series is convergent.

f) n/nl = 1/(n-1)! < 1/(n —1)(n - 2) ~ 1/n% for n >> 1. So convergent by
comparison with b). ' -

g) Geometric series with ratio (V5 — 1)/2 < 1, so the series is convergent.
'h) Geometric series with ratio (v/5 + 1)(2v/5) < 1, so the series is convergent.
i) Larger than ¥ 1/n for n > 3,' so divergent by part b).

j) Inn grows more slowly than any power. For instance,

Inn <n'/? = l::___;z <n~3? forn>>1

The series Y n~3/2 converges by part b), so this series also converges.
:4_t25 ~ :—3, and Y- n~3 converges by part b).

) BADE 27 L Therefore this sries diverge ison wi
) W +5)B B g ore this series diverges by comparison with ) 1/n.

m) Quadratic approximation implies cos(1/n) ~ 1 —1/2n? and hence

k) Converges because

In(cos %) ~-1/2n asn— o0

* Hence the series converges by comparison with 3 1/n? from part b).

n) e~" beats n? by a large margin. For example, L’Hospital’s rule implies
e 30 asn— o0

"Therefore for large i, n2e~™ = n?e—"/2¢="/? < &=™/? and Y. e/ is a convergent geo-
metric series. Therefore the original series converges by comparison.
o) Just as in part (n), e~V™ beats n? by a large margin. L’Hospital’s rule implies

e™mt 50 asm— o0

Put m = +/n to get

e V202 40 asn— oo
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Therefore for large n, n2e~V™ = n2e~V/2e=V#/2 < ¢=VA/2 Moreover, we also have
eV <1/n?  nlarge

Thus the sum is dominated by Z e~Vhi2 ¢ Z 1/n? and is convergent by comparison with
partb). '

"8C-3 a)
"ds 1 1 1, 1
lnn—]l ;"< Upper sum —1+'2-+"'-n—_-_—1<1+'2'+---;
In other words, . .
Ihn<ld 4z
2 n
On the other hand,
Inn=f — > Lowersum == +---=
‘ : 1 Z ‘ 2 n
Adding 1 to both sides, . .
l+lnn>14+z+4-0 =
2 n

b) Need at least Inn = 999
Time > 10~2%%° a 7 x 10*%® seconds

This is far, far longer than the estimated time from the “big bang.”



Unit 7. Infinite Series

7A: Basic Definitions
7A-1
. 21 &1\ 1 . 4.
a) Sum the geometric series: 2-4? = Z(Z) = -1—__—(1—/-25 = §.
0 1] .

b)1-1+4+1-1+4...4(=1)"+... diverges, since the partial sums s, are successively
1,0,1,0,..., and therefore do not approach a limit.

c) Diverges, since the n-th term 2= does not tend to 0 (using the n-th term test for
divergence).

o
d) The given series =In2+in2+im2+... = M2(1+4+3+...); but ) 1/n

diverges; therefore the given series diverges.

gn—1 X gn-1 1 '1 ]
e) Z 3n 323“ T geometncsenesmthSum —( ) 3 .3 = 1.

: 1-(2/3)
f) series = Z (:—1- =1t .3 (sum of a geometric seriés)
=\ 3 1-(-1/3) 4
TA-2 2i111... = 2+.014.001+... = 2401 (1+ 4+ gh +.. _.2+.01((1—_—1171—0) =18,

7A-8 Geometric series; converges if |z/2| < 1, ie., if |z] < 2, or equivaleﬁtly, —2<z<2
7A-4
a) Partial sum: s,,

Gre30 Gore) - ()
1
m+1

1 1/ -1/2 =1 /&1 1
b) st~ n gz therefore Z n(n +2) (; n n+2)
The m-~th partial sum of the series is

Loolf1 11111171 +_1__-_L _lf 11 1
m=3\17372727375747 % m m+2/) " 2
since all other terms cancel. .

=1- Alasm—koé.Thereférethesumisl.

Therefore 8y, — & asm—)oo,sothesumis3/4 .

7A-5 The distance the ball travels is  ho+ -h+ Eh+ : (gh) g @h) +.

the successive terms give the first down, ‘the ﬁrst up, the second down, and so-on. Add h
to the series to ma.ke the terms umform, you get a geometric series to sum:

2(h +2h/3+ (2/30h+...) = 2h(1 +2/3+ (2/30 +...) = 2h( I 12 /3) = 6h.
- Subtracting the h that we added on gwes the total dlsta.nce traveled = 5h.



8. SOLUTIONS TO 18.01 EXERCISES

7B: Convergence Tests

7B-1
® = 1 2 g .
_a) _/0. e Sy '2'1-11( +4)] = oo; divergent ..
o0 1 . B . o B ﬂ_
b) /o e tan™" z . 5 convergent

o0

c) /Q \/-—fl‘—Lﬁ = 2(:1:+1)1"2]0 = oo; divergent
o0 o0

d) / Doz = —l-(lnz)z] = o0; divergent
1z 2 1

)/w 1 _ (n2)'® - if ps#1: divergent if p <1, convergentifp > 1
€ 2 (IDZ)p‘E - 1_p 2’ P . g : p !. g b

00 o0 ’ . '
Ifp=1, / 1—?— = ln(lna:)] = oo. Thus series converges if p > 1, diverges if p < 1.
2
1—.
f)/ z ]1 if p # 1; diverges if p < 1, converges if p > 1.

w - B
Ip=1, / - = lnm] = o0; thus series converges if p > 1, diverges if p < 1.
1 1 :

n? 1

W - Tq3n  1®PO®

o0
a) Convergent; compare with Z ,—:—2- :
: 1

- b) Divergént; compare with Z',II n+nﬁ = 1+:/ﬁ — l,asn—o o
1 n 1
c) Divergent; compare with Z—: = ———— — l,287 2.0
n’ vnlin V1+1/n
L & 1 sinh
d) Convergent; compare with 21: nli’ngo n?sin ('1?) = hh_:ﬂ) - = 1
. . 1 .n3/2\/i n2 1
'e) Convergent; compare with ;nﬁ/? e s ulihlie S S pr y — las
n — 00
. . Inn _ 1 1
f) Divergent, by comparison test : - > ;; Z; diverges
: 1
2,2 4 .
g) Convergent; compare with E;li' :4 _nl = n:_ T~ 1l asn—o0
. . 1 4n-nd 1
h) Divergent; compare with Et—i'_n- : yrrure Rl 7 -1
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: 0 [+ <]
7B-3 By the mean-value theorem, sinz < z, if z > 0; therefore Z sina, < Z Gn; S0 the
) )

series converges by the comparison test.

7B-4
Y . n+l 2* - fn+1\ 1 1 . »
. a) By ratio test, oy T ( p ) 3 - 5 as n — oo; convergent-.
b B ntl pl 2 0
) By ratio test, ( +1)| 7 = nrl =g a.sn—}oo, convergent,
. antl 1-3.--+-2n -1 2
c) By ratio test, T3 1 o = T - 0 as n — 0o;
convergent »
. (n+1)12 (@2n)! (n+1)? )
d) By ratio test, Gnt 2)‘ 2P = Grhtd@nt ) — 7 8N convergent
e) Ratio test fails: 1. —-\/E —+ 1 asn — oo; butl E i— diverges; therefore the
vn+l 1 . NGO
series is not absolutely convergent.

(n+1)! n® n" 1 1

f) By ratio test, WF = T 1)n = A+ 1/n)p - p < 1 agn — oo;

convergent
) Ratio test fails: L1 _. ﬁ — 1 asn — oo; but Z L converges; therefore the
& ! . n+1)2 1 " ! nz CORVErEes; .
series is absolutely convergent : ‘
h) Ratio test fails: Y \/7_ diverges, by limit comparison with E ; therefore the

- series is not absolutely convergent

i) Ratio test fails: Z dmerges by the n-th term test; therefore the series is not
absolutely convergent

7B-5

-¢) conditionally convergent: terms alternate in sign, -1—}_1-_; — 0, decreasing;

h) conditionally convergent: terms alternate in sign,

(=1)"n

1 .
W —+ 0, decreasmg;

i) divergent, by the n-th term test: nlglgo — #0
7B-6 In all of these, we are using the ratio test.
' |z|n.+1 . .
a) ] |-’5|" = |z|- (n+1) — |z| as n — oo; converges for |z| <1; R=1
ol gntl  p2 n \2 o
. = 9z [ —— .
b) m+ T T || (n+ 1) — 2|z| asn — oo;

converges for 2|z| < 1or |z] < 1/2; R=1/2
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(n + 1)l|z|7+?

c) Az = (n+1)|z]| & o0 asn . 00; converges only for |z| =0; R=0
Mi — m — |_a£ as n— oo; conve. es for Jaf* <1
3 jgn T 3 3  Converg 3 ~°
that is, for |z| < v3; R=v3 -
o '|m|2"+3' '2ﬂ\/ﬁ _ lxlz n Imlz .-“ ST T
(:.‘) ém\/_-}-—_—]_ . W = -—2— . m - -2— as.n — 00; converges fOI
2 .
%<1or|z| <V2, R=V2
(2n+2)lz[?r+2 a2 . @n+2)(en+1) )
f . = S LA i .
) Twrnr @ - T e el ssno e

converges for 4|z|> < 1, or |z] < 1/2; R=1/2

|z[**!  Inn Inn ] o
g) R+ D) o - || ) = |z| asn = oo; convergesfgr lz| < 1; -R—l

s - . Ing /z
(I?y L’Hospital’s rule, xl_x{rgo BEiD) - zll)n;‘) Tt 1.)
22“+2|a:|"+1 nl 22|$|
h) CESI . Pz = il —+ 0 as n — oo; converges for all z; R = oo
7C: Taylor Approximations and Series
7C-1
() y=cosz Yy =-sinz y'=-cosz &= sinz y® =cosz, ... _
y0) =1 ¢'(0)=0 y'0)=-1 ¥ =0 y9@O)=1, ...
ap=1 a1 =0 as = —1/2! a3 =0 ag =1/4! ...

The pattern then repeats with the higher coefficients, so we get finally

. 22 zt xe (__1)1’;1211 .
COS$~1—5+E—'6'-!-+...+—(2—H)!—+...
(b)
y=ln(l+z) y=01+2)" y"=-(1+2)2 y® =201 +2)7% W =-3i1+2), ...
=0 YO =1 y"(0) = -1 y®(0) = 2! y9(0) = -3, ...
ao=0 0,1=1 (12=—1/2 a3=1/3 a4=—1/4...

. .'122 .’123 :B4 (_l)n—lzn
In(1 =Lt - — . —— ..
n(ltz)=2—F+ 2 - F+ ot
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(c) Typical terms in the calculation are given.

—a+ap? = (3)(F)ara 40 gy

2
O=1 vo=m =R
o 1-3:5

%=1 o =-1/8 %= g

_1.3.5....(211—3)
__ n—1 n
Vitz=1+2 —8+ .+ (-1) — o z"+ ..

One gets the same answer by using the binomial formula; this is the way to remember the
series:

(1+z)1/2-1+ (2) (2)( 1)1,3+( )( 2)( 2)$3+

7C-2 sinz = z— :;T cal +7 + Re(2).
(We could use either Rs(z) or Rg(z), since the above polynomial is both T5(z) and Ts(z),
but Rg(z) gives a smaller error estimation if || < 1, since it contains a higher power of z.)

i (7) - '
Re(1) = sm7' <. 17 = -'%s-c-, for some 0 < ¢ < 1. Therefore
1 1

Thussinl =~ 1 —A—l- + -51—| /s .84166; the true value is sin1 = .84147, which is within the

error predicted by the Taylor remainder.

7C-8 Since f(z) = €%, the n-th remainder term is given by

- f0) e’ 3

5
Ba() = @iy St <@l <1

ifn4+1=8

Therefore we want n = 7, i.e., we should use the Taylor polynomial of degree 7; calculation
givsex1+1+1/2+1/6+ 1/24+ 1/120+1/720+1/5040 = 2. 71825 ., which is indeed
correct to 3 decimal places.

7C-4 Using as in 7C-2 the remainder Rs(z); rather than Ry(z), we have

COSC 4

l=|* _ (.6)*
4! T

IRs(2)] = < BB

@
|0L4(2)-z4 = = .0026.

So the answer is no, if [z| < .5. (Ifthe interval is shrunk to |z| < .3, the answer will be yes,
sinee (.3)4/24 < .001. )
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7C-5 By Taylor’s formula for e®, substituting —z2 for =,

4 cf_m2\8
z et

=2 __ 4 _ .2
e =1 .'c+2! 3l

, 0<e< b

_ 8
.Since 0 < €° < 2, the remainder term is.. < %—; integrating,

B 3 5.5 -
/ e dz = [.'c— z +_a:_] + error = .461 + error;
0

3 10,
5 .8 z718 ,
where |error| < / 3= 2—1] = .00028 < .0003; thus the answer .461 is good to 3
: 0 ) :
decimal places. : .
7D: Power Series
7D-1
) . 922 gn

—22 _ 1. i) — —

(a) e =1 2z+2!m +.oo+( 1)"n!:c“+...,

by substituting —2z for z in the series for e®.

. 2 3 ~1\npn
® cos /3 = 1-2%+'%—£6T+...+( (;l)f +...
| 2 o}
R PR T
_ 1/ ()  (22)* (=) (2z)*"
“5( TR I A (™ +)

(d) Write the series for 1/(1 + z), differentiate and multiply both sides by —1:

1

14z
1

(1+z)2

= lI—g4a?—z®+... 4 (-1)"HgH 4
=1-2c+3z%+...+(-1)"(n+ 1)z +... '

1

i 1-2 42t 2%+, 4+ ()2 + ...,

(e) Dtan™lz =

by substituting 22 for z in the series for 1/(1+z); (cf. (d) above). Now integrate both sides
of the above equation: - _ :

3 5 N n3ntl
-1, _ ._Z - (—1“) i .
tan"'z = g Y +--—5 "'+_——2n+1 +...+C;
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- Evaluate the constant of integration by putting = 0, one gets 0 =0+ C, so C =0.

® Din(l+3z) = 1—_%_—; =1l-z4+z2—2d+...+ (-1 4,
| NG
ln(1+z) = w——2-+—3——-...+———nﬁ—+....+6',

by integrating both sides. Find C by putting z = 0, one gets C = 0.

2 23 z&
(8) € = l4z+o- gttt

2 3 4
— T z T

= l-gt o=t — ...

€ ST TR

. 2 zt 2n
Adding and dividing by 2 gives: coshz = 1+ oq +— 7 +oiid (2n)'

7D-2

1 19 - 1f, .z 22 48 )_1
Sl 1+z/9 9(1'§+¥‘§5+"‘ )

-+

Qs
2|8

z2 8 z"
z - — i .
b) € —1+z+2!+3!+...+n!

- 4 N30
-3 9, (-1)rz
et =1-2 +'§!-—.‘..+_*-n!

. 2 zs z2 zs zs
T - — — — = —— — e
c) ¢ cosz = (1+z+2+6+ )(1 2+...) 1+x+(6 5+ )

+ ... ; substituting —z? for z gives

+..

3 .
= 1+z—%+...; the terms in z2 cancel.

sint 2 ¢! (=1)n2n
) T =l-gHg+r+@miort

% sint z3 z5 (~1)rgintt

s T Tt s E s T B (@

2 4 6
.e)e =1 2"'22 2l 2331 o
3 5 7 1\n.2n+1
g = g T T T (-1)nz?
/0 @ =s-g3 5o TE @A onlT

1 —_ -1 _ 3 8 3n
f) pe i Sl e R 1-2°~g" ... =2 ...

g) y=cos’s = y' = ~2coszsinz = - sin 2z; substituting 2z into the series for sin z,

) 23 3 5 .5
vy = -224 — T -2—5?—_+...; integrating,
239:4 2516 (_l)nzzn—lzzn
— - g 2 X L Z
y=cosfz = —z2+ Tt &)l

+...4C;

. 4
Since y(0) = 1, we see that C =1, s0 cos’z = 1—z2+%—...
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sing . 1 3 a3
h) Method 1: T = (smm)(l_z) = (z——6—+...)(l+m+z +z°+...)

z3 5 4
= z+:z:2+(:c3——é-+...) = :c+a:2+6:z: +...
_ Method 2: divide 1~z into g—-2/6+..., asdone on the left below:

T+ 22 +52%/6 +...

| z+a33 +...
-z = -23/6 ... 1-2%)2 z-2%6 +...
T -z T —z%/2
2 —-236 +... /3 +...
z? - g8
553/6 + ...

i) Method 1: Calculating successive derivatives gives:

y=tanz, y =sec’s, y”=2sec’ztanz, y® =2(2sec’ztanz-tanz +sec’z - sec )
y0) =0, Y©0)=1, ¢"0)=0, y¥0)=2

so the Taylor series starts

243 g

si . A . .
Method 2: tanz = c—u-l—z ;  divide the cos z series into the sin z series (done on the

right above) — this turns out to be easier here than taking derivatives!

7D-3 .
l—-cosz _ 1-(1-2?/2+...) _ 2%/2+... 1
a) S = po = 2 - 3 asz =0
z—sing _ z—(z-2%/6+...)  a3/6+... 1
b) = = o = P 5 asz—+0
¢) (1+2)/? = 14+z/2-2%[84+... = (1+a)?-1-z/2 = —2?[8+...
sing = z—-2%/6+... .= sinz = z?+...
14+z)2-1~-2/2 -22/8+... -1
Therefore, e g = R - T asz — 0.
d) cosu—1 = —u?/2+...; IW{l+u)—u = —u?/2+..;
Therefore cosu—1  —u?f2+4...

= -1 = 0.
In(l+u)-u —u?f2+... su



