Some Special Relativity Formulas

1 Introduction

The purpose of this handout is simple: to give you power in using special
relativity! Even though you may not, at this stage, understand exactly where
all of these formulas come from, you can certainly understand what they
mean and have fun with them. Indeed, when you plug in some numbers, you
can really get a feel for just how weird special relativity is.

2 Time Dilation

Suppose you're sitting on a bench, on a beautiful summer morning, watching
the lovely trains pass by. Now suppose some train goes by at a speed of
v, relative to you. Then, two events happen — lightning strikes and then
a baby screams, say — and you measure the time interval between them
to be ty on your watch. Suppose someone on the train also observes these
two events, and she measures the time interval between them to be ¢ on
her watch. How are t and t; related? Contrary to Newtonian expectations,
they are NOT EQUAL! In fact, as I showed in class, they are related by the
following formula:

t= ——, (1)

where ¢ = 299,792,458 meters/sec is the speed of light. (This is approximately

671,000,000 mph, for those of you who feel more comfortable with mph.)

Since the quantity \/172 is always greater than 1 (you can check this for
-4

yourself), this means thcat, in your perspective, your watch ticks at a faster
rate than the watch of somebody on the train! This effect — that mowving



clocks run slow — is known as time dilation. Notice that, as v approaches
¢, t approaches infinity! In other words, as a moving clock approaches the
speed of light, the rate of its ticking becomes slower and slower (eventually
infinitely slow) relative to you, the observer at rest.

Example: A super-train travels at 60 percent of the speed of light relative
to you on your bench. Due to the extreme comfort of the bench, you acci-
dentally doze off. Eventually, you wake up and determine that you napped
for 4 hours! How long would a train observer measure your nap to be? Well,
using the time dilation formula, here we have t; = 4 hrs and v = 0.6¢, so
2 =0.6. Therefore, a train observer measures your nap to last

4hrs

t= m = 5h7’5, (2)

a whole hour longer than your watch said!

3 Length Contraction

As I mentioned in class, length is also relative. Suppose you measure the
length of an object at rest to be [y. Then, if that same object is moving at
a speed of v relative to you, you'll measure its length to be [, where

I=lpy/1— 2. (3)

Therefore, since y/1 — Z—; is always less than 1, moving objects are shorter

than they are at rest. In fact, the faster an object moves, the shorter it
becomes, approaching zero length as its speed reaches the speed of light. Also,
it’s important to note that only one dimension of the object — the dimension
in its direction of motion — gets contracted. The other two dimensions,
which are perpendicular to the direction of motion, do not get contracted.

4 Relativistic Addition of Velocities

You return now to your train-watching festivities. Suppose a certain train
moves at a velocity of v relative to you. Then, if an object — a baseball, for
example — travels at a velocity of u relative to the train, the velocity that



object will travel relative to you is given by

U+ v
144

(4)

This is the so-called relativistic addition of velocities formula. Note that it is
NOT u + v, as one would intuitively expect. (However, if u and v are much
smaller than ¢, then you can show mathematically that this formula becomes
approximately u 4+ v, which is what we do expect for small speeds.)

Example: A (futuristic) rocket ship travels at a speed of 100,000,000
mph, moving in your left direction, relative to you. Relative to the rocket, a
different rocket ship travels at a speed of 300,000,000 mph, in the direction
opposite that which the original rocket ship is traveling. Question: How fast
is the second rocket ship traveling relative to you? In this example, v =
100,000,000 mph and u = —300, 000,000 mph (negative because the second
rocket is traveling in a direction opposite that of the first rocket). Plugging
in numbers, we get

u-+v (100, 000, 000 — 300, 000, 000)mph

1+ w - 1 -t (100,000,000mph)(~300,000,000mph) ~  —214,000,000mph, (5)

e (671,000,0001mph)2

which means that the second rocket ship is traveling at a speed of 214,000,000
mph relative to you (and moving in your right direction). This is approwi-
mately what you'd get if you used the simple u + v formula, but it differs
by a noticeable amount. And the closer u and v are to ¢, the more that the
relativistic addition of velocities formula will differ from the non-relativistic
addition of velocities formula (which I called in class the Galilean addition
of velocities).

5 Final Notes

Although all of the aforementioned effects are, in principle, always present
in reality, it’s only when speeds of objects reach a substantial fraction of the
speed of light that the effects become noticeable. Also, remember that any
inertial observer’s perspective is just as good as any other. So, while you may
say that the clocks on a moving train are running slow, people on the train
will say that your clock is running slow, because you’re the one in motion in
their perspective. In other words, all of these effects are reciprocal. That said,



it’s extremely important always to specify who’s doing the measurement of
a certain quantity. It doesn’t make sense, for example, to talk about “the”
speed of an object. What does make sense is to talk about the speed of an
object relative to one person, as well as the speed of the object relative to
another person. (Of course, there is one exception to this particular example:
all observers will measure the same speed for light, regardless of their relative
motion. Thus, while one cannot sensibly speak of “the” speed of a baseball,
one can sensibly speak of “the” speed of light.)
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