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This essay is an introduction to rotating reference frames and to the effects of Earth’s rotation on the 

large scale flows of the atmosphere and ocean. It is intended for students who are beginning a 

quantitative study of Earth science and geophysical fluid dynamics and who have some background in 

classical mechanics and applied mathematics. 

Part I uses a very simple single parcel model to derive and illustrate the equation of motion appropriate 

to a steadily rotating reference frame. Two inertial forces account for accelerations due to the rotating 

reference frame, a centrifugal force and a Coriolis force. In the case of an Earth-attached reference 

frame, the centrifugal force is indistinguishable from gravitational mass attraction and is subsumed into 
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the gravity field. The Coriolis force has a very simple mathematical form, −2Ω × V�M , where Ω is 

Earth’s rotation vector, V� is the velocity observed from the rotating frame and M is the parcel mass. 

The Coriolis force is perpendicular to the velocity and so tends to change velocity direction, but not 

velocity amplitude, i.e., the Coriolis force does no work. 

If the Coriolis force is the only force acting on a moving parcel, then the velocity vector of the 

parcel will be continually deflected anti-cyclonically. These free motions, often termed inertial 

oscillations, are a first approximation of the upper ocean currents that are generated by a transient wind 

event. If the Coriolis force is balanced by a steady force, say a pressure gradient, then the resulting wind 

or current will be in a direction that is perpendicular to the pressure gradient force. An approximate 

geostrophic momentum balance of this kind is the defining characteristic of the large scale, low 

frequency circulation of the atmosphere and oceans outside of the tropics. 

Part II uses a single-layer fluid model to solve several problems in geostrophic adjustment; a one- or 

two-dimensional mass anomaly is released from rest and allowed to evolve under gravity and rotation. 

The fast time scale response includes gravity waves with phase speed C that tend to spread the mass 

anomaly. If the anomaly has a horizontal scale that exceeds several times the radius of deformation, 

Rd = C/f , where f = 2Ωsin (latitude) is the Coriolis parameter, then the Coriolis force will arrest the 

spreading and yield a quasi-steady, geostrophic balance. 

An exact geostrophic balance would be exactly steady, while it is evident that the atmosphere and 

the ocean evolve continually. Departures from exact geostrophy can arise in many ways including as a 

consequence of frictional drag with a boundary, and from the latitudinal variation of f . The latter 

beta-effect imposes a marked anisotropy onto the atmosphere and the ocean — eddies and long waves 

propagate phase westward and the major ocean gyres are strongly compressed onto the western sides of 

ocean basins. These and other low frequency phenomenon are often best interpreted as a consequence 

of potential vorticity conservation, the geophysical fluid equivalent of angular momentum conservation. 

Earth’s rotation contributes planetary vorticity = f , that is generally considerably larger than the relative 

vorticity of winds and currents. Small changes in the latitude or thickness of a fluid column may convert 

planetary vorticity to relative vorticity, �× V� , succinctly accounting for some of the most important 

large scale, low frequency phenomena, e.g., westward propagation. 
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1 Large-scale flows of the atmosphere and ocean. 

The large-scale, low frequency flows of Earth’s atmosphere and ocean take the form of circulations 

around centers of high or low pressure. Global-scale circulations include the broad belt of westerly 

wind that encircles the mid-latitudes in both hemispheres (Fig. 1) and gyres that fill ocean basins (Fig. 

example, have a more or less circular flow around a low pressure center, and many regions of the ocean 

are filled with slowly revolving eddies having a diameter of several hundred kilometers (Figs. 2 and 3). 

The pressure anomaly that is associated with each of these circulations can be understood as the direct 

consequence of mass excess (high pressure) or deficit (low pressure) in the overlying fluid. 

2). Smaller scale circulations often dominate the weather. Hurricanes and mid-latitude storms, for 

What is at first surprising is that large scale mass anomalies of the kind seen in Figs. 1 and 2 persist 

for many days or weeks in the absence of an external energy source. The flow of mass that would be 
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Figure 1: A weather map showing conditions at 500 mb over the North Atlantic on 20 March, 2004, 
produced by the Fleet Numerical Meteorology and Oceanography Center (500 mb is a middle level of 
the atmosphere). Variables are temperature (colors, scale at right is ◦C), the height of the 500 mb pressure 
surface (white contours, values are meters above sea level) and the wind vector (as ’barbs’ at the rear 
of the vector, one thin barb = 10 knots ≈ 5 m s−1, one heavy barb = 50 knots). Several important 
phenomenon that will be discussed throughout the text are evident on this map. (1) The winds at mid-
latitudes were mainly westerly, i.e., winds that blow from the west toward the east. The broad band of 
westerly winds often includes one or several maxima, or jet stream(s), here between about 40◦ to 50◦ N. 
(2) Within the westerly wind band, the 500 mb surface sloped upward toward lower latitude. There was 
thus a small, but significant component of gravity that was parallel to this surface, −g�η, and directed 
from south to north. The largest slope was roughly 500 m per 1000 km within the jet stream where 
wind speed was also largest, roughly U ≈ 40 m s −1 . (3) Wind vectors appear to be nearly parallel to 
the contours of constant height everywhere poleward of about 10◦ latitude. The wind and pressure fields 
were thus in an approximately steady, geostrophic balance, 0 ≈ −g∂η/∂y − fU , where f is the Coriolis 
parameter and fU is the Coriolis force (per unit mass), the topic of Part I of this essay. (4) Any particular 
realization of the jet stream is likely to exhibit wave-like undulations. The longest such undulations 
often appear to be almost stationary with respect to Earth, and so must be propagating westward with 
respect to the spatially-averaged westerly wind. On this day the jet stream made a trough (southerly 
dip) near the east coast of the US, and a ridge near northwestern Europe. This is a fairly common jet 
stream configuration that transports relatively warm, moist air toward Northern Europe (Seager, R., D. 
S. Battisti, J. Yin, N. Gordon, N. Naik, A. C. Clement and M. Cane, ’Is the Gulf Stream responsible for 
Europe’s mild winters?’, Q. J. R. Meteorol. Soc., 128, pp. 1-24, 2002.) 
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Figure 2: The 2007 annual mean of sea surface height (SSH). These remarkable data are thanks to 
the Aviso project (with support from Cnes, http://www.aviso.oceanobs.com/duacs/). The color scale at 
right is in meters. The region depicted here is comparable to that of Fig.1, and the field has a very 
similar meaning; SSH is effectively a constant pressure, frictionless surface that is displaced slightly but 
significantly from level. The change in SSH is only about 2 m from a low in the western subpolar gyre 
(55◦ N and 50◦ W) to a high in the western subtropical gyre and Caribbean Sea (25◦ N and 70◦ W). Note 
that by far the largest gradient of SSH is found just inside the western boundary of the subtropical gyre 
and is much less over the central and eastern regions. This marked east-west asymmetry is typical of 
ocean gyres. What keeps SSH displaced away from level? We do not have direct measurement of ocean 
currents on anything close to the same resolution, but nevertheless we can be confident that the horizontal 
gravitational force associated with this tilted SSH is nearly balanced by the Coriolis force acting upon 
horizontal currents, i.e., we infer a geostrophic momentum balance, just as in the atmospheric westerlies 
of Fig. 1. 
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Aviso, SSH, 2007, week 40
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Figure 3: A snapshot of SSH over the North Atlantic ocean from week 40 of 2007 (thanks to the Aviso 
project). Compared with the previous year-long mean, this field shows considerable variability on scales 
of several hundred kilometers, often termed the oceanic mesoscale (meso is Greek for middle), and a 
considerably narrower western boundary current. If you are viewing on Acrobat Reader you can animate 
the field by clicking on the image. You will see that the mesoscale eddies persist as identifiable features 
for many weeks. Eddies that are near the western boundary are carried northward and eastward by 
the western boundary current system (from south to north, the Loop Current, Gulf Stream, and North 
Atlantic Current). Eddies that are within the central subtropical gyre and outside of strong time-mean 
currents move steadily westward. An important goal of this essay (Section 7.3) is to understand the 
mechanism of this westward propagation and the closely related east-west asymmetry of ocean gyres. 
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expected to accelerate down the pressure gradient and disperse the associated mass        

1 LARGE-SCALE FLOWS OF THE ATMOSPHERE AND OCEAN. 

anomaly does not 

occur. Instead, large-scale, low frequency winds and currents are observed to flow in a direction that is 

almost parallel to lines of constant pressure; the sense of the flow is clockwise around high pressure 

centers (northern hemisphere) and anticlockwise around low pressure centers. The direction of flow is 

reversed in the southern hemisphere. From this we can infer that the pressure gradient force, which is 

normal to lines of constant pressure, must be balanced approximately by a second force, the Coriolis 

force,1,2 that must act to deflect (accelerate) horizontal winds and currents to the right of the velocity 

vector in the northern hemisphere and to the left of the velocity vector in the southern hemisphere.3 A 

balance between a pressure gradient force and the deflecting Coriolis force is called a geostrophic 

balance, and a near-geostrophic momentum balance is the defining characteristic of large scale, low 

frequency atmospheric and oceanic flows outside of equatorial regions. 

We attribute quite profound physical consequences to the Coriolis force, and yet we cannot point to 

a physical interaction as the cause of the Coriolis force in the direct and simple way that we can relate 

hydrostatic pressure anomalies to the mass field. Rather, the Coriolis force arises from our common 

practice to observe and analyze the atmosphere and ocean using an Earth-attached and thus rotating, 

noninertial reference frame. The Coriolis force thus arises from motion itself, and in this regard the 

Coriolis force is distinct from other important forces in ways and with consequences that are the theme 

of Part I of this essay. In Part II we will examine some of the consequences of Earth’s rotation, and take 

a different and in some ways more direct view of Earth’s rotation, viz., that it imparts a kind of 

gyroscopic rigidity to winds and currents that can be understood from the conservation of potential 

vorticity, the fluid equivalent of angular momentum. 

1Footnotes provide references, extensions or qualifications of material discussed in the main text, and homework assign

ments; they may be skipped on first reading. 
2After the French physicist and engineer, Gaspard-Gustave de Coriolis, 1792-1843, whose seminal contributions include 

the systematic derivation of the rotating frame equation of motion and the development of the gyroscope. An informative 

history of the Coriolis force is by A. Persson, ’How do we understand the Coriolis force?’, Bull. Am. Met. Soc., 79(7), 

1373-1385 (1998). 
3You must be wondering ’What’s it do right on the equator?’ (and see S. Adams, It’s Obvious You Won’t Survive by 

Your Wits Alone, p. 107, Andrews and McNeil Press, Kansas City, Kansas, 1995). By symmetry we would expect that the 

horizontal deflection due to the Coriolis force must vanish along the equator. The contrast between mid-latitude and equatorial 

wind and pressure relationships is thus of great interest here, and we will return to the equator at several points in this essay. 

A question for you: How would you characterize the equatorial wind and pressure relationship of Fig. 1? One specific chart 

may not be particularly revealing, so take a look at the 500 hPa charts (heights, winds and temperatures) available online 

at http://www.nrlmry.navy.mil/metoc/nogaps/NOGAPS global net.html (you may have to type this address into your web 

browser). 
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1.1 Classical mechanics observed from a rotating Earth 

This essay proceeds inductively, developing concepts one by one rather than deriving them from a 

comprehensive starting point. In that spirit, our first model of a geophysical fluid will be a single, 

isolated particle. So long as we are concerned just with the Coriolis force (Part I), we can be content 

with a point-like particle. In Part II we will begin to consider the rotation of the particle, and for that 

purpose we will need the first spatial derivatives of velocity, e.g., ∂u/∂y and thus a particle with finite 

size, in fluid usage, a ’parcel’. But whether point-like or not, a single parcel model is a drastic, and for 

most purposes untenable idealization. Winds and currents, like all fluid flows, are made up of a 

continuum of parcels that interact in three-dimensions. Nevertheless, a single parcel is an appropriate 

first step in a hierarchy of models because the Coriolis force depends only upon the local velocity of a 

parcel and not upon the spatial derivative of velocity or pressure around the parcel. Thus the phenomena 

that arise in the single parcel model are found also in much more realistic fluid models and in the real 

atmosphere and ocean. The converse is certainly not true; many of the most interesting and important 

phenomena of fluid flows are not within the domain of the single parcel model, e.g., gravity waves, and 

so we will to be careful not to over-interpret or extrapolate our single parcel results. But here’s a 

promise: The intuition that you will gain by studying the Coriolis force in this simplified context will 

carry over intact to a study of much more realistic fluid models that we will come to in Sections 6 and 7, 

by then knowing quite a lot about the Coriolis force. 

If our parcel is observed from an inertial reference frame4, then the classical (Newtonian) equation 

of motion is just 
d(MV) 

= F + g∗M, 
dt 

where d/dt is an ordinary time derivative, V is the velocity in a three-dimensional space, and M is the 

parcel’s mass. The parcel mass (or fluid density) will be presumed constant in all that follows, and the 

equation of motion rewritten as 
dV 

M = F + g∗M. (1) 
dt 

Unless it is noted otherwise, the acceleration that would be directly observable in a given reference 

frame will be the left-hand side of an equation of motion, and the forces (everything else) will be on the 

right-hand side. Here, F is the sum of the forces that we can specify a priori given the complete 

4’Inertia’ has Latin roots in+artis meaning without art or skill and secondarily, resistant to change. Since Newton’s 

Principia, physics usage has emphasized the latter: a parcel having inertia will remain at rest, or if in motion, continue 

without change unless subjected to an external force. By ’reference frame’ we mean a coordinate system that serves to 

arithmetize the position of parcels, a clock to tell the time, and an observer who makes an objective record of positions and 

times. A reference frame may or may not be attached to a physical object. In this essay we suppose purely classical physics 

so that measurements of length and of time are identical in all reference frames. This common sense view of space and 

time begins to fail when velocities approach the speed of light, which is not an issue here. An inertial reference frame is 

one in which all parcels have the property of inertia and in which the total momentum is conserved, i.e., all forces occur as 

action-reaction force pairs. How this plays out in the presence of gravity will be discussed briefly in Section 3.1. 
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knowledge of the environment, e.g., a pressure gradient, or frictional drag with the ground or adjacent 

parcels, and g∗ is gravitational mass attraction. These are said to be central forces insofar as they are 

effectively instantaneous and they act in a radial direction between parcels (and in the case of 

gravitational mass attraction, between parcels and the Earth). Central forces occur as action-reaction 

force pairs, the sum of which is zero. Given the single parcel model used up through Section 5, it is 

appropriate to make two sweeping simplifications of F: 1) we will specify F independently of the 

motion of surrounding parcels, and, 2) we will make no allowance for the continuity of volume of a 

fluid flow, i.e., that two parcels can not occupy the same point in space.5 

This inertial reference frame equation of motion has two fundamental properties that we note here 

because we are about to give them up: 

Global conservation. For each of the central forces acting on the parcel there will be a corresponding 

reaction force acting on the part of the environment that sets up the force. Thus the global time rate of 

change of momentum (global means parcel plus the environment) due to the sum of all of the central 

forces F + g∗M is zero, i.e., global momentum is conserved. Usually our attention is focused on the 

local problem, i.e., the parcel only, with global conservation taken for granted and not analyzed 

explicitly. 

Invariance to Galilean transformation. Eqn. (1) should be invariant to a steady (linear) translation of 

the reference frame, often called a Galilean transformation. A constant velocity added to V will cause 

no change in the time derivative, and if added to the environment should as well cause no change in the 

forces F or g∗M . Like the global balance just noted, this property is not invoked frequently, but is a 

powerful guide to the appropriate forms of the forces F. For example, a frictional force that satisfies 

Galilean invariance should depend upon the difference of the velocity with respect to a surface or 

adjacent parcels, and not the velocity only. 

When it comes to the practical analysis of the atmosphere or ocean we always use a reference 

frame that is attached to the rotating Earth — true (literal) inertial reference frames are simply not 

accessible. Some of the reasons for this are discussed in a later section, 4.3; for now we are concerned 

with the consequence that, because of the Earth’s rotation, an Earth-attached reference frame is 

significantly noninertial for the large-scale motions of the atmosphere and ocean. The equation of 

motion (1) transformed into an Earth-attached reference frame (examined in detail in Sections 2 and 

4.1) is 
dV� 

M = − 2Ω×V�M + F� + gM, (2) 
dt 

where the prime on a vector indicates that it is observed from the rotating frame, Ω is Earth’s rotation 

5In Section 6 we will consider a fluid model in which the main force on parcels is the gradient of pressure, which is 

determined largely by the continuity of volume requirement: as fluid parcels converge into a given volume, the pressure 

will increase, eventually enough to disperse the parcels away from the volume. How rapidly the pressure increases and how 

rapidly the fluid responds depends upon the stiffness and the mass density of the fluid, i.e., the properties that determine wave 

propagation speed. 
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Figure 4: Earth’s rotation vector, Ω, 
maintains a nearly steady direction that 
points close to the North Star, Polaris. 
This very simple image is meant to con
vey a very profound physical fact: Ω de
fines a specific direction with respect to 
the universe for Earth-bound observers. 
That this direction is toward Polaris is 
accidental. But that there is a specific 
direction is reflected in the anisotropy 
of many large-scale circulation phenom
ena, e.g., the east-west asymmetry of 
the ocean gyres (Fig. 2) and the west
ward propagation of Rossby waves and 
oceanic eddies (Figs. 1 and 3, and dis
cussed further in Section 7.3). 

vector, gM is the time-independent inertial force, gravitational mass attraction plus the centrifugal force 

associated with Earth’s rotation called ’gravity’ and discussed further in Section 4.1. Our main interest 

is the term, −2Ω×V�M , commonly called the Coriolis force in geophysics. The Coriolis force has a 

very simple mathematical form; it is always perpendicular to the parcel velocity and will thus act to 

deflect the velocity unless it is balanced by another force, e.g., very often a pressure gradient as noted in 

the opening paragraph and Fig. 1. 

1.2 The goal and the plan of this essay 

Eqn. (2) applied to geophysical flows is not controversial. If our intentions were strictly practical we 

could accept the Coriolis force as given, as we do a few fundamental concepts of classical mechanics, 

e.g., mass and gravitational mass attraction, and move on to applications. However, the Coriolis force is 

not a fundamental concept of that kind and yet for many students (and more) it has a similar, mysterious 

quality. The plan and the goal of Part I of this essay is to take a rather slow and careful journey from 

Eqn. (1) to (2) so that at the end we should understand and so be able to explain:6 

6’Explanation is indeed a virtue; but still, less a virtue than an anthropocentric pleasure.’ B. van Frassen, ’The pragmatics 

of explanation’, in The Philosophy of Science, Ed. by R. Boyd, P. Gasper and J. D. Trout. (The MIT Press, Cambridge Ma, 
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Q1) The origin of the term −2Ω×V�M , and in what respect it is appropriate to call it the Coriolis 

’force’. We have already hinted that the Coriolis term is a kind of inertial force (reviewed in Section 

2.1) that arises from the rotation of a reference frame. The origin of the Coriolis force is thus mainly a 

matter of kinematics, i.e., more mathematical than physical, and we begin in Section 2.2 with the 

transformation of the inertial frame equation of motion Eqn. (1) into a rotating reference frame and 

Eqn. (2). The best choice of a word or words to label the Coriolis term is less clear than is Eqn. (2) 

itself; we will stick with just plain ’Coriolis force’ on the basis of what the Coriolis term does, 

considered in Sections 3 - 6, and summarized on closing in Section 7. 

Q2) The global conservation and Galilean transformation properties of Eqn. (2) and absence of 

the centrifugal force. Two simple applications of the rotating frame equation of motion are considered 

in Section 3. These illustrate the often marked difference between inertial and rotating frame 

descriptions of the same motion, and they also show that the rotating frame equation of motion does not 

retain these fundamental properties. Eqn. (2) applies on a rotating Earth or a planet, where the 

centrifugal force associated with planetary rotation is exactly canceled (Section 4). The rotating frame 

equation of motion thus treats only the comparatively small relative velocity, i.e., winds and currents. 

This is a great advantage compared with the inertial frame equation of motion and more than 

compensates for the (admittedly) peculiar properties of the Coriolis force. 

Q3) The new modes of motion in Eqn. (2) compared with Eqn. (1). Eqn. (2) admits two modes of 

motion dependent upon the Coriolis force; a free oscillation, often called an inertial oscillation, and 

forced, steady motion, called a geostrophic wind or current when the force F� is a pressure gradient.7 

Part II considers some of the consequences of Earth’s rotation in the context of a simple, single 

layer fluid model, and the phenomenon of geostrophic adjustment: a ridge or an eddy of dense fluid is 

released from rest and allowed to evolve freely. The aims are to understand: 

Q4) The circumstances that lead to a near geostrophic balance. As we will see in Section 7, a 

geostrophic balance is almost inevitable for large scale, low frequency motions of the atmosphere or 

ocean. The key thing in this is to define what we mean by large scale (depends upon stratification and 

f) and low frequency (low compared to f). 

Q5) How small but systematic departures from geostrophic balance may lead to time-dependent, 

low frequency motions, and east-west asymmetry. Given an eddy or long wave that is in approximate 

geostrophic balance, the variation of the Coriolis force with latitude, often called the beta-effect, leads 

1999). 
7By now you may be thinking that all this talk of ’forces, forces, forces’ is tedious and archaic. Modern dynamics is 

more likely to be developed around the concepts of energy, action and minimization principles, which are very useful in some 

special classes of fluid flow. However, it remains that the majority of fluid mechanics proceeds along the path of Eqn. (1) laid 

down by Newton. In part this is because mechanical energy is not conserved in most real fluid flows and in part because the 

interaction between a fluid parcel and its surroundings is often at issue, friction for example, and is usually best-described in 

terms of forces. 
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to some of the most interesting and important phenomenon of geophysical flows — westward 

propagation of long waves in the jet stream (Fig. 1) and of mesoscale eddies in the ocean (Fig. 3). 

1.3 About this essay 

This essay been written especially for students who are beginning a quantitative study of Earth science 

and geophysical fluid dynamics and who have some preparation in classical mechanics and applied 

mathematics. Rotating reference frames and the Coriolis force are a topic in most classical mechanics 

texts and in most fluid mechanics textbooks that treat geophysical flows.8 There is nothing fundamental 

and new added here, but the hope is that this essay will make a useful supplement to these and other 

sources 9 by providing greater mathematical detail and physical background (in Part I) than is possible in 

most fluid dynamics texts, while emphasizing geophysical phenomena (in Part II) that are missed or 

outright misconstrued in many physics texts.10 Geophysical fluid dynamics is all about fluids in motion, 

and the electronic version of this essay is able to display animations that provide a much more vivid 

depiction of fluid motion than is possible in a hardcopy. 

There is a fairly marked change in level of detail and in scope in going from Part I to Part II. Part I 

derives the rotating frame equation of motion (Eqn. 2) in sufficient depth and detail to serve as a 

primary reference on that fairly narrow topic. Part II, Section 6 introduces but does not derive a shallow 

water fluid model that is then applied to several problems in geostrophic adjustment in Section 7. Part II 

is best viewed as a supplement to the excellent, comprehensive GFD texts by Gill, Cushman-Roisin, and 

Pedlosky.8 The scope changes from a narrow focus on the Coriolis force in Part I to a description and 

analysis of the somewhat diverse phenomena that arise in the geostrophic adjustment experiments of 

Part II. Inertio-gravity waves and Rossby waves play a very large role and so become the apparent center 

8Classical mechanics texts in order of increasing level: A. P. French, Newtonian Mechanics (W. W. Norton Co., 1971); A. 

L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw-Hill, NY, 1990); C. Lanczos, The 

Variational Principles of Mechanics (Dover Pub., NY, 1949). A clear treatment by variational methods is by L. D. Landau 

and E. M. Lifshitz Mechanics, (Pergamon, Oxford, 1960). Textbooks on geophysical fluid dynamics emphasize mainly the 

consequences of Earth’s rotation; excellent introductions at about the level of this essay are by J. R. Holton, An Introduction to 

Dynamic Meteorology, 3rd Ed. (Academic Press, San Diego, 1992), and by B. Cushman-Roisin, Introduction to Geophysical 

Fluid Dynamics (Prentice Hall, Engelwood Cliffs, New Jersey, 1994). Somewhat more advanced and highly recommended 

for the topic of geostrophic adjustment is A. E. Gill, Atmosphere-Ocean Dynamics (Academic Press, NY, 1982) and for waves 

generally, J. Pedlosky, Waves in the Ocean and Atmosphere, (Springer, 2003). 
9There are several essays or articles that, like this one, aim to clarify the Coriolis force. A fine treatment in great depth 

is by H. M. Stommel and D. W. Moore, An Introduction to the Coriolis Force (Columbia Univ. Press, 1989); the present 

Section 4.1 owes a great deal to their work. A detailed analysis of particle motion including the still unresolved matter 

of the apparent southerly deflection of dropped particles is by M. S. Tiersten and H. Soodak, ‘Dropped objects and other 

motions relative to a noninertial earth’, Am. J. Phys., 68(2), 129–142 (2000). A good web page for general science students 

is http://www.ems.psu.edu/%7Efraser/Bad/BadFAQ/BadCoriolisFAQ.html 
10The Coriolis force also has engineering applications; it is exploited to measure the angular velocity required for vehicle 

control systems, http://www.siliconsensing.com, and to measure mass transport in fluid flow, http://www.micromotion.com. 

http:flow,http://www.micromotion.com


2 PART I: ROTATING REFERENCE FRAMES AND THE CORIOLIS FORCE. 14 

of attention. An implicit goal of Part II is to introduce and motivate the practice of experimentation via 

numerical modeling. Numerical models are an indispensable tool of atmospheric and oceanic science, 

and yet numerical modeling receives scant attention in some graduate curriculum. Many of the 

homework assignments are aimed at encouraging exploration and hypothesis testing by way of 

numerical experimentation. The model source codes listed in Section 9 are intended to facilitate this. 

This document may be freely copied and distributed for all educational purposes. It may be cited 

via the MIT Open Course Ware address: James F Price, 12.808 Supplemental Material, Topics in Fluid 

Dynamics: Dimensional Analysis, the Coriolis Force, and Lagrangian and Eulerian Representations, 

http://ocw.mit.edu/ans7870/resources/price/index.htm (date accessed) License: Creative commons 

BY-NC-SA. The most recent version of this text and the source codes are on the author’s public-access 

web page linked in Section 9. Comments and questions may be addressed directly to jprice@whoi.edu. 

Acknowledgments. Financial support during preparation of this essay was provided by the Academic 

Programs Office of the Woods Hole Oceanographic Institution. Additional salary support has been 

provided by the U.S. Office of Naval Research. Terry McKee of WHOI is thanked for her expert 

assistance with Aviso data. Tom Farrar of WHOI, Pedro de la Torre of KAUST and Ru Chen of 

MIT/WHOI are thanked for carefully proof reading a draft of this essay. 

2 Part I: Rotating reference frames and the Coriolis force. 

The first step toward understanding the origin of the Coriolis force is to describe the origin of inertial 

forces in the simplest possible context, a pair of reference frames that are represented by displaced 

coordinate axes, Fig. (5). Frame one is labeled X and Z and frame two is labeled X � and Z �. Only 

relative motion is significant, but there is no harm in assuming that frame one is stationary and that 

frame two is displaced by a time-dependent vector, Xo(t). The measurements of position, velocity, etc. 

of a given parcel will thus be different in frame two vs. frame one. Just how the measurements differ is 

a matter of kinematics; there is no physics involved until we define the acceleration of frame two and 

use the accelerations to write an equation of motion, e.g., Eqn. (2). 

2.1 Kinematics of a linearly accelerating reference frame 

If the position vector of a given parcel is X when observed from frame one, then from within frame two 

the same parcel will be observed at the position 

X� = X− Xo. 

The position vector of a parcel thus depends upon the reference frame. Suppose that frame two is 

translated and possibly accelerated with respect to frame one, while maintaining a constant orientation 

http://ocw.mit.edu/ans7870/resources/price/index.htm(date
http:addresseddirectlytojprice@whoi.edu
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Figure 5: Two reference frames 
are represented by coordinate axes 
that are displaced by the vector Xo 

that is time-dependent. In this Sec
tion 2.1 we consider only a rela
tive translation, so that frame two 
maintains a fixed orientation with 
respect to frame one. The rota
tion of frame two will be consid
ered beginning in Section 2.2. 

X 

(rotation will be considered shortly). If the velocity of a parcel observed in frame one is dX/dt, then in 

frame two the same parcel will be observed to have velocity 

dX� dX dXo 
= . 

dt dt 
− 

dt 

The accelerations are similarly d2X/dt2 and 

d2X� d2X d2Xo 

dt2 
= 

dt2 
− 

dt2 
. (3) 

We are going to assume that frame one is an inertial reference frame, i.e., that parcels observed in frame 

one have the property of inertia so that their momentum changes only in response to a force, F, i.e., 

Eqn. (1). From Eqn. (1) and from Eqn. (3) we can easily write down the equation of motion for the 

parcel as it would be observed from frame two: 

d2X� d2Xo 

dt2 
M = − 

dt2 
M + F� + g∗M. (4) 

Terms of the sort −(d2Xo/dt
2)M appearing in the frame two equation of motion (4) will be called 

’inertial forces’, and when these terms are nonzero, frame two is said to be ’noninertial’. As an 

example, suppose that frame two is subject to a constant acceleration, d2Xo/dt
2 = A that is upward 

and to the right in Fig. (5). From Eqn. (4) it is evident that all parcels observed from within frame two 

would then appear to be subject to an inertial force, −AM, directed downward and to the left, and 

which is exactly opposite the acceleration of frame two with respect to frame one. An inertial force 

results when we multiply this acceleration by the mass of the parcel, and so an inertial force is exactly 

proportional to the mass of the parcel, regardless of what the mass is. Clearly, it is the acceleration, 

−A, that is imposed by the accelerating reference frame, and not a force per se. In this regard, inertial 

forces are indistinguishable from gravitational mass attraction. If in addition the inertial force is 
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dependent only upon position (centrifugal force due to Earth’s rotation is an example, Section 4.1), as is 

gravitational mass attraction, then it might as well be added with g∗ to denote a single, 

time-independent acceleration field, usually termed gravity and denoted by g. Indeed, it is only this 

gravity field, g, that can be observed directly, for example by pendulum experiments (more in Section 

4.1). But unlike gravitational mass attraction, there is no physical interaction between particles involved 

in an inertial force, and hence there is no action-reaction force pair. Global momentum conservation 

thus does not obtain in the presence of inertial forces. There is indeed something equivocal about this 

phenomenon we are calling an inertial force, and it is not unwarranted that some authors have deemed 

these terms ’virtual’ or ’fictitious correction’ forces.11 

Whether an inertial force is problematic or not depends entirely upon whether d2Xo/dt
2 is known 

or not. If it should happen that the acceleration of frame two is not known, then all bets are off. For 

example, imagine observing the motion of a pendulum within an enclosed trailer that was moving along 

in irregular, stop-and-go traffic. The pendulum would be observed to lurch forward and backward 

unexpectedly, and we would soon conclude that dynamics in such an uncontrolled, noninertial reference 

frame was going to be a very difficult endeavor. We could at least infer that an inertial force was to 

blame if it was observed that all of the physical objects in the trailer, observers included, experienced 

exactly the same unaccounted acceleration. Very often we do know the relevant inertial forces well 

enough to use noninertial reference frames with great precision, e.g., Earth’s gravity field is well-known 

from extensive and ongoing survey and the Coriolis force can be readily calculated. 

In the specific example of reference frame translation considered here we could just as well 

transform the observations made from frame two back into the inertial frame one, use the inertial frame 

equation of motion to make a calculation, and then transform back to frame two if required. By that 

tactic we could avoid altogether the seeming delusion of an inertial force. However, when it comes to 

the observation and analysis of Earth’s atmosphere and ocean, there is really no choice but to use an 

Earth-attached and thus rotating and noninertial reference (discussed in Section 4.3). That being so, we 

have to contend with the Coriolis force, an inertial force that arises from the rotation of an 

Earth-attached frame. The kinematics of rotation add a small complication that is taken up in the next 

section. But if you followed the development of Eqn. (4), then you already understand the essential 

origin of the Coriolis force. 

11The latter is by by J. D. Marion, Classical Mechanics of Particles and Systems (Academic Press, NY, 1965), who de

scribes the plight of a rotating observer as follows (the double quotes are his): ‘... the observer must postulate an additional 

force - the centrifugal force. But the ”requirement” is an artificial one; it arises solely from an attempt to extend the form of 

Newton’s equations to a non inertial system and this may be done only by introducing a fictitious ”correction force”. The same 

comments apply for the Coriolis force; this ”force” arises when attempt is made to describe motion relative to the rotating 

body.’ Rotating observers do indeed have to contend with inertial forces that are not found in otherwise comparable inertial 

frames, but these inertial forces are not ad hoc corrections as Marion’s quote (taken out of context) might seem to imply. 
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2.2 Kinematics of a rotating reference frame 

The second step toward understanding the origin of the Coriolis force is to learn the equivalent of Eqn. 

(4) for the case of a steadily rotating (rather than linearly accelerating) reference frame. From here on it 

is necessary to develop the component-wise description of vectors alongside the geometric form used to 

now. 

Reference frame one will again be assumed to be stationary and defined by a triad of orthogonal 

unit vectors, e1, e2 and e3 (Fig. 6). A parcel P can then be located by a position vector X 

X = e1x1 + e2x2 + e3x3, (5) 

where the Cartesian (rectangular) components, xi, are the projection of X onto each of the unit vectors 

in turn. It is useful to rewrite Eqn. (5) using matrix notation. The unit vectors are made the elements of 

a row matrix, 

E = [e1 e2 e3], (6) 

and the components xi are taken to be the elements of a column matrix, 

⎡ ⎤ 

x1 

X = ⎣ x2 
⎦ . (7) 

x3 

Eqn. (5) may then be written in a way that conforms with the usual matrix multiplication rules as 

X = EX. (8) 

The vector X and its time derivatives are presumed to have an objective existence, i.e., they 

represent something physical that is unaffected by our arbitrary choice of a reference frame. 

Nevertheless, the way these vectors appear clearly does depend upon the reference frame (Fig. 6) and 

for our purpose it is essential to know how the position, velocity and acceleration vectors will appear 

when they are observed from a steadily rotating reference frame. In a later part of this section we will 

identify the rotating reference frame as an Earth-attached reference frame and the stationary frame as 

one aligned on the distant fixed stars. It is assumed that the motion of the rotating frame can be 

represented by a time-independent rotation vector, Ω. The e3 unit vector can be aligned with Ω with no 

loss of generality, Fig. (6a). We can go a step further and align the origins of the stationary and rotating 

reference frames because the Coriolis force is independent of position (Section 2.2). 

2.2.1 Transforming the position, velocity and acceleration vectors 

Position: Back to the question at hand: how does this position vector look when viewed from a 

second reference frame that is rotated through an angle θ with respect to the first frame? The answer is 
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that the vector ’looks’ like the components appropriate to the rotated reference frame, and so we need to


find the projection of X onto the unit vectors that define the rotated frame. The details are shown in Fig.


2 = 

x2cosθ. By a similar calculation we can find that 

L1 + L2, L1 = x1tanθ, and x L2cosθ. From this it follows that
(6b); notice that x2 = 

x2 = (x2 − x1tanθ)cosθ = −x1sinθ + 

x1cos(θ) + x2sin(θ). The component xx1 = 

unchanged, x
3 that is aligned with the axis of the rotation vector is


3 
= x3, and so the set of equations for the primed components may be written as a column 

vector 
⎡ ⎤ ⎡ ⎤ 

x1 cos θ + x2 sin θx
1 

X
� −x1 sin θ + x2 cos θ ⎦ . (9) = ⎣ x
 =
⎦ ⎣


2 

x
 x33 

By inspection this can be factored into the product 

X
� = RX, (10) 

where X is the matrix of stationary frame components and R is the rotation matrix, 
⎡ ⎤ 

cos θ sin θ 0 

R(θ) = ⎣ − sin θ cos θ 0 ⎦ . (11) 

0 0 1 
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This θ is the angle displaced by the rotated reference frame and is positive counterclockwise. The 

position vector observed from the rotated frame will be denoted by X�; to construct X� we sum the 

rotated components, X�, times a set of unit vectors that are fixed and thus 

X� = e1x =
 EX
� (12) +
 +
e2x2

e3x31

For example, the position vector X of Fig. (6) is at an angle of about 45◦ counterclockwise from 

the e1 unit vector and the rotated frame is at θ = 30◦ counterclockwise from the stationary frame one. 

That being so, the position vector viewed from the rotated reference frame, X�, makes an angle of 45◦ 

30◦ = 15◦ with respect to the e1 (fixed) unit vector seen within the rotated frame, Fig. (7). As a kind of 

verbal shorthand we might say that the position vector has been ’transformed’ into the rotated frame by 

Eqs. (9) and (12). But since the vector has an objective existence, what we really mean is that the 

components of the position vector are transformed by Eqn. (9) and then summed with fixed unit vectors 

to yield what should be regarded as a new vector, X�, the position vector that we observe from the 

rotated (or rotating) reference frame.12 

Velocity: The velocity of parcel P seen in the stationary frame is just the time rate of change of the 

position vector seen in that frame, 
dX d dX 

= EX = E ,
dt dt dt 

since E is time-independent. The velocity of parcel P as seen from the rotating reference frame is 

similarly 
dX� d dX� 

= EX
� = E ,

dt dt dt 
which indicates that the time derivatives of the rotated components are going to be very important in 

what follows. For the first derivative we find 

dX� d(RX) dR dX 
= = X + R . (13) 

dt dt dt dt 

12If the somewhat formal-looking Eqs. (9) through (12) do not have an immediate and concrete meaning for you, then 

the remainder of this important section will probably be a loss. Some questions/assignments to help you along: 1) Verify 

Eqs. (9) and (12) by some direct experimentation, i.e., try them and see. 2) Show that the transformation of the vector 

components given by Eqs. (10) and (11) leaves the magnitude of the vector unchanged, i.e., X
� = X . 3) Verify that | | | |

R(θ1)R(θ2) = R(θ1 + θ2) and that R(θ)−1 = R(−θ), where R−1 is the inverse (and also the transpose) of the rotation 

matrix. 4) Show that the unit vectors that define the rotated frame can be related to the unit vectors of the stationary frame by 

`E = ER
−1 

and hence the unit vectors observed from the stationary frame turn the opposite direction of the position vector 

observed from the rotating frame (and thus the reversed prime). The components of an ordinary vector (a position vector 

or velocity vector) are thus said to be contravariant, meaning that they rotate in a sense that is opposite the rotation of the 

coordinate system. What, then, can you make of `EX
� = ER

−1
RX? A concise and clear reference on matrix representations 

of coordinate transformations is by J. Pettofrezzo Matrices and Transformations (Dover Pub., New York, 1966). An excellent 

all-around reference for undergraduate-level applied mathematics including coordinate transformations is by M. L. Boas, 

Mathematical Methods in the Physical Sciences, 2nd edition (John Wiley and Sons, 1983). 
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Figure 7: (a) The position vector X seen from the stationary reference frame. (b) The position vector as 
seen from the rotated frame, denoted by X�. Note that in the rotated reference frame the unit vectors are 
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The angle ψ then changes as dψ/dt = −dθ/dt = −Ω, and thus the vector X� appears to rotate at the 
same rate but in the opposite sense as does the rotating reference frame. 

The second term on the right side of Eqn. (13) represents velocity components from the stationary 

frame that have been transformed into the rotating frame, as in Eqn. (10). If the rotation angle θ was 

constant so that R was independent of time, then the first term on the right side would vanish and the 

velocity components would transform exactly as do the components of the position vector. In that case 

there would be no Coriolis force. 

When the rotation angle is time-varying, as it will be here, the first term on the right side of Eqn. 

(13) is non-zero and represents a velocity component that is induced solely by the rotation of the 

reference frame. With Earth-attached reference frames in mind, we are going to take the angle θ to be 

θ = θ0 + Ωt, 

where Ω is Earth’s rotation rate, a constant defined below (and θ0 is unimportant). Though Ω is 

constant, the associated reference frame is nevertheless accelerating and is noninertial in the same way 

that circular motion at a steady speed is accelerating because the direction of the velocity vector is 

continually changing. Given this θ(t), the time-derivative of the rotation matrix is 

⎡ ⎤ − sin θ(t) cos θ(t) 0 
dR 

= Ω⎣ − cos θ(t) − sin θ(t) 0 ⎦ , (14) 
dt 

0 0 0 

1.2 
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which, notice, this has all the elements of R, but shuffled around. By inspection, this matrix can be 

factored into the product of a matrix C and R as 

dR 

dt 
= Ω CR(θ(t)), (15) 

where the matrix C is 
⎡ ⎤ ⎡ ⎤ 

0 1 0 1 0 0 

C = ⎣ −1 0 0 

0 0 0 

⎦ = ⎣ 0 1 0 

0 0 0 

⎦ R(π/2). (16) 

Multiplication by C acts to knock out the component ( )3 that is parallel to Ω and causes a rotation of 

π/2 in the plane perpendicular to Ω. Substitution into Eqn. (13) gives the velocity components 

appropriate to the rotating frame 
d(RX) dX 

= ΩCRX + R , (17) 
dt dt 

or using the prime notation ( )� to indicate multiplication by R, then 

dX� dX 
�

� 

= ΩCX
� + (18) 

dt dt 

The second term on the right side of Eqn. (18) is just the rotated velocity components and is present 

even if Ω vanished (a rotated but not a rotating reference frame). The first term on the right side 

represents a velocity that is induced by the rotation rate of the rotating frame; this induced velocity is 

proprtional to Ω and makes an angle of π/2 radians to the right of the position vector in the rotating 

frame (assuming that Ω > 0). 

To calculate the vector form of this term we can assume that the parcel P is stationary in the 

stationary reference frame so that dX/dt = 0. Viewed from the rotating frame, the parcel will appear to 

move clockwise at a rate that can be calculated from the geometry (Fig. 8). Let the rotation in a time 

interval δt be given by δψ = −Ωδt; in that time interval the tip of the vector will move a distance 

|δX�| = |X�|sin(δψ) ≈ | X�|δψ, assuming the small angle approximation for sin(δψ). The parcel will 

move in a direction that is perpendicular (instantaneously) to X�. The velocity of parcel P as seen from 

the rotating frame and due solely to the coordinate system rotation is thus limδt→0 
δX� 

= ×X�, the 
δt 

−Ω

vector cross-product equivalent of ΩCX� (Fig. 9). The vector equivalent of Eqn. (18) is then 

dX� 
� 

dX 
�

� 

= −Ω×X� + (19) 
dt dt 

The relation between time derivatives given by Eqn. (19) is general; it applies to all vectors, e.g., 

velocity vectors, and moreover, it applies for vectors defined at all points in space. Hence the 

relationship between the time derivatives may be written as an operator equation, 

d( )� 
� 

d( ) 
�

� 

dt 
= −Ω×( )� + 

dt 
(20) 
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that is valid for all vectors.13 From left to right the terms are: 1) the time rate of change of a vector as 

seen in the rotating reference frame, 2) the cross-product of the rotation vector with the vector and 3) 

the time rate change of the vector as seen in the stationary frame and then rotated into the rotating 

frame. One way to describe Eqn. (20) is that the time rate of change and prime operators do not 

commute, the difference being the cross-product term which, notice, represents a time rate change in the 

direction of the vector, but not the magnitude. Term 1) is the time rate of change that we observe 

directly or that we seek to solve when we are working from the rotating frame. 

Acceleration: Our goal is to relate the accelerations seen in the two frames and so we differentiate 

Eqn. (18) once more and after rearrangement of the kind used above find that the components satisfy 

d2X� dX� 
� 

d2X 
�

� 

= 2ΩC + Ω2
C

2
X

� + (21) 
dt2 dt dt2 

The middle term on the right includes multiplication by the matrix C2 = CC, 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

1 0 0 1 0 0 1 0 0 1 0 0 

C
2 = ⎣ 0 1 0 ⎦ R(π/2) ⎣ 0 1 0 ⎦ R(π/2) = ⎣ 0 1 0 ⎦ R(π) = ⎣ 0 1 0 ⎦ ,−

0 0 0 0 0 0 0 0 0 0 0 0 

that knocks out the component corresponding to the rotation vector Ω and reverses the other two 

components; the vector equivalent of Ω2C2X� is thus −Ω× Ω× X� (Fig. 9). The vector equivalent of 

13Imagine arrows taped to a turntable with random orientations. Once the turntable is set into (solid body) rotation, all of 

the arrows will necessarily rotate at the same rotation rate regardless of their position or orientation. The rotation will, of 

course, cause a translation of the arrows that depends upon their location, but the rotation rate is necessarily uniform, and 

this holds regardless of the physical quantity that the vector represents. This is of some importance for our application to a 

rotating Earth, since Earth’s motion includes a rotation about the polar axis, as well as an orbital motion around the Sun and 

yet we represent Earth’s rotation by a single vector. 
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Ω 

−Ω x Ω x X 

−Ω x X 
X 

Figure 9: A schematic showing the relation
ship of a vector X, and various cross-products 
with a second vector Ω (note the signs). The 
vector X is shown with its tail perched on the 
axis of the vector Ω as if it were a position 
vector. This helps us to visualize the direc
tion of the cross-products, but it is important 
to note that the relationship among the vec
tors and vector products shown here holds for 
all vectors, regardless of where they are de
fined in space or the physical quantity, e.g., 
position or velocity, that they represent. 

Eqn. (21) is then14 

d2X� dX� 
� 

d2X 
�

� 

dt2 
= − 2Ω×

dt 
− Ω×Ω×X� + 

dt2 
(22) 

Note the similarity with Eqn. (3). From left to right the terms of this equation are 1) the acceleration as 

seen in the rotating frame, 2) the Coriolis term, 3) the centrifugal15 term, and 4) the acceleration as seen 

in the stationary frame and then rotated into the rotating frame. As before, term 1) is the acceleration 

that we directly observe or analyze when we are working from the rotating reference frame. 

2.2.2 Stationary Inertial; Rotating Earth-Attached ⇒ ⇒

The third and final step in this derivation of the Coriolis force is to specify what we mean by an inertial 

reference frame, and so define the rotation rate of frame two. To make frame one inertial we presume 

that the unit vectors ei could in principle be aligned on the distant, ’fixed stars’.16 The rotating frame 

14The relationship between the stationary and rotating frame velocity vectors given by Eqs. (18) and (19) is clear visually 

and becomes intuitive given just a little experience. It is not so easy to intuit the corresponding relationship between the 

accelerations given by Eqs. (22) and (21). Hence, to understand the transformation of acceleration there is no choice but to 

understand the mathematical steps (to be able to reproduce, be able to explain) going from Eqn. (18) to Eqn. (21) and/or from 

Eqn. (19) to Eqn. (22). 
15’Centrifugal’ and ’centripetal’ have Latin roots, centri+fugere and centri+peter, meaning center-fleeing and center-

seeking, respectively. Taken literally they would indicate the sign of a radial force, for example. However, they are very 

often used to mean the specific term ω2r, i.e., centrifugal force when it is on the right side of an equation of motion and 

centripetal acceleration when it is on the left side. 
16‘Fixed’ is a matter of degree; certainly the Sun and the planets do not qualify, but even some nearby stars move detectably 

over the course of a year. The intent is that the most distant stars should serve as sign posts for the spatially-averaged mass 
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two is presumed to be attached to Earth, and the rotation rate Ω is then given by the rate at which the 

same fixed stars are observed to rotate overhead, one revolution per sidereal day (Latin for from the 

stars), 23 hrs, 56 min and 4.09 sec, or 

Ω = 7.2921×10−5 rad s −1 . (23) 

Earth’s rotation rate is very nearly constant, and the axis of rotation maintains a nearly steady bearing 

on a point on the celestial sphere that is close to the North Star, Polaris (Fig. 4). The rotation vector thus 

provides a definite orientation of Earth within the universe, and the rotation rate has an absolute 

significance. For example, the rotation rate sensors noted in footnote 10 read out Earth’s rotation rate 

with respect to the fixed stars as a kind of gage pressure, called ’Earth rate’.17 

of the universe on the hypothesis that inertia arises whenever there is an acceleration (linear or rotational) with respect to the 

mass of the universe as a whole. This grand idea was expressed most forcefully by the Austrian philosopher and physicist 

Ernst Mach, and is often termed Mach’s Principle (see, e.g., J. Schwinger, Einstein’s Legacy Dover Publications, 1986; M. 

Born, Einstein’s Theory of Relativity, Dover Publications, 1962). Mach’s Principle seems to be in accord with all empirical 

data, including the magnitude of the Coriolis force. However, Mach’s Principle is not, in and of itself, the fundamental 

mechanism of inertia. A new hypothesis takes the form of so-called vacuum stuff (or Higgs field) that is presumed to pervade 

all of space and so provide a local mechanism for resistance to accelerated motion (see P. Davies, ‘On the meaning of Mach’s 

principle’, http://www.padrak.com/ine/INERTIA.html). The debate between Newton and Leibniz over the reality of absolute 

space, which had seemed to go in favor of relative space, Leibniz and Mach’s Principle, has been renewed in the search for a 

physical origin of inertia. 

Observations on the fixed stars are a very precise means to define rotation rate, but can not, in general, be used to define the 

linear translation or acceleration of a reference frame. The only way to know if a reference frame that is aligned on the fixed 

stars is inertial is to carry out mechanics experiments and test whether Eqn.(1) holds and global momentum is conserved. If 

yes, the frame is inertial. 
17For our purpose we can presume that Ω is constant. In fact, there are small but observable variations of Earth’s rotation 

rate due mainly to changes in the atmospheric and oceanic circulation and due to mass distribution within the cryosphere, 

see B. F. Chao and C. M. Cox, ‘Detection of a large-scale mass redistribution in the terrestrial system since 1998,’ Science, 

297, 831–833 (2002), and R. M. Ponte and D. Stammer, ‘Role of ocean currents and bottom pressure variability on seasonal 

polar motion,’ J. Geophys. Res., 104, 23393–23409 (1999). The direction of Ω with respect to the celestial sphere also 

varies detectably on time scales of tens of centuries on account of precession, so that Polaris has not always been the pole 

star (Fig. 4), even during historical times. The slow variation of Earth’s orbital parameters (slow for our present purpose) 

are an important element of climate, see e.g., J. A. Rial, ‘Pacemaking the ice ages by frequency modulation of Earth’s orbital 

eccentricity,’ Science, 285, 564–568 (1999). 

As well, Earth’s motion within the solar system and galaxy is much more complex than a simple spin around the polar axis. 

Among other things, the Earth orbits the Sun in a counterclockwise direction with a rotation rate of 1.9910×10−7 s −1, which 

is about 0.3% of the rotation rate Ω. Does this orbital motion enter into the Coriolis force, or otherwise affect the dynamics 

of the atmosphere and oceans? The short answer is no and yes. We have already accounted for the rotation of the Earth with 

respect to the fixed stars. Whether this rotation is due to a spin about an axis centered on the Earth or due to a solid body 

rotation about a displaced center is not relevant for the Coriolis force per se, as noted in the discussion of Eqn. (20). However, 

since Earth’s polar axis is tilted significantly from normal to the plane of the Earth’s orbit around the Sun (the tilt implied by 

Fig. (4)), we can ascribe Earth’s rotation Ω to spin alone. The orbital motion about the Sun combined with Earth’s finite size 

gives rise to tidal forces, which are small but important spatial variations of the centrifugal/gravitational balance that holds 

for the Earth-Sun and for the Earth-Moon as a whole (described particularly well by French8). A question for you: What is 

the rotation rate of the Moon? Hint, make a sketch of the Earth-Moon orbital system and consider what we observe of the 

Moon from Earth. What would the Coriolis and centrifugal forces be on the Moon? 
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A sidereal day is only a few minutes less than a solar day, and so in a purely numerical sense, 

Ω ≈ Ωsolar = 2π/24 hours, which is certainly easier to remember than is Eqn. (23). For the purpose of 

a rough estimate, the small numerical difference between Ω and Ωsolar is not significant. However, the 

difference between Ω and Ωsolar can be told in numerical simulations and in well-resolved field 

observations, and, if we accept Mach’s Principle,16 the physical difference between Ω and Ωsolar is 

highly significant. 

Assume that the inertial frame equation of motion is 

d2X d2X 
M = F + G∗M and M = F + g∗M (24) 

dt2 dt2 

(G∗ is the component matrix of g∗). The acceleration and force can always be viewed from another 

reference frame that is rotated (but not rotating) with respect to the first frame, 

� �

� 
� �

�

d2X d2X 
M = F� + G� M and M = F� + g � M, (25) 

dt2 ∗ dt2 ∗

as if we had chosen a different set of fixed stars or multiplied both sides of Eqn. (22) by the same 

rotation matrix. This equation of motion preserves the global conservation and Galilean transformation 

properties of Eqn. (24). To find the rotating frame equation of motion, we use Eqs. (21) and (22) to 

eliminate the rotated acceleration from Eqn. (25) and then solve for the acceleration seen in the rotating 

frame: the components are 

d2X� dX� 

M = 2ΩC M − Ω2
C

2
X

�M + F� + G� M (26) 
dt2 dt ∗

and the vector equivalent is


d2X� 

dt2 
M = − 2Ω× dX

� 

dt 
M − Ω×Ω×X�M + F� + g∗ 

�M (27) 

Eqn. (27) has the form of Eqn. (4), the difference being that the noninertial reference frame is rotating 

rather than merely translating. If the origin of this noninertial reference frame was also accelerating, 

then we would have a third inertial force term, −(d2Xo/dt
2)M . Notice that we are not yet at Eqn. (2); 

in Section 4.1 we will indicate why the centrifugal force and gravitational mass attraction terms are 

combined into g. 

2.2.3 Remarks on the transformed equation of motion 

Once we have in hand the transformation rule for accelerations, Eqn.(22), the path to the rotating frame 

equation of motion is short and direct — if Eqn. (25) holds in a given reference frame, say an inertial 
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frame, then Eqs. (26) and (27) hold exactly in a frame that rotates at the constant rate and direction Ω 

with respect to the first frame. The rotating frame equation of motion includes two terms that are 

dependent upon the rotation vector, the Coriolis term, −2Ω×(dX�/dt), and the centrifugal term, 

−Ω×Ω×X�. These terms are sometimes written on the left side of an equation of motion as if they 

were going to be regarded as part of the acceleration, i.e., 

d2X� dX�


dt2 
M + 2Ω×

dt 
M + Ω×Ω×X�M = F� + g∗�M. (28)


If we compare the left side of Eqn. (28) with Eqn. (22) it is evident that the rotated acceleration is equal 

to the rotated force, 
d2X 

M = F� + g∗ �M, 
dt2 

which is well and true and the same as Eqn. (25).18 However, it is crucial to understand that the left side 

of Eqn. (28), (d2X/dt2)� is not the acceleration that we observe or seek to analyze when we use a 

rotating reference frame; the acceleration we observe in a rotating frame is d2X�/dt2. Once we solve for 

d2X�/dt2, it follows that the Coriolis and centrifugal terms are, figuratively or literally, sent to the right 

side of the equation of motion where they are interpreted as if they were forces. 

When the Coriolis and centrifugal terms are regarded as forces — as we intend they should be 

when we use a rotating reference frame — they have some peculiar properties. From Eqn. (28) (and 

Eqn. (4)) we can see that the centrifugal and Coriolis terms are inertial forces and are exactly 

proportional to the mass of the parcel observed, M , whatever that mass may be. The acceleration field 

for these inertial forces arises from the rotational acceleration of the reference frame, combined with 

relative velocity for the Coriolis force. They differ from central forces F and g∗M in the respect that 

there is no physical interaction that causes the Coriolis or centrifugal force and hence there is no 

action-reaction force pair. As a consequence the rotating frame equation of motion does not retain the 

global conservation of momentum that is a fundamental property of the inertial frame equation of 

motion and central forces (an example of this nonconservation is described in Section 3.4). Similarly, 

we note here only that invariance to Galilean transformation is lost since the Coriolis force involves the 

velocity rather than velocity derivatives. Thus V� is an absolute velocity in the rotating reference frame 

of the Earth. If we need to call attention to these special properties of the Coriolis force, then the usage 

Coriolis inertial force seems appropriate because it is free from the taint of unreality that goes with 

’virtual force’, ’fictitious correction force’, etc., and because it gives at least a hint at the origin of the 

Coriolis force. It is important to be aware of these properties of the rotating frame equation of motion, 

and also to be assured that in most analysis of geophysical flows they are of no great practical 

18Recall that Ω = Ω� and so we could put a prime on every vector in this equation. That being so, we would be better 

off to remove the visually distracting primes and simply note that the resulting equation holds in a steadily rotating reference 

frame. We will hang onto the primes for now, since we will be considering both inertial and rotating reference frames until 

Section 5. 
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consequence. What is important is that the rotating frame equation of motion offers a very significant 

gain in simplicity compared to the inertial frame equation of motion (discussed in Section 4.3). 

The Coriolis and centrifugal forces taken individually have simple interpretations. From Eqn. (27) 

it is evident that the Coriolis force is normal to the velocity, dX�/dt, and to the rotation vector, Ω. The 

Coriolis force will thus tend to cause the velocity to change direction but not magnitude, and is 

appropriately termed a deflecting force as noted in Section 1. The centrifugal force is in a direction 

perpendicular to and directed away from the axis of rotation. Notice that the Coriolis force is 

independent of position, while the centrifugal force clearly is not. The centrifugal force is independent 

of time. How these forces effect dynamics in simplified conditions will be considered further in 

Sections 3, 4.3 and 5. 

3 Inertial and noninertial descriptions of elementary motions. 

To appreciate some of the properties of a noninertial reference frame we will now analyze several 

examples of elementary motions whose inertial frame dynamics will be very familiar. The object will 

be to compare the same motions when they are observed from a noninertial reference frame, and the 

goal will be to understand how the accelerations and the inertial forces — gravity, centrifugal and 

Coriolis — depend upon the reference frame. 

There is an important difference between what we will term contact forces, F, that act over the 

surface of the parcel, and the acceleration due to gravity, gM , which is an inertial force that acts 

throughout the body of the parcel (and note that in this section we will not distinguish between g and 

g∗) (Table 1). To measure the contact forces we could enclose the parcel in a wrap-around strain gage 

that measures and reads out the vector sum of the tangential and normal stresses acting on the surface of 

the parcel. To measure gravity we could measure the direction of a plumb line, which defines vertical 

and the alignment of the ez unit vector. The magnitude of the acceleration could then be measured by 

observing the period of oscillation of a simple pendulum.19 

19A plumb line is nothing more than a weight, the plumb bob, that hangs from a string, the plumb line (and plumbum is 

Latin for lead, Pb). When the plumb bob is at rest, the plumb line is parallel to the local acceleration field. If the weight is 

displaced and released, it becomes a simple pendulum, and the period of oscillation, P , can be used to infer the magnitude of 

the acceleration, g = L/(P/2π)2, where L is the length of the plumb line. If the reference frame is attached to the rotating 

Earth, then the measured inertial acceleration includes a contribution from the centrifugal force, discussed in Section 4.1. The 

motion of the pendulum will be effected also by the Coriolis force, and in this context a simple pendulum is often termed a 

Foucault pendulum, discussed further in a later footnote 29. In this section we consider gravity, rather than gravitational mass 

attraction and centrifugal force due to Earth’s rotation considered separately. When centrifugal force arises here, it will be 

due to the rotation of a rapidly rotating reference frame and noted explicitly. 
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A characterization of the forces on geophysical flows.


contact forces 

grav. mass attraction 

centrifugal 

Coriolis 

central? inertial? Galilean invariant? position only? 

yes no yes no 

yes yes yes yes 

no yes yes yes 

no yes no no 

Table 1: Contact forces on fluid parcels are pressure gradients (normal to a surface) and frictional forces 

(mainly tangential to a surface). The centrifugal force noted here is that associated with Earth’s rotation. 

By ’position only’ we mean that the gravitational mass attraction is dependent upon the parcel position on 

Earth (times mass), but not the parcel velocity, for example. In this table we have ignored electromagnetic 

forces that are usually small. 

3.1 Switching sides 

In this section we will evaluate the equations of motion, Eqn. (24) and (27), for truly elementary 

motions. Nevertheless, the analysis is slightly subtle insofar as the terms that represent accelerations 

and inertial forces will seem to change identity, as if by fiat, when we change reference frames. To 

understand that there is more going on than merely relabeling and reinterpreting terms in an arbitrary 

way, it will be very helpful make a sketch of each case beginning with the acceleration. 

Consider a parcel of known, fixed mass M that is at rest and in contact with the ground, say, in a 

reference frame where the acceleration of gravity is known from independent observations, e.g., 

pendulum experiments. The strain gauge will read out a contact force Fz, which is upwards, from the 

perspective of the parcel. The vertical component of the equation of motion for the parcel is then 

d2z 
M = Fz − g. 

dt2 

As before, we will write the observable acceleration on the left side of the equation of motion (even 

when we regard it as known) and list the forces on the right side. In this case the acceleration 

d2z/dt2 = 0, and so 

0 = Fz − gM, (29) 

which indicates a static force balance between the upward contact force, Fz, and the downward force 

due to gravity. Now suppose that we observe the same parcel from a reference frame that is in free-fall 

and accelerating downwards at the rate −g.20 When viewed from this reference frame, the parcel 

20Gravitational mass attraction is an inertial force and a central force that has a very long range. Consider two gravitating 

bodies and a reference frame attached to one of them, say parcel one, which will then be observed to be at rest. If parcel two 

is then found to accelerate towards parcel one, the total momentum of the system (parcel one plus parcel two) will not be 
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appears to be accelerating upwards at the rate g that is just the complement of the acceleration of the 

free-falling frame. In this frame there is no gravitational force (imagine astronauts floating in space and 

attempting pendulum experiments) and so the only force we recognize as acting on the parcel is the 

contact force, Fz, which is unchanged from the case before. The equation of motion for the parcel 

observed from this free-falling reference frame is then 

d2z� 
M = Fz,

dt2 

or if we evaluate the acceleration, d2z�/dt2 = g, 

gM = Fz. (30) 

Notice that in going from Eqn. (29) to the free-falling frame Eqn. (30) the contact force is unchanged 

(invariant) while the term involving g has switched sides; gM is an inertial force in the reference frame 

appropriate to Eqn. (29) and is transformed into an acceleration (times M) in the free-falling reference 

frame described by Eqn. (30). The equations of motion makes prefectly good sense either way, but what 

we observe as an acceleration in one frame appears as an inertial force in the other frame. As we will 

see next, the same kind of switching sides happens with centrifugal and Coriolis inertial forces when we 

transform to or from a rotating reference frame. 

Now consider the horizontal motion of this parcel, so that gravity and the vertical component of the 

motion will be ignored. We will presume that F = 0, and hence the inertial frame equation of motion 

expanded in polar coordinates (derived in Section 3.4 and repeated here for convenience), 

d2X 
� 

d2r 
� � 

dr dω 
� 

M = 
dt2 

− rω2 Mer + 2ω + r Meθ = Frer + Fθeθ,
dt2 dt dt 

vanishes term by term. Suppose that the same parcel is viewed from a steadily rotating reference frame 

and that it is at a distance r� from the origin of the rotating frame. Viewed from this frame, the parcel 

will have a velocity V� = −Ω× X� and will appear to be moving around a circle of radius 

r� = constant and in a direction opposite the rotation of the reference frame, ω� = −Ω, just as in Figure 

(8). The rotating frame equation of motion in polar coordinates is 

d2X� 
� 

d2r
� � 

dr� dω� 
� 

dt2 
M = 

dt2 
− r �ω�2 Me r 

� + 2ω� 

dt 
+ r � 

dt 
Meθ 

� 

� � dr� 
= r �Ω2M + 2Ωω� r �M + F � e � + −2Ω M + F � e � (31) r r θ θ. dt 

conserved, i.e., in effect, gravity would not be recognized as a central force. A reference frame attached to one of the parcels 

is thus noninertial. To define an inertial reference frame in the presence of mutually gravitating bodies we can use the center 

of mass of the system, and then align on the fixed stars. This amounts to putting the entire system into free-fall with respect 

to any larger scale (external to this system) gravitational mass attraction (for more on gravity and inertial reference frames see 

http://plato.stanford.edu/entries/spacetime-iframes/). 

http://plato.stanford.edu/entries/spacetime-iframes/)
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=
 =
 0. All
We presume that we can read the strain gage from this rotating frame just as well, and F � r 
of the azimuthal component terms vanish individually, but three of the radial component terms are 

11 ’virtual’, or ’fictitious, correction’ forces to acknowledge this discomfort. To be consistent, we would 

have do the same for the centripetal acceleration term. But labeling terms this way serves mainly to 

obscure the fundamental issue accelerations and inertial forces are relative to a reference frame. As — 

we found in the example of a free-falling reference frame, this applies just as much for gravitational 

mass attraction as it does for centrifugal and Coriolis forces. 

V 5The centrifugal force is something that we encounter in daily life. For example, a runner having = 
1− Rand making a moderately sharp turn, radius 15 m, will easily feel the centrifugal force, =m s 

2(V /R)M 0 15gM , and will compensate instinctively by leaning toward the center of the turn. It is ≈ .

nonzero, 

−r �ω�2 = r �Ω2 + 2Ωω� r � , (32) 

and indicate an interesting balance between the centripetal acceleration, −r�ω�2 (the acceleration we 

observe and the left hand side), and the sum of the centrifugal and Coriolis inertial forces (the right 

hand side, divided by M , and note that ω� = −Ω).21 Interesting perhaps, but disturbing as well; a parcel 

that was at rest in the inertial frame has acquired a rather complex momentum balance when observed 

from a rotating reference frame. It is sorely tempting to deem the Coriolis and centrifugal terms to be 

3.2 To get a feel for the Coriolis force 

unlikely that a runner would think of this centrifugal force as virtual or fictitious. 

The Coriolis force associated with Earth’s rotation is very small by comparison, only about 

2ΩV M ≈ 10−4gM for a runner. To experience the Coriolis force in the same direct way that we can 

feel the centrifugal force, i.e., to feel it in our bones, will thus require a platform having a rotation rate 

that exceeds Earth’s rotation rate by a factor of about 104. A typical merry-go-round having a rotation 

rate Ω = 2π/12 rad s −1 = 0.5 rad s −1 is ideal. We are now going to calculate the forces that we would 

feel while sitting or walking about on a merry-go-round, and so will need to estimate a body mass, say 

M = 75 kg (approximately the standard airline passenger before the era of super-sized meals and 

passengers). 

3.2.1 Zero relative velocity 

To start, let’s presume that we are sitting quietly near the outside radius r = 6 m of a merry-go-round 

that it is rotating at a steady rate, Ω = 0.5 rad s −1. How does the momentum balance of our motion 

21Two problems for you: 1) Given the polar coordinate velocity, Eqn. (42), show that Eqn. (31) can be derived also from 

the vector form of the equation of motion, Eqn. (27). 2) Sketch the balance of forces in a case where the rotation rate Ω is 

positive and then again where it is negative. Is this consistent with Eqn. (32)? 

�Fθ 
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depend upon the reference frame? 

Viewed from an approximate inertial frame outside of the merry-go-round (fixed stars are not 

required given the rapid rotation rate), the polar coordinate momentum balance Eqn. (31) with ω = Ω 

and dr/dt = dω/dt = Fθ = 0 reduces to a two term radial balance, 

−rΩ2M = Fr, (33) 

in which a centripetal acceleration (×M) is balanced by an inward-directed radial (contact) force, Fr. 

We can readily evaluate the former and find −rΩ2M = Fr = −112 N, which is equal to the weight on a 

mass of Fr/g = 11.5 kg for a nominal g. This is just what the strain gauge (the one on the seat of your 

pants) reads out. 

Viewed from the rotating reference frame, i.e., our seat on the merry-go-round, we are stationary 

and of course not accelerating. To evaluate the rotating frame momentum equation, Eqn. 31, we thus set 

ω� = 0, r� = constant, and are left with a two term radial force balance, 

0 = r �Ω2M + F r 
� . (34) 

The physical conditions are unchanged and thus the strain gage reads out exactly as before, and 

F � = Fr = −112 N. What has changed is that the term r�Ω2M , an acceleration in the inertial frame, is r 

now on the right side of the momentum equation and is the centrifugal force. Within the rotating frame, 

the centrifugal force is quite vivid; it appears that we are being pushed outwards, or centrifugally, by an 

inertial force that is opposed by the centripetal contact force Fr
�. This is exactly the relationship between 

weight and a contact force described in Section 3.1. The centrifugal force produces a radial acceleration 

on every stationary object that depends only upon the radius, r�. For example, a plumb line makes an 

angle to the vertical of arctan(r�Ω2/g), where the vertical direction and g are in the absence of rotation. 

The centrifugal force thus contributes to the direction and magnitude of the time-independent 

acceleration field observed in the rotating frame, an important point that we will return to in Section 4.1. 

3.2.2 With relative velocity 

Most merry-go-rounds have signs posted which caution riders to remain in their seats once the ride 

begins. This is a good and prudent rule, of course. But if our goal is to get a feel for the Coriolis force 

then we may decide to go for a (very cautious) walk on the merry-go-round. We will presume that the 

relative velocity, i.e., our walking velocity, is specified, and then calculate the contact force that must be 

exerted by the merry-go-round upon us as a consequence. 

Azimuthal relative velocity: Let’s assume that we walk azimuthally so that r = 6 m and constant. A 

reasonable walking pace under the circumstance is about Uw = 1.5 m s−1, which corresponds to a 

relative rotation rate ω� = 0.25 rad s −1, and recall that Ω = 0.5 rad s −1. Let’s also assume that we walk 

in the direction of the merry-go-round rotation so that ω = Ω + ω� = 0.75 rad s −1 . 
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From the inertial frame momentum equation (31) we can readily calculate that the centripetal 

force required to maintain r = constant at this greater angular velocity is 

−rω2M = −r(Ω + ω�)2M = Fr ≈ −253 N, 

or roughly twice the force required when you were seated. If we then reverse direction and walk at the 

same speed against the rotation of the merry-go-round, Fr is reduced to about -28 N. This pronounced 

variation of Fr with ω� is a straightforward consequence of the quadratic dependence of centripetal 

acceleration upon the rotation rate, ω. 

When this motion is viewed from the rotating frame of the merry-go-round, we distinguish 

between the rotation rate of the merry-go-round, Ω, and the relative rotation rate, ω�, due to our walking 

speed. The radial component of the rotating frame momentum equation reduces to 

−r �ω�2M = (r �Ω2 + 2r �Ωω�)M + F r 
� . (35) 

The term on the left is the comparatively small centripetal acceleration; the first term on the right is the 

usual centrifugal force, and the second term on the right, 2r�Ωω�, is the Coriolis force. The Coriolis 

force is substantial, 2r�Ωω�M ± 112 N, with the sign determined by the direction of our motion relative 

to Ω. If Ω > 0 and ω� > 0 then the Coriolis force is positive and radial and to the right of and normal to 

the azimuthal relative velocity. Given what we found in the previous paragraph, it is tempting to 

identify the Coriolis force as the (relative)velocity-dependent part of the centrifugal force. This is, 

however, somewhat loose and approximate; loose because the centrifugal force is defined to be 

dependent upon rotation rate and position only and approximate because this ignores the small 

centripetal acceleration term. 

Radial relative velocity: If we are still able, let’s now consider a (very cautious) walk in the radial 

direction. To isolate the effects of radial motion we will presume that our radial speed is constant at 

dr�/dt = 1 m s −1 and that we walk along a radial line so that our rotation rate also remains constant at 

ω = Ω. (In practice this is very difficult to do for more than a few steps, but that will suffice.) The 

resulting contact force F is then in the azimuthal direction, and its magnitude and sense can most easily 

be interpreted in terms of the balance of angular momentum, A = ωr�2M. In this circumstance the rate 

of change of angular momentum A has been fully specified, 

dA dr� 
= 2Ωr � M = r �Fθ,

dt dt 

and must be accompanied by an azimuthal torque, r�Fθ, exerted by the merry-go-round. 

Viewed from an inertial frame, the azimuthal component of the momentum balance, Eqn. (31), 

reduces to 

dr 
2Ω M = Fθ, (36) 

dt 
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where Fθ ≈ −75 N for the given data. The azimuthal contact force Fθ has the form of the Coriolis force, 

but remember that we are viewing the motion from an inertial frame so that there is no Coriolis force. If 

the radial motion was inward so that dr/dt < 0, then Fθ must be negative, or opposite the direction of 

the merry-go-round rotation, since our angular momentum is necessarily becoming less positive. (Be 

sure that these signs are clear before going on to consider this motion from the rotating frame.) 

From within the rotating frame, the momentum equation reduces to an azimuthal force balance 

dr� 
0 = −2Ω M + Fθ

� , (37) 
dt 

where −2Ωdr� M is the Coriolis force and Fθ 
� = Fθ as before. The contact force exerted by the 

dt 

merry-go-round, Fθ
�, is balanced by an inertial force, the Coriolis force, in the direction opposed to Fθ

� . 

For example, if our radial motion is inward, dr� M ≥ 0, is to the 
dt 

≤ 0, then the Coriolis force, −2Ωdr� 

dt 

right of and normal to our relative velocity, just as we would have expected from the vectorial Coriolis 

force. This interpretation of a Coriolis force is exactly parallel to the interpretation of centrifugal force 

in the example of steady, circular motion and Eqn. (34): an acceleration seen from an inertial frame 

appears to be an inertial force when viewed from within the rotating frame. 

Be careful! If you have a chance to do this experiment you will learn with the first step whether the 

Coriolis force is better described as a real force or as a fictitious correction force. Be sure to ask 

permission of the operator before you start walking around, and exercise genuine caution. The Coriolis 

force is an inertial force and so is distributed throughout your body, unlike the contact force which acts 

only where you are in contact with the merry-go-round, i.e., through the soles of your sneakers. It is 

therefore essential to maintain a secure hand grip at all times. The radial Coriolis force associated with 

azimuthal motion is much like an increase or slackening of the centrifugal force and so is not 

particularly difficult to compensate. However, you are likely to find that the azimuthal Coriolis force 

associated with radial motion is quite surprising, even presuming that you are the complete master of 

the present analysis. If you do not have access to a merry-go-round or if you feel that this experiment is 

unwise, then see Stommel and Moore9 for alternate ways to accomplish some of the same things. 

3.3 An elementary projectile problem 

A very simple projectile problem can reveal some other aspects of rotating frame dynamics. Assume 

that a projectile is launched at a speed U0 and at an angle to the ground β from a location 

[x y] = [0 y0]. The only force presumed to act on the projectile after launch is the downward force of 

gravity, −gMe3, which is the same in either reference frame. 
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Figure 10: Trajectory of a parcel launched with a horizontal velocity in the positive y-direction as seen 
from an inertial reference frame (solid line, displaced in the y-direction only), and as seen from a rotating 
frame (dashed, curves lines). The left and right panels are 3-dimensional and plan views. The dotted 
curve is with the Coriolis force only (the motivation for this is in Section 4). This trajectory has the form 
of a circle, and if the projectile had not returned to the surface, z = 0, it would have made a complete 
loop back to the starting point. 

3.3.1 From the inertial frame 

The equations of motion and initial conditions in Cartesian components are linear and uncoupled; 

d2x dx 
= 0; x(0) = 0, = 0, (38) 

dt2 dt 

d2y dy 
= 0; y(0) = y0, = U0 cos β, 

dt2 dt 

d2z dz 
= −g; z(0) = 0, = U0 sinβ, 

dt2 dt 

where M has been divided out. The solution for 0 < t < 2U0 

g 

sinβ , the time the parcel is in the air, is 

x(t) = 0, (39) 

y(t) = y0 + tU0 cosβ, 
1 

z(t) = t(U0 sinβ − gt)
2

is in Fig. (10). 
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3.3.2 From the rotating frame 

How would this same motion look when viewed from a rotating reference frame? And, how could we 

compute the motion from within a rotating reference frame? 

The first question can be answered most directly by rotating the trajectory, Eqn. (39), via the 

rotation matrix, Eqn. (12), X� = RX with θ = Ωt, and with the result 

x �(t) = (y0 + tU0 cos β) sin (Ωt), (40) 

y �(t) = (y0 + tU0 cos β) cos (Ωt), 

1 
z �(t) = z = t(U0 sinβ − gt),

2

valid over the time interval as before. The z component is unchanged in going to the rotating reference 

frame since the rotation axis was aligned with z. This is quite general; motion that is parallel to the 

rotation vector Ω is unchanged, just as we would expect from the three-dimensional vector Coriolis 

force. On the other hand, motion in the (x, y)-plane perpendicular to the rotation vector can be altered 

quite substantially, depending upon the phase Ωt. In the case shown in Fig. (10), the change of phase is 

2.0 at the end of the trajectory, so that rotation effects are prominent.22 One important aspect of the 

trajectory is not changed, however, the (horizontal) radius, 

x�2 + y�2 = x2 + y2 , 

since the coordinate systems have coincident origins (Fig. 11a) 

How could we compute the trajectory in the rotating frame? The Cartesian component equations in 

the rotating frame are a bit awkward (the x-component only): 

d2x� dy� x�2 
= 2Ω + Ω2 

� . 
dt2 dt x�2 + y�2 

An elementary problem in the inertial frame transforms into a pair of coupled, nonlinear equations in 

the rotating frame (z� = z). We can always solve these equations numerically, but we are better off in 

this and many problems involving rotation to use cylindrical polar coordinates where we can take 

advantage of what we have already learned about the rotating frame solution. We know that 

r � = r = y0 + tU0 cos β, 

22A well-thrown baseball travels at about 45 m s −1 . How much will it be deflected as it travels over a distance of 30 m? 

Use Earth’s rotation rate given by Eqn. (23)(as we will see in Section 4.2 this is appropriate for the north pole). A long-range 

artillery shell has an initial speed of about 700 m s −1 . Assuming the shell is launched at angle to the ground of 30 degrees, 

how much will it be deflected over its trajectory (ignoring air resistance)? 
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1 Figure 11: (a) The distance from

the origin in the horizontal plane 
for the trajectories of Fig. (10). 
The distance from the origin is 
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ates due to the centrifugal force. 

and that the angle in the inertial frame, θ, is constant in time since the motion is purely radial and for the 

specific case considered, θ = π/2. The rotation rates are related by ω� = −Ω, and thus 

θ� = π/2 − Ωt. 

Both the radius and the angle increase linearly in time, and the horizontal trace of the trajectory as seen 

from the rotating frame is Archimedes spiral (Fig. 10, lower). 

When viewed from the rotating frame, the projectile is obviously deflected to the right, and from 

the azimuthal component of Eqn. (31) we readily attribute this to the Coriolis force, 

dr� dr� 
2ω� M = −2Ω M, 

dt dt 

since ω� = Ω. Notice that the horizontal speed and thus the kinetic energy increase with time (Fig. 11, 

lower). The rate of increase of rotating frame kinetic energy (per unit mass) is 

dV�2/2 d(U
0

2 + r�2Ω2)/2 dr�
�Ω2 = = r 

dt dt dt 

where the term on the right side is the work done by the centrifugal force, r�Ω2 , on the radial velocity, 

dr�/dt. If the projectile had not returned to the ground, its speed (observed from the rotating reference 

frame) would have increased without limit so long as the radius increased.23 

23In the previous example, walking around on a merry-go-round, we indicated that you would be able to feel the Coriolis 

force directly. Imagine that you are riding along on this projectile (don’t try this one at home) — would you be able to feel 

the Coriolis force? 

0 

0.2 

0.4 

0.6 

0.8 

d
is

t 
fr

o
m

 o
ri
g
in

inertial and 
rotating 

Coriolis 

a 

0 

0.5 

1 

1.5 

d
is

t 
a
lo

n
g
 p

a
th rotating 

inertial and 
Coriolis 

b 



3 INERTIAL AND NONINERTIAL DESCRIPTIONS OF ELEMENTARY MOTIONS. 37 

3.4 Appendix to Section 3: Circular motion and polar coordinates. 

e 
r 

Figure 12: The unit vectors 
e1, e2 define a stationary reference 
frame. The unit vectors for a polar 
coordinate system, er and eθ, are 
defined at the position of a given 
parcel, P. These unit vectors are 
time-dependent since the angle θ is 
time-dependent. 

Rotational phenomena are often analyzed most efficiently with cylindrical polar coordinates, 

reviewed here briefly. The vertical coordinate is exactly the z or x3 of Cartesian coordinates, and we 

need consider only the horizontal (two-dimensional) position, which can be specified by a distance from 

the origin, r, and the angle, θ between the radius vector and (arbitrarily) the x1 axis (Fig. 12). The 

corresponding unit vectors are given in terms of the time-independent Cartesian unit vectors that define 

the stationary frame by 

er = cos(θ)e1 + sin(θ)e2 and, eθ = −sin(θ)e1 + cos(θ)e2. (41) 

The position vector in this system is 

X = rer, 

and hence the velocity is 

e 
1 

e 
2 

P 

e 
θ 

θ 

X 

dX dr der dr 
M = erM + r M = Mer + rωMeθ, (42) 

dt dt dt dt 

where we have taken account of the time-dependence of er and ω = dθ/dt. Continuing, the equation of 

motion is 

d2X 
� 

d2r 
� � 

dr dω 
� 

M = 
dt2 

− rω2 Mer + 2ω + r Meθ (43) 
dt2 dt dt 

= Frer + Fθeθ. (44) 

Notice that there are acceleration terms, rω2 and 2ω dr , that look just like the centrifugal and Coriolis 
dt

forces (and are sometimes deemed to be such, even by otherwise very careful authors, e.g., Boas,12 p. 

399), though this equation holds in an inertial frame where centrifugal and Coriolis forces (or 

accelerations) do not arise. 
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To find the rotating frame equation of motion is straightforward; the radius is identical in the 

rotating frame, r� = r, since the origins are assumed coincident. The unit vectors are identical since 

they are defined at the location of the parcel,
 and e
 eθ; the force components are thus also =
 =
e
 er θr 

identical. The only thing different is that the angular velocity ω is decomposed into a time mean and a 

relative angular velocity, ω = ω� + Ω. Substituting this into the inertial frame equation of motion Eqn. 

(44), and rearrangement to move terms containing Ω to the right hand side yields the 

formidable-looking rotating frame equation of motion for polar coordinates, 

d2X� 
� 

d2r� 
� � 

dr� dω� 
� 

�ω�2 Me � + 2ω�M
 Me
+
 r
= r 
dt2 

− θrdt2 dt dt


� � �M F M F+ + θ 

� � dr� 

r 
�Ω2M + 2Ωω� −2Ω
 .
 (45)
+
= r
 r
 e
 e
θr dt


Notice that there are genuine centrifugal and Coriolis force terms on the righthand side of Eqn. (45) and 

that we have derived these terms for the third time now; for Cartesian coordinates, Eqn. (26), for 

vectors, Eqn. (27), and here for cylindrical polar coordinates. You should be sure to verify this, as it is 

perhaps the most direct derivation of the Coriolis force, and most easily shows how or where the factor 

of 2 arises. 

4 A reference frame attached to the rotating Earth. 

The equations of motion appropriate to the atmosphere and ocean differ from the general rotating frame 

equations considered up to now in two significant ways. First, it isn’t just the reference frame that 

rotates, but the entire Earth, ocean and atmosphere, aside from the comparatively small (but very 

important!) relative motion that we call winds and ocean currents. A major consequence is that the 

horizontal component of the centrifugal force on a stationary parcel is exactly canceled by a component 

of the gravitational mass attraction. Thus the centrifugal force does not appear in the rotating frame 

dynamical equations for the atmosphere and oceans, a very welcome simplification (Section 4.1). 

Second, because the Earth is nearly spherical, the rotation vector is not perpendicular to the plane of 

horizontal motions except at the poles. This causes the horizontal component of the Coriolis force to 

vary with latitude (Section 4.2). Lastly, we will compare inertial and rotating frame descriptions of a 

simple geophysical phenomenon (Section 4.3), and explain why we persist in using the rotating frame 

equations. 

4.1 Cancelation of the centrifugal force 

To understand how the centrifugal force is canceled we consider briefly the balance of gravitational 

mass attraction and centrifugal forces on a rotating Earth. To be sure, the details of this first subsection 
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are a bit beyond the minimum discussion needed for our purpose, but are inherently interesting. A more 

compact though more abstract way to come to the same result is to consider the definition and 

measurement of vertical and level in an accelerated fluid environment, Section 4.1.2. 

4.1.1 Earth’s (slightly chubby) figure 

If Earth was a perfect, homogeneous sphere, the gravitational mass attraction at the surface, g∗, would 

be directed towards the center (Fig. 13). Because the Earth is rotating, every parcel on the surface is 

also subject to a centrifugal force of magnitude Ω2R sin θ, where Re is the nominal Earth’s radius, and θ 
is the colatitude (π/2 - latitude). This centrifugal force has a component parallel to the surface (a shear 

stress) 

Cθ = Ω2Re sin θ cos θ (46) 

that is directed towards the equator (except at the equator where it is vertical).24 Cθ is not large 

compared to g∗, Cθ/g∗ ≈ 0.002 at most, but it has been present since the Earth’s formation. A fluid can 

not sustain a shear stress without deforming, and over geological time this holds as well for the Earth’s 

interior and crust. Thus it is highly plausible that the Earth long ago settled into an equilibrium 

configuration in which this Cθ is exactly balanced by a component of the gravitational (mass) attraction 

that is parallel to the displaced surface and poleward. 

24Ancient critics of the rotating Earth hypothesis argued that loose objects on a spinning sphere should fly off into space, 

which clearly does not happen. Even so, given this persistent centrifugal force, why don’t we drift towards the equator? 

Alfred Wegner proposed this as the motive force of Earth’s moving continents (see D. McKenzie, ’Seafloor magnetism and 

drifting continents’, in A Century of Nature, 131-137. Ed. by L. Garwin and T. Lincoln, The Univ. of Chicago Press, Chicago, 

Il, 2003.). 
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To make what turns out to be a rough estimate of the displaced surface, η, we will assume that the 

gravitational mass attraction remains that of a sphere and that the meridional slope times the 

gravitational mass attraction is in balance with the tangential component of the centrifugal force, 

g∗ dη 
= Ω2Re sin θ cos θ. (47) 

Re dθ 

This may then be integrated with latitude to yield the equilibrium displacement 

� θ Ω2R2 Ω2R2 
e eη(θ) = sin θ cos θdθ = sin θ2 + constant. (48) 

0 g∗ 2g∗ 

When this displacement is added onto a sphere the result is an oblate (flattened) spheroid, (Fig. 13), 

which is consistent with the observed shape of the Earth.25 A convenient measure of flattening is 

F = (Reqt − Rpol)/Reqt, where the subscripts refer to the equatorial and polar radius. Earth’s flatness is 

F = 0.0033, which seems quite small, but is nevertheless highly significant in ways beyond that 

considered here.26 The flatness of a rotating planet is given roughly by F ≈ Ω2R/g. If the gravitational 

acceleration at the surface, g, is written in terms of the planet’s mean radius, R, and density, ρ, then 

F = Ω2/(
3

4πGρ), where G = 6.67×10−11 m 3 kg−1 s −2 is the universal gravitational constant. The 

rotation rate and the density vary a good deal among the planets, and consequently so does F . The gas 

giant, Saturn, has a rotation rate a little more than twice that of Earth and a very low mean density, 

about one eighth of Earth’s. The result is that Saturn’s flatness is large enough, F ≈ 0.10, that it can be 

discerned through a good backyard telescope (Fig. 13). 

4.1.2 Vertical and level in an accelerating reference frame 

Closely related is the notion of ’vertical’. When we measure vertical we do so by means of a plumb 

bob; the plumb line is, by definition, the direction vertical. Following the discussion above we know 

that the time-independent, acceleration field of the Earth is made up of two contributions, the first and 

25The pole-to-equator rise given by Eqn. (48), is about 11 km. Precise observations show that Earth’s equatorial radius, 

Reqt = 6378.2, is greater than the polar radius, Rpol = 6356.7 km, by about 21.5 km. This simple model underestimates 

Earth’s equatorial bulge because the mass displaced from the pole towards the equator causes a small equatorward mass 

attraction that is sufficient to compensate for about half of the meridional tilt effect; thus still more mass must be displaced 

towards the equator in order to achieve a gravitational/rotational equilibrium. The net result is about a factor two greater 

amplitude than Eqn. (48) indicates. 

A comprehensive source for physical data on the planets is by C. F. Yoder, ‘Astrometric and geodetic data on Earth and the 

solar system,’ Ch. 1, pp 1–32, of A Handbook of Physical Constants: Global Earth Physics (Vol. 1). American Geophysical 

Union (1995). 
26To note just two: 1) Earth’s ellipsoidal shape must be accounted for in highly precise, long range navigation systems 

(GPS), while shorter range or less precise systems can approximate the Earth as spherical. 2) Because the Earth is not 

perfectly spherical, the gravitational tug of the Sun, Moon and planets can exert a torque on the Earth and thereby perturb 

Earth’s rotation vector.17 
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by far the largest being mass attraction, g∗, and the second being the centrifugal acceleration associated 

with the Earth’s rotation, C, Fig. (13). Just as on the merry-go-round, this centrifugal acceleration adds 

with the gravitational mass attraction to give the net acceleration, called ’gravity’, g = g∗ + C, a vector 

(field) whose direction and magnitude we can measure with a plumb bob and by observing the period of 

a simple pendulum. A surface that is normal to the gravitational acceleration vector is said to be a level 

surface in as much as the acceleration component parallel to that surface is zero. A level surface can be 

defined in practice by observing the free surface of a water body that is at rest in the rotating frame, 

since a resting fluid can sustain only normal stresses, i.e., pressure but not shear stress. Thus the 

measurements of vertical or level that we can readily make necessarily include the centrifugal force due 

to Earth’s rotation summed with gravitational mass attraction. The happy result is that the rotating 

frame equation of motion applied in an Earth-attached reference frame, Eqn. (2), does not include the 

centrifugal force associated with Earth’s rotation (and neither do we tend to roll towards the equator!). 

4.1.3 The equation of motion for an Earth-attached frame 

The inertial and rotating frame momentum equations are listed again for convenience using velocity in 

place of the previous time rate change of position, 

dV 
M = F + g∗M, and, (49) 

dt 

dV� 

dt 
M = −2Ω×V�M − Ω×Ω×X�M + F� + g

∗

� M, (50) 

and note that the inertial frame velocity of Eqn. (49) may be written in terms of the relative velocity as 

V = VΩ + V� , (51) 

where 

VΩ = −Ω ×X 

is the planetary velocity due to the solid body rotation of the Earth (Section 2.2). Now we are going to 

assume the result from above, that there exists a tangential component of gravitational mass attraction 

that exactly balances the centrifugal force due to Earth’s rotation and that we define vertical in terms of 

the measurements that we can readily make; thus g = g∗ + Ω×Ω×X. 29 The equations of motion are 

then, for the inertial frame, 
dV 

M = Ω×Ω×XM + F + gM (52) 
dt 

and for the rotating frame, 
dV� 

M = − 2Ω×V�M + F� + gM. (53) 
dt 
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Finally we have come to Eqn. (2), which we now see is the rotating frame equivalent of Eqn. (52) (and 

we will return to these equations in Section 4.3).27 

4.2 Coriolis force on motions in a thin, spherical shell 

Application to geophysical flows requires one further small elaboration because the rotation vector 

makes a considerable angle to the vertical except at the poles. An Earth-attached, rectangular coordinate 

system is usually envisioned to have ex in the east direction, ey in the north direction, and horizontal is 

defined by a tangent plane to Earth’s surface. The vertical direction, ez, is thus radial with respect to the 

(approximately) spherical Earth. The rotation vector Ω thus makes an angle φ with respect to the local 

horizontal x�, y� plane, where φ is the latitude of the coordinate system and thus 

Ω = 2Ωcos (φ)ey + 2Ωsin (φ)ez. 

If V� = u� ex + v� ey + w� ez, then the Coriolis force (divided by the mass, M) is 

−2Ω×V� = (2Ωcos (φ)w � − 2Ω sin (φ)v �)ex + 2Ωsin (φ)u � ey − 2Ω cos (φ)u � ez. (54) 

Large scale geophysical flows are very flat in the sense that the horizontal components of wind or 

current are very much larger than the vertical component, u� v� w�, simply because the oceans and ∝ �
the atmosphere are quite thin, having a depth to width ratio of about 0.001. The ocean and atmosphere 

are stably stratified in the vertical, which still further inhibits the vertical component of motion. For 

these large scale (in the horizontal) flows, the Coriolis term multiplying w� in the x component of Eqn. 

(54) is thus very much smaller than the terms multiplied by u� or v� and as an excellent approximation 

may be ignored, often with no mention. The Coriolis term that appears in the vertical component is 

usually much, much smaller than the gravitational acceleration, and it too is almost always dropped 

27This notion of vertical and level turned out to have considerable practical importance beginning on a sweltering September 

afternoon when the University Housing Office notified your dear younger brother, Gustave-Gaspard (GG), that because of an 

unexpectedly heavy influx of freshmen, his old and comfortable dorm room was not going to be available. As a consolation 

they offered him the use of the merry-go-round (the one in Section 3.3, and still running) at the local, failed amusement park 

that the University had just gobbled up. With your encouragement, he accepts. The centrifugal force, amusing at first, was 

soon a huge annoyance; GG suffered from recurring nightmares of sliding out of bed and over a cliff. To counteract this 

you decide to build up the floor of the merry-go-round so that the tilt of the floor, combined with gravitational acceleration, 

would be just sufficient to balance the centrifugal force, as in Eqn. (47). A quick calculation and you find that a parabolic 

displacement, η ∝ r2, would be just the thing. A plumb line will then be normal to the new floor at every point, and hence 

the new floor will be a level surface in the acceleration field of the rotating dorm room. Make sure that we have this right, 

and specifically, how much does the outside edge (r = 6 m, Ω = 0.5 rad s −1) have to be built up to achieve this? Given that 

GG’s bed is 2 m long and flat, what is the axial traction (or tidal force)? How is the calibration of a bathroom scale effected? 

Visitors are always very impressed with the rotating, parabolic dorm room, and to make sure they have the full experience, 

GG likes to sends them to the refrigerator for another cold drink. Describe what happens next using Eqn. (53). Is their route 

relevant? 
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without mention. The result is the thin fluid approximation of the Coriolis force in which only the 

horizontal Coriolis force due to horizontal motions is retained, 

−2Ω×V� ≈ −f×V� = −fv� ex + fu� ey (55) 

The vector f = fez, where f is the very important Coriolis parameter, 

f = 2Ωsin (φ) (56) 

and φ is the latitude. Notice that f varies with the sine of the latitude, having a zero at the equator and 

maxima at the poles; f < 0 in the southern hemisphere.28 

For problems that involve parcel displacements, L, that are very small compared to the radius of 

the Earth, R, a simplification of f is often appropriate. The Coriolis parameter may be expanded in a 

Taylor series about a central latitude, y0, 

df 
f(y) = f(y0) + (y − y0)

dy 
|y0 

+HOT (57) 

and if the second term is demonstrably much smaller than the first term, which follows if L � Re, then 

the second and higher terms may be dropped to leave f = f(y0), a constant. Under this so-called 

f-plane approximation the period of inertial motions, 2π/f , is just a little bit less than 12 hrs at the 

poles, a little less than 24 hrs at 30 N or S, and infinite at the equator. The period of inertial motions is 

sometimes said to be half of a ’pendulum day’, the time required for a Foucault pendulum to precess 

through 2π radians.29 

28The Coriolis parameter f vanishes at the equator as does the horizontal component of the Coriolis force. However, as we 

noted in the discussion of Fig. 5, the three-dimensional (vector) Coriolis force is independent of the location of the velocity 

and the rotation vectors. To appreciate the significance of this, consider relative velocities that are eastward and northward, 

and sketch the resulting (three-dimensional) Coriolis force vector ∝ −2Ω × V
� at several latitudes that span pole-to-pole. 

Except at the poles, the three-dimensional Coriolis force has a vertical component that is negligible for most atmospheric and 

oceanic dynamics, but is very important in the context of ship-based gravimetric studies where it is termed the Eotvos effect, 

see http://en.wikipedia.org/wiki/Eotvos effect (you may have to type this into your web browser). 
29The effect of Earth’s rotation on the motion of a simple (one bob) pendulum, called a Foucault pendulum in this context, 

is treated in detail in many physics texts, e.g. Marion11, and need not be repeated here. Here are a few questions, however. 

Can you calculate the Foucault pendulum motion by rotating the inertial frame solution for a simple pendulum? How does 

the time required for precession through 360 degrees depend upon latitude? What happens when the pendulum’s natural 

frequency (in the absence of Earth’s rotation) equals the Earth’s rotation rate? Given the rotated trajectory, can you show that 

the acceleration of the bob for very short times is consistent with the rotating frame equations of motion? 

Foucault pendulums are commonly displayed in science museums, though seldom to large crowds (for a more enthusiastic 

view see The Prism and the Pendulum by R. P. Crease). Much better is to make and observe your very own Foucault 

pendulum, a simple pendulum having two readily engineered properties. First, the e-folding time of the motion due to 

frictional dissipation must be long enough, at least 20-30 min, that the precession will become apparent. This can be most 

easily achieved by using a dense, smooth and symmetric bob having a weight of about half a kilogram or more, and suspended 

on a fine, smooth monofilament line. It is helpful if the length can be made several meters or more. Second, the pendulum 
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4.3 Why do we insist on the rotating frame equations? 

We have emphasized that the rotating frame equation of motion has some inherent awkwardness, viz., 

the loss of Galilean invariance and global momentum conservation. Why, then, do we insist upon using 

the rotating frame equations for nearly all of our analyses of geophysical flow? The reasons are several, 

any one of which would be compelling, but beginning with the fact that the definition and 

implementation of an inertial frame (outside of the Earth) is simply not a viable option; whatever 

simplicity we might gain by omitting the Coriolis force would be lost to difficulty with observation. 

Consider just one aspect of this: the inertial frame (or absolute) velocity (Eqn. 51), V = VΩ + V� , is 

dominated by the planetary volicty due to the solid-body rotation VΩ = ΩRecos(latitude), where Re is 

earth’s nominal radius, 6365 km, and thus VΩ ≈ 400 m s −1 near the equator. By comparison, a large 

wind speed at mid-level of the atmosphere is V � ≈ 50 m s −1 and a large ocean current is V � ≈ 2 m s −1 . 

The very large planetary velocity VΩ is accelerated centripetally by a tangential (almost) component of 

gravitational mass attraction associated with the ellipsoidal shape of the Earth discussed in Section 4.1 

that is larger than the Coriolis force in the ratio VΩ/V � that is O(10) for the atmosphere, or much more 

for ocean currents. The inertial frame equations have to account for VΩ and this very large centripetal 

force explictly, and yet our interest is almost always the small relative motion of the atmosphere and 

ocean, V�, since it is the relative motion that transports heat and mass over the Earth. In that important 

regard, the planetary velocity VΩ is invisible to us Earth-bound observers, no matter how large it is. To 

say it a little differently — it is the relative velocity that we measure when observe from Earth’s surface, 

and it is the relative velocity that we seek for almost every practical purposes — the Coriolis force 

follows. 

4.3.1 Inertial oscillations from an inertial frame 

Given that our goal is the relative velocity, then the rotating frame equation of motion is generally much 

simpler and more appropriate than is the inertial frame equation of motion. To help make this point we 

will analyze the free oscillations of Eqs. (52) and (53), i.e., F = F� = 0, usually called inertial 

oscillations, that are interesting in their own right. The domain is presumed to be a small region 

centered on the pole so that latitude = 90 degrees, and the domain is, in effect, flat. We will consider 

only horizontal motions, and assume the realistic condition that the motion will be a small perturbation 

away from the solid body rotation, V� VΩ. The motion viewed from the inertial frame is thus almost 

circular and it is appropriate to use the cylindrical coordinate momentum equation, Eqn. (31) (dividing 

should not interact appreciably with its mounting. This is harder to evaluate, but generally requires a very rigid support, and 

a bearing that can not exert torque, for example a needle bearing. The rotation effect is proportional to the rotation rate, and 

so you should plan to bring a simple and rugged pocket pendulum on your merry-go-round ride (Section 3.2). How do your 

observations (even if qualitative) compare with your solution for a Foucault pendulum? (Hint - consider the initial condition.) 
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out the constant M): 

d2r 
dt2 

− rω2 = −Ω2 r, (58) 

dr dω 
2ω + r = 0. (59) 

dt dt 

Notice that when ω = Ω and dr/dt = 0, the motion is balanced in the sense that d2r/dt2 = 0 and r 
remains constant. We are going to assume an initial condition that is a small radial perturbation away 

from such a balanced state, r = Ro and ω = Ω. Since there is no tangential force, Eqn. (59) may be 

integrated, 

ωr2 = ΩR2 = A, (60) o 

which shows that the angular momentum, A, is a conserved quantity. Eqn. (60) can then be used to 

eliminate ω from Eqn. (58) to yield an equation for r(t) alone, 

d2r A2 

dt2 
−
r

= −Ω2 r. (61) 
3 

To solve this equation it is convenient to move the centripetal acceleration term A2/r3 to the right 

side where it will be summed with the centripetal force, 

d2r A2 

= 
3 
− Ω2 r, (62) 

dt2 r

yielding what looks just like an equation of motion. However, it is important to understand that d2r/dt2 

is not the radial component of acceleration that is observed in either an inertial or a rotating reference 

frame (cf. Eqs. 31 and 31) and to acknowledge this explicitly, the right hand side of Eqn.(62) will be 

called a pseudo (or false) force. None of this effects the solution per se, but only the words we use and 

the inferences we might then draw. And specifically, if you measured the radial force/M on the parcel 

you wouldn’t find A2/r3 − Ω2r, but rather −Ω2r, the right hand side of Eqn. (61). 

Eqn. (62) is a well-known, nonlinear oscillator equation and is not difficult to solve. However, 

because our interest is in the case of small displacements away from the balanced state, r = Ro, a 

simplification is appropriate. To clarify what is meant by small displacement it is helpful to write the 

radius as 

r(t) = Ro(1 + δ(t)). 

The meaning of ’small displacement’ is that δ should be small compared to 1. Substitution into Eqn. 

(62) and rearrangement yields 
d2δ 

= Ω2(1 + δ)−3 − Ω2(1 + δ). (63) 
dt2 

When we plot the right side of Eqn. (63) it is evident that the net pseudo force is a nearly linear function 

of δ provided δ ≤ 0.1. To exploit this we can expand the nonlinear term of Eqn.(63) in Taylor series 
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about δ = 0, 

d2δ 
= Ω2(1 − 3δ + 6δ2 + HOT ) − Ω2(1 + δ)

dt2 

(64) ≈ −4Ω2δ, 

where HOT are terms that are higher order in δ. For small displacements the quadratic and higher order 

terms may be neglected, leaving a simple harmonic oscillator equation, Eqn. (64), at a frequency 2Ω. 

If the initial condition is a radial impulse that gives a radial velocity V0, then the initial condition 

for Eqn. (64) is 
dδ 

(t = 0) = (Vo/Ro) cos 2Ωt. 
dt 

The solution for δ is 

δ(t) = (V0/2Ω) sin (2Ωt) 

and the radius is then 

r(t) = Ro(1 + δ0 sin (2Ωt)), (65) 

where δ0 = V0/2Ω. The corresponding angular rotation rate can be found by using Eqn. (65) together 

with the angular momentum conservation Eqn. (60), 

Ω 
ω(t) =

(1 + δ0 sin (2Ωt))2 
≈ Ω(1 − 2δ0 sin (2Ωt)). (66) 

When graphed, these show that the parcel moves in an ellipsoidal orbit, Fig. (15, left panels), that 

crosses the (balanced) radius r = Ro four times per complete orbit. The rotating frame turns through 

180 degrees just as the parcel returns to r = Ro the second time, after completing a full cycle of the 

oscillation. When viewed from the rotating frame (Fig. 15, right panels), the parcel appears to be 

moving in a clockwise-orbiting, circular path, with a frequency 2Ω. 
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Figure 15: The two-dimensional trajectory of a parcel subject to a centripetal force, −rΩ2, as if it were 
on a frictionless parabolic surface. The initial velocity was a solid body rotation in balance with the 
centripetal force, and a small radial impulse was then superimposed. In this case the ratio V �/VΩ ≈ 0.2, 
which is far larger than actually occurs in the ocean or atmosphere. The left column shows the resulting 
ellipsoidal trajectory as seen from an inertial frame, along with the circular trajectory that is seen from 
a rotating frame (indicated by the rotating, solid unit vectors). The right column shows the trajectory 
as seen from the rotating frame only, along with the solution computed in the rotating frame (shown as 
green dots). These lie exactly on top of the ’observed’ trajectory and are very difficult to discern if color 
is not displayed; try the Matlab script coriolis.m (Section 9) that includes this and a number of other 
cases. 
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4.3.2 Inertial oscillations from the rotating frame 

It is convenient to expand the rotating frame equation of motion (53) in Cartesian coordinates. Since we 

have restricted the analysis above to small displacements we can utilize the f-plane approximation that 

takes f as a constant. Thus the horizontal components u�, v� follow 

dt 
d u

v

�

� 
= f 

−
u

v
�

� 

. (67) 

Given that the initial condition is an impulse causing a small velocity V0 in the y-direction then the 

solution for velocity and displacement is just 

u� 
= V0 

sin (ft) 
and 

X � 

= δ0 
1 − cos (ft) 

. (68) 
v� cos (ft) Y � sin (ft) 

The velocity of the parcel seen from the rotating frame, V�, rotates at a rate of f = 2Ω in a direction 

opposite the rotation of the reference frame, Ω.30 This is exactly the result found in the inertial frame 

analysis but was far simpler to obtain because we did not have to account for the absolute velocity, 

V = VΩ + V�, but the relative velocity only. From the rotating frame perspective, Eqn. (53), the 

rotation of the velocity vector is attributable to deflection by the Coriolis force.31 This kind of motion, 

termed an inertial oscillation,32 is frequently observed in the upper ocean following a sudden shift in the 

wind speed or direction (Fig. 16). 

30Two questions for you: 1) How does this compare with the momentum balance and motion described by Eqn. (32)? 2) 

Suppose that the impulse was in the azimuthal direction, what would change? 
31We noted in Section 3.4 that the rotating frame equations of motion does not support global momentum conservation or 

Galilean invariance. The former can be seen by noting that if all forces except Coriolis were zero, and the initial condition 

included a velocity, then that velocity would be continually deflected and change direction (as an inertial oscillation) with 

nothing else showing a reaction force; i.e., global momentum would not be conserved. This evident nonconservation is 

ignorable in most practical analyses. And too, when a central force F produces a change of momentum in our parcel, the 

corresponding reaction force −F generates the complementary change of momentum in the (global) environment that would 

then undergo a compensating Coriolis deflection. 

The Coriolis force is isomorphic to the Lorentz force, qV×B, on a moving, charged particle in a magnetic field 

B. Thus a charged particle moving through a uniform magnetic field will be deflected into a circular orbit with the cy

clotron frequency, qB/M , analogous to an inertial oscillation at the frequency f . General Relativity predicts that a ro

tating (massive) object is accompanied by a ’gravitomagnetic’ field analogous to a magnetic field, and that gives rise to a 

Coriolis-like force on moving objects. The Gravity Probe B satellite mission seeks to test this aspect of General Relativity; 

http://einstein.stanford.edu/index.html 
32The name ‘inertial oscillation’ is very widely accepted but is not highly descriptive of the dynamics in either the rotating 

or inertial reference frame. For the rotating frame, ‘Coriolis oscillation’ might be more appropriate, and for the inertial frame 

see D. R. Durran, ‘Is the Coriolis force really responsible for the inertial oscillation?’ Bull. Am. Met. Soc., 74(11), 2179–2184 

(1993). 

http://einstein.stanford.edu/index.html
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Figure 16: (a and b) Ocean currents at a depth of 25 m, measured by a current meter deployed south
west of Bermuda. The time scale is inertial periods, 2π/f , which are nearly equal to days at this lat
itude. Hurricane Felix passed over the current meter mooring at the time noted at upper left, and the 
strong and rapidly changing wind stress produced energetic, clockwise rotating currents within the upper 
ocean. To a first approximation these are inertial oscillations. They differ from pure inertial oscil
lations in that their frequency is roughly 5% percent higher than f and their amplitude e-folds over 
about 10 days (by inspection of these data). These small departures from pure inertial motion are in
dicative of wave-like dynamics considered in Section 7.2. (c) Acceleration estimated from the current 
meter data as dV�/dt + 2Ω × V�, as if the measurements were made on a specific parcel. The large 
acceleration to the west northwest corresponds in time to the passage of Felix. The direction of the 
estimated acceleration is roughly parallel to the observed winds (not shown here). Notice the much 
smaller oscillations having a period of about 0.5 inertial periods (especially for t > 8). These are very 
likely due to pressure gradients associated with the semidiurnal tide. This is a small part of the data 
described in detail by Zedler, S.E., T.D. Dickey, S.C. Doney, J.F. Price, X. Yu, and G.L. Mellor, ’Anal
ysis and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring 
site: August 13-23, 1995’, J. Geophys. Res., 107, (C12), 25-1 - 25-29, (2002), available online at 
http://www.opl.ucsb.edu/tommy/pubs/SarahFelixJGR.pdf. 

http://www.opl.ucsb.edu/tommy/pubs/SarahFelixJGR.pdf
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5 A dense parcel on a slope. 

The next problem is to model the motion of a dense parcel that is released onto a sloping sea floor. The 

Coriolis force will be calculated using the constant f approximation. The vertical buoyancy force (per 

unit mass) is g� = g δρ 

ρo 

, where δρ is the density anomaly of the parcel with respect to its surroundings 

(assumed constant), and ρo is a nominal sea water density, 1030 kg m −3. Because the sea floor is 

sloping, there is a component of the buoyancy force parallel to the sea floor, g�α where α is the bottom 

slope, presumed to have a y component only. If the parcel is in contact with a sloping bottom, then it is 

plausible that the momentum balance should include a frictional term due to bottom drag. The task of 

estimating an accurate bottom drag for a specific case is beyond the scope here, and we will represent 

bottom drag by the simplest linear (or Rayleigh) drag law in which the drag is presumed to be 

proportional to and antiparallel to the velocity difference between the current and the bottom, i.e., 

bottom drag = −r(V − Vbot).
33 The ocean bottom is at rest in the rotating frame and hence Vbot = 0 

and omitted from here on. From observations of ocean currents we can infer that a reasonable value of r 
for a density-driven current on a continental shelf is r = O(10−5) s −1. Thus r is roughly an order of 

magnitude smaller than a typical mid-latitude value of f . Since r appears in the momentum equations 

in the same way that f does we can anticipate that rotational effects will be dominant over frictional 

effects. The equations of motion are then: 

du 
= fv − ru, (69) 

dt 
dv 

= −fu − rv + g �α, 
dt 

and we assume initial conditions u(0) = 0, v(0) = 0. The depth of the parcel can be computed 

diagnostically from the y position and the known slope. Notice that we have dropped the superscript 

prime that had previously been used to indicate the rotating frame variables and we have used the thin 

fluid approximation for the Coriolis force terms. We also use the f−plane approximation that f = 

constant since typical parcel displacements are very small compared to the Earth’s radius (more on this 

below). The solution of this linear model is not complex by the standards of fluid dynamics, 

g�α 
u(t) = [f − exp (−tr)(f cos (ft) − r sin (ft))] , (70) 

r2 + f2 

g�α 
v(t) = [r − exp (−tr)(f sin (ft) + r cos (ft))] , 

r2 + f2 

33A linear drag law of this sort is most appropriate as a model of viscous drag in a laminar boundary layer within which 

τ = µ∂U , where µ is the viscosity of the fluid. The boundary layer above a rough ocean bottom is almost always fully 
∂z 

turbulent above a very thin, O(10−3 m), laminar sublayer that is in contact with the bottom. If the velocity used to estimate 

drag is measured or computed for a depth that is within the fully turbulent boundary layer, as it is bound to be, then the 

appropriate drag law can be approximated as independent of the viscosity and is quadratic in the velocity, τ ∝ ρU2. Our use 

of a linear drag law is purely expedient. 
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but it does contain three parameters along with the time, and so has a fairly large parameter space. Our 

interest is not so much any one specific solution but rather to understand the quantitative effects of 

rotation and friction over the entire family of solutions. How can we display the solution to this end? 

One approach that is very widely applicable is to rewrite the governing equations and (or) the 

solution using nondimensional variables. This will serve to reduce the number of parameters to the 

fewest possible while retaining everything that was present in the dimensional equations. To define 

these nondimensional variables we begin by noting that there are three external parameters in the 

problem (external in that they do not vary with a dependent variable): the buoyancy and bottom slope, 

g�α, which always occur in this combination and so count as one parameter, an acceleration; the 

Coriolis parameter, f , an inverse time scale, and the bottom friction coefficient, r, also an inverse time 

scale. To define a nondimensional time we need an external time scale and choose the inverse of the 

Coriolis parameter, t∗ = tf , rather than r−1, since we expect that rotational effects will dominate 

frictional effects in most cases of interest. To form a nondimensional velocity we make an estimate of 

the velocity scale as the product of the acceleration and the time scale f−1 as Ugeo = (g�α)/f and thus 

the nondimensional velocity is just u∗ = u/(g�α/f) = u/Ugeo and similarly for the v component. We 

will explain the subscript geo(strophic) shortly. Rewriting the governing equations in terms of these 

nondimensional variables gives 

du∗ 
dt∗ 

= v∗ − Eu∗, (71) 

dv∗ 
dt∗ 

= −u∗ − Ev∗ + 1, 

where E is the Ekman number, 
r 

E = 
f 

the nondimensional ratio of the linear friction parameter to the Coriolis parameter (more on E below). 

The initial conditions are u∗(0) = 0, v∗(0) = 0. The solution to these equations is 

1 
u∗(t∗) = [1 − exp (−Et∗)(cos (t∗) − E sin (t∗))] , (72) 

1 + E2 

1 
v∗(t∗) = [E − exp (−Et∗)(sin (t∗) + E cos (t∗))] ,

1 + E2 

and for completeness; 
u v 

u∗ = , v∗ = , and t∗ = tf. 
g�α/f g�α/f 

The geostrophic velocity scale g�α/f appears with the velocity only, and thus the single 

nondimensional parameter E serves to define the parameter space of this problem. There are other 

forms of the Ekman number depending upon the way that friction is parameterized. They all have in 
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common that small E indicates small friction compared to rotation.34 Trajectories computed from Eqn. 

(72) for several values of E are in Fig. (17 left). Trajectories having larger E show both a more rapid 

damping of the inertial oscillations and a steeper descent of the slope, i.e., greater frictional effects than 

do the solutions with small E. In place of ’large friction’ or ’large rotation’, we have instead large or 

small E, which takes account of variation of both r and f . Thus, for a given r, we would expect that 

frictional effects are greater at low latitudes than at higher latitudes. 

5.1 Inertial and geostrophic motion 

The solution Eqn. (72) can be envisioned as the sum of two distinct modes of motion, a time-dependent, 

oscillatory motion, the now familiar inertial oscillation, 

u∗ cos (t∗) 

v∗ 
∝ exp(−Et∗) 

sin (t∗) 
, 

here damped by friction, and a time mean motion that is the single parcel equivalent of geostrophic 

motion 
u∗ 1 

, 
v∗ 

∝ 
E 

also modified by friction. In this linear model the amplitude of either mode35 is directly proportional to 

the velocity scale, Ugeo = g�α/f . For a dense water parcel on a continental slope (Fig. 18) rough values 

are g� = g(δρ)/ρ0 ≈ g0.5/1000 = 10−2 m s −2 , α = 1.3×10−2, and f at latitude 62 N is 1.3×10−4 s −1 . 

This gives a geostrophic speed Ugeo ≈ 0.5 m s −1, cf. Fig. (18). 

The inertial oscillations found in this solution are the consequence of starting from a state of rest 

and the imposition of what amounts to an impulsively started external force (the buoyancy force). This 

is not an especially realistic model of a density current released onto a continental slope, but it does 

serve as a first approximation of the rapidly changing wind stress exerted upon the upper ocean during 

the passage of a storm (Fig. 16). A pure inertial oscillation, that is, an exact two term balance between 

34If this is one of your first encounters with dimensional analysis then this procedure is likely to seem arbitrary and 

esoteric. You will come to appreciate the benefits of dimensional analysis with experience, mainly, but an attempt to help is 

‘Dimensional analysis of models and data sets’, by J. Price, Am. J. Phys., 71(5), 437–447 (2003) and available online from 

http://www.whoi.edu/science/PO/people/jprice/class/DA-AJP.pdf Any specific dimensional analysis may indeed be somewhat 

arbitrary, as there are usually several plausible forms. For example, in this problem we could have used 1/r to measure (or 

nondimensionalize) the time. How would this change the solution, Eqn. (72)? 
35This usage of ’mode’ may be a little unusual; the intent is to identify a possible two term balance within the equation 

of motion, i.e., between a pressure gradient and the Coriolis force, for example. By this we are not asserting that such a 

balance necessarily holds strictly even within our very simple models but rather that modes are a kind of vocabulary useful 

for describing the complex balances that actually do occur. When the equations or physical phenomena are nonlinear, as they 

usually are, then the actual solution or flow will not be a sum over the modes computed individually. Beyond those already 

noted, what other modes could be present in Eqs. (72)? 

http://www.whoi.edu/science/PO/people/jprice/class/DA-AJP.pdfAnyspecificdimensionalanalysis
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Figure 17: (left) Trajectories of dense parcels released from rest onto a sloping bottom computed by 
integrating the horizontal velocity, Eqn. (72). The elapsed time in units of inertial periods, 2π/f , is at 
upper left. The buoyancy force is toward positive y and the Ekman number, E, has the values shown. 
Notice that for values of E � 1 (red trajectory), the long-term displacement is nearly at right angles 
to the imposed force, indicative of geostrophic balance. The along- and across-slope distance scales are 
distorted by a factor of almost 10, so that the blue trajectory having E = 0.25 makes a shallower descent 
of the slope than it first appears here. Click on this panel to start an animation. (right) The force balance 
(solid arrows) and the time-mean motion (the dashed vector) for the case E = 0.25. The angle of the 
velocity with respect to the isobaths is E = r/f , the Ekman number. The Coriolis force (/M) is labeled 
−f × V where f is f times a vertical unit vector. Simulations of this sort are carried out by the script 
partslope.m (Section 9). 
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Figure 18: Observations of density and currents along the southern flank of the Scotland-Iceland Ridge, 
about 90 km west of the Faroe Islands. The dense water found along the bottom is an outflow from the 
Norwegian-Greenland Sea that has come through the narrow Faroe Bank Channel (about 15 km width, 
at latitude 62 North) and that will eventually settle into the deep North Atlantic. The units of density are 
kg m −3, and 1000 has been subtracted away. Currents were measured at the thick vertical line shown 
on the density section. The density section is aligned normal to the isobaths and the current appeared to 
be flowing roughly along the isobaths, but the direction was temporally varying. What is clearer is that 
the core of the dense water has descended roughly 200 m between this site and the narrow Faroe Bank 
Channel, about 90 km upstream from this site. A question: which trajectory of Fig. (17) is analogous to 
this current? Said a little differently, what is the approximate Ekman number of this current? 

the time rate of change and the Coriolis force (Eqn. 67), would not evolve with time; the amplitude 

would remain constant and the frequency = f for all time. The amplitude of the (near) inertial 

oscillations seen in the field data of Fig. (16) and the model solution of (17) decrease with time; the 

model-computed oscillations decay as exp (−Et∗) on account of bottom drag.36 

36A couple of questions for you: 1) Can you devise an initial condition for this problem that would eliminate the inertial 

oscillations? Could you make the inertial oscillations larger than those shown in Fig. (17,left)? To test your hypothesis you 

might try experimenting with the Matlab script partslope.m 2) Draw the vector force balance for inertial oscillations (include 

the acceleration) with and without bottom drag as in Fig. (17, right). 3) We have pointed out that the value of the bottom drag 

coefficient r is not well known a priori and so we might regard r as an adjustable parameter. What value of r is required to 

mimic the observed decay of near-inertial oscillations of Fig. 16? Does the same model solution also account for the small, 

super-inertial frequency shift noted in the field data? 



5 A DENSE PARCEL ON A SLOPE. 55 

5.2 Energy budget 

The energy budget can make an interesting diagnostic of a phenomenon (provided that there are not 

large, unknown dissipation terms). In this case we know the dissipation exactly, and with a little thought 

it is clear that the only source of energy in this problem is the potential energy associated with the dense 

parcel sitting on a sloping bottom. If the parcel descends the slope, it will release potential energy. To 

go further we need to derive and evaluate the energy budget (per unit mass) of our single parcel; we 

multiply the x-component momentum equation by u∗ and the y-component equation by v∗ and add: 

d(u2 
∗ 
+ v

∗

2)/2 
2 2 = v∗ − E(u
∗ 
+ v

∗
). (73) 

dt∗ 

Notice that the Coriolis force per se drops out of the energy budget since it is normal to the current and 

does no work. The term at left is kinetic energy, and the second term on the right is work by friction. 

The first term on the right is the rate of work by the buoyancy force which can also be interpreted as the 

rate of release of potential energy, PE = g�(z − z0) = g�α(y − y0), 

v∗ = 
vf 

= 
dz 
g �α

f2 

= 
−dP E 1 

. 
(g�α)2 dt (g�α)2 dt U2 

geo 

Potential energy is the only energy source in this problem, and the reference depth, z0, is arbitrarily set 

at the initial depth. It can be helpful to integrate with time to see energy changes from the initial state: 

(u2 
∗ 
+ v

∗

2)/2 − 
� 

o

t 
v∗dt∗ = − 

� 

o

t 
E(u2 

∗ 
+ v

∗

2)dt∗ 
(74) 

KE + PE = FW 

where KE is the kinetic energy, PE is the change in potential energy as the parcel moves up and down 

the slope, and FW is the work by the bottom friction (Fig. 19). 

After the parcel was released from a state of rest, it first descended the slope, converting potential 

energy into kinetic energy, though with some loss to friction. The Coriolis force then turned the moving 

parcel to the right and by about t = 1/f or t∗ = 1/(2π), the parcel had been turned significantly, 1 

radian or about 50◦, with respect to the buoyancy force. The time scale for the Coriolis force to have an 

appreciable effect on a moving object is thus 1/f , a very important time scale that we will see again. 

The Coriolis force continued to turn the parcel to the right, and by about t∗ = 1/2 had turned the parcel 

back up the slope, converting kinetic energy back into potential energy. This parcel did not quite reach 

it’s initial height because of frictional losses, i.e., energy was not conserved. 

Though the Coriolis force does not appear directly in the energy budget it nevertheless has a 

profound effect on the energy budget overall in as much as it inhibits the release of potential energy. If 

there is some friction, as there was in the case shown, then the cross-isobath component of the motion 

(which carries the parcel to greater bottom depth and thus releases potential energy) is proportional to 
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Figure 19: The energy budget for 
the trajectory of Fig. (17) having 
E = 0.2. These data are plotted in 
a nondimensional form in which the 

2 
energy or work is normalized by the 
square of the velocity scale, Ugeo = 
g�α/f, and time is nondimension

1 

0 alized by the inertial period, 2π/f . 
Potential energy was assigned a zero 
at the initial depth of the parcel. 

−1 

−2 KE + PE Note the complementary inertial os-
FW 

cillations of PE and KE, and that −3 
0 1 2 3 4 5 6 7 8 9 10 the decrease of total energy was due 

t/(2π/f) 
to work against bottom friction (the 
green and dashed red lines overlay 
one another). 

the Ekman number, from Eqn. (72), v∗/u∗ = E, and thus inversely proportional to f for a given 

frictional coefficient, r. Whether friction or rotation is dominant, and thus whether circulations are 

rapidly dissipated or long-lived, depends solely upon the Ekman number in this highly simplified 

system (Fig. 17b). In the limit that E 0, the time-averaged motion becomes perpendicular to the →
buoyancy force and the parcel simply coasts along isobaths with no temporal evolution in velocity (or 

depth) and no energy exchanges, the energy budget consequence of an exact geostrophic balance. 37 

6 Part II: Geostrophic adjustment and potential vorticity. 

In this second part of the essay we will consider several problems that are variants on geostrophic 

adjustment — a thickness anomaly on a dense fluid layer will be released from a state of rest and 

allowed to flow under the influence of gravity and the Coriolis force (friction, too, in the homework). 

The general aim is to understand how Earth’s rotation effects the resulting motions, and specifically to 

understand how the Coriolis force will, under common conditions, lead to a steady (or quasi-steady) 

motion in geostrophic balance, e.g., the westerlies of Fig. 1 and the eddies and ocean gyres of Figs. 2 

37Some questions for you to consider: (1) This parcel oscillating on a slope is reminiscent of a viscous pendulum started 

from rest with a displaced bob. Can you describe an analogy between the Coriolis force and the tension in the line of 

the pendulum? (2) Assuming small Ekman number, how long does it take for a geostrophic balance to arise? (3) Are the 

time-averaged solutions of the single parcel model the solutions of the time-averaged model equations? Suppose the model 

equations were not linear, say that friction is ∝ U2, then what? (4) Inertial oscillations do not contribute to the long-term 

displacement of the parcel, though they can dominate the instantaneous velocity. Can you find an initial condition on the 

parcel velocity that prevents these pesky inertial oscillations? For this you may want to use partslope.m (Section 9). 5) 

Suppose the parcel is moving parallel to the isobaths, but at a speed that is a little less than the geostrophic speed - what 

happens next? 6) Finally, can you explain, in words, why a geostrophic balance (or a near geostrophic balance) is expected, 

given only small E and sufficient space? 
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and 3. This is a very important first step toward understanding the large scale atmosphere and ocean, 

and one that we can fairly claim to take in this essay and via the homework extensions. The next 

significant step in understanding is to learn how small departures from geostrophy will cause large scale 

phenomena to evolve in time, i.e., to propagate, change scale, dissipate, etc. By comparison this is an 

almost open-ended task that makes up a large part of geophysical fluid dynamics; we can make a 

beginning in Section 7.3. 

6.1 The shallow water model 

The horizontal structure and variability of winds and currents is of particular interest here, and for this 

purpose we can utilize a model of a single fluid layer. This layer is presumed to have a nominal 

thickness, H, that is spatially uniform, and it sits upon a lower, solid boundary (e.g., the sea floor) that 

is at a depth z = −H − b(x, y) (Fig. 20). The anomaly of layer thickness (above a level surface) is 

η(x, y, t) and will vary with horizontal position and with time. The total thickness of the layer is thus 

h = H + b + η. From here until Section 7.3.4 we will take b = 0 (flat bottom) for simplicity. The fluid 

above the layer is taken to have uniform pressure horizontally and no motion, and a uniform density ρo. 

The fluid within the active layer has a greater density, ρo + δρ where δρ is a specified constant. The 

horizontal domain is either one-dimensional (in Sections 7.1 and 7.2) or two-dimensional (Section 7.3). 

Motion was started from a state of rest by releasing an elevated ridge (Sections 7.1 and 7.2) or circular 

eddy (Section 7.3) that slumps under gravity and initiates waves and currents. 

Compared with the single parcel model of Section 5, this single layer fluid model is a significant 

step toward a realistic model of large scale flow of the atmosphere and ocean. The principle idealization 

is that the horizontal velocity V within the layer is depth-independent. Winds or currents are thus 

represented by a two component vector field i.e., V(x, y, t) = [u(x, y, t), v(x, y, t)], vs. V(x, y, z, t), a 

bigger help than it may first appear. To be a valid approximation this requires that the horizontal scale 

of the motion (e.g., a wavelength) must be considerably greater than the layer thickness, H. In that 

sense the layer is (or should be) shallow compared to the motions of interest, and the resulting single 

layer model equations are appropriately termed the shallow water system.38 

In Section 2 our goal was to learn the origin of the Coriolis force, and so it was appropriate to go 

through a very deliberate transformation of acceleration into a rotating reference frame and thus to 

derive the Coriolis force. The goal now is to begin to understand some of the consequences of Earth’s 

rotation in the context of a simple fluid model and a geostrophic adjustment problem. To keep the scope 

38If our intent was to utilize the shallow water model to make a realistic simulation of an observed phenomenon, then we 

would have to argue in favor of three idealizations: 1) that the initial state was free of vertical shear, ∂V/∂z = 0, 2) that 

the layer of interest was outside of frictional boundary layers, and 3) that the horizontal density variation within the layer 

was effectively zero. Most real geophysical flows violate all three of these conditions to some degree, and so may require a 

number of layers stacked one on top of another to represent vertical shear, boundary layers, stratification, etc. One layer is 

enough for us, for now. 
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Figure 20: Schematic of a 
single fluid layer sitting on a 
variable-depth lower, solid sur
face. The horizontal dashed 
lines are level surfaces (perpen
dicular to gravity). This layer 
could be a uniform-density 
(barotropic) ocean, in which 
case η is the sea surface and the 
fluid above is the atmosphere 
and hence δρ ρo. Or, it 
could be a relatively dense layer 
within a (baroclinic) ocean, in 
which case δρ � ρo. 

of this essay under control we are now going to emphasize application over derivation, and jump 

straight into (the shallow end of) fluid dynamics.39 The momentum balance of a shallow fluid layer 

including the Coriolis force may be written 

DV ∂V 1 

Dt 
= 

∂t 
+ V · �V = − fk×V −

ρo 

�P − rV, 

where the time derivative D( )/Dt is called the material derivative or the derivative ’following the 

flow’, about which more below. The anomaly of hydrostatic pressure within the layer is 

P (x, y, z, t) = −g(ρ0z + δρ(z + η(x, y, t))) (75) 

and directly proportional to the layer thickness anomaly, η. Thus an elevated layer thickness indicates a 

high pressure anomaly. The horizontal component of the pressure gradient force that drives the flow is 

−�P = −gδρ�η(x, y, t) (76) 

and is depth-independent within the layer. Rewriting the momentum balance in terms of η and reduced 

gravity g� = gδρ/ρ0 gives 

DV ∂V 

Dt 
= 

∂t 
+ V · �V = − fk×V− g ��η − rV (77) 

39The shallow water equations used here are derived in most GFD texts8 and in detail in an excellent online source: 

http://kiwi.atmos.colostate.edu/group/dave/pdf/ShallowWater.pdf 

http://kiwi.atmos.colostate.edu/group/dave/pdf/ShallowWater.pdf
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The pressure gradient has exactly the form of the buoyancy force on a dense parcel on a slope (Section 

5), with the crucial difference that the gradient of the thickness anomaly replaces the fixed, prescribed 

bottom slope. The thickness anomaly is a part of the flow (a dependent variable) that changes with time 

and position depending upon the divergence of the velocity times layer thickness, 

Dη ∂η 
Dt 

= 
∂t 

+ V · �η = −h� · V (78) 

often called the continuity equation. 

To complete the specification of a problem we have to define the computational domain over which 

the governing equations will be solved, and specify appropriate boundary conditions on the edges of the 

domain. For the computational domain, we will take a square region that is 4000 km on a side. In the 

geostrophic adjustment problems to follow, the only energy source is the eddy near the center of the 

domain, and hence we can expect that waves will be radiated outward only, i.e., that nothing will come 

from outside the domain in. A plausible and fairly effective representation of this one-way outward 

transfer is a radiation boundary condition, 

∂ψ ∂ψ 
= −C (79) 

∂t ∂n 

where ψ is any variable, and n is the direction normal and outward from the boundary. The speed C is 

taken to be the gravity wave speed, C = 
√
g�H , the fastest moving wave in the shallow water system 

(more on this in Section 7.1). 

6.2 Solving and diagnosing the shallow water system 

Equations (77) and (78) are a coupled set of nonlinear, partial differential equations in three dependent 

variables, the two components of the horizontal velocity, V = [u, v], and the thickness anomaly, η. 

This system is nonlinear because the material derivative, D( )/Dt = ∂( )/∂t + V · �( ), includes an 

advection term that is the product of two dependent variables, velocity times the velocity gradient in 

Eqn. (77), or velocity times thickness gradient in Eqn. (78). These nonlinear advection terms contribute 

some of the most interesting phenomenon of fluid dynamics and they also stymie analytic solution 

methods. Solutions of the full shallow water system are necessarily generated by numerical methods: 

the one-dimensional cases shown here were solved by the Matlab script geoadj 1d.m, and the 

two-dimensional cases by the Fortran code geoadj 2d.f, both of which are available from the web site 

noted in Section 9. In common with any numerical model, these models produce (putative) solutions in 

the form of huge data files, u(xi, yi, tj), v(xi, yi, tj)..., where xi, ti are discretized position and time, and 

that’s it. To learn something useful from a mass of such numerical data requires as much effort and 

thought as generating the solution in the first place. To wit, we will 1) diagnose the budgets of energy 

and vorticity (described below), 2) compare the wave-like properties of the solution with the dispersion 
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relation of the linear shallow water system, and then 3) form and test conjectures by conducting further 

numerical experiments (that will be the homework, actually). 

6.2.1 Energy balance 

The total mechanical energy of the layer, E = KE + PE, is the sum of kinetic energy, KE = 1
2
ρ0hV

2 

and potential energy, PE = 
2

1 g�h2. To find the rate of change of KE we take the dot product of the 

momentum equation with the velocity, and the rate of change of PE is found by multiplying the 

continuity equation by the total thickness. In the absence of external forcing (bottom friction set to 

zero) the total energy follows the budget equation 

DE 
Dt 

+ � · (g �h2V) = 0. (80) 

that includes a flux term due to pressure work. For example, if the pressure anomaly is positive on the 

(permeable) boundary of a control volume where the velocity is directed outward, say, then the fluid 

inside the control volume will be doing pressure work on the fluid outside of the control volume. The 

total energy within the control volume will thus decline, while the energy outside the control volume 

will increase. This pressure-work term accounts for the energy transport associated with wave radiation 

across an open boundary, for example. The fluid flow can also transport energy at the rate V, a process 

accounted by the advection term, V · �E, of the total derivative. 

6.2.2 Potential vorticity balance 

Up to now, our point of view of Earth’s rotation has been through the linear momentum balance (linear 

here in the geometric sense), and the Coriolis force. That is still entirely relevant in the shallow water 

model, but there is another and complementary point of view, angular momentum balance, that has 

proven immensely fruitful for the understanding of fluid dynamics generally and geophysical fluid 

dynamics especially. Two main reasons, to get a little ahead in this short story, are that 1) Earth’s 

rotation provides a very large background angular momentum that is made visible by small changes in 

the thickness or latitude of a fluid column (decribed here), and, 2) the angular momentum balance 

amounts to a kind of filter that serves to highlight the processes that cause departures from geostrophic 

balance while eliminating gravity wave motions (Section 7). 

Back a step or two..... to analyze the motion of a rotating, solid object, say a gyroscope, you might 

begin by computing the linear momentum balance of the component pieces. Thus would require an 

accounting of radial accelerations and internal stresses on each piece and would likely be a fairly 

arduous task. Assuming that the gyroscope is not at risk of breaking up, then at some point you might 

decide to take the structure for granted, and focus your effort toward analyzing the angular (azimuthal) 

momentum balance. As a first step you would define a coordinate system that gave the most compact 
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and least complex accounting of the moment of inertia of the gyroscope and then consider the processes 

that cause the angular momentum to change with time. The physical content of your angular 

momentum analysis would not be fundamentally different from the linear momentum description, but it 

would likely be a great deal simpler in the same way that choosing appropriate variables and an 

appropriate coordinate system can facilitate any mathematical analysis. The same considerations apply 

to an analysis of a fluid flow: an angular momentum analysis and description will often be a good deal 

simpler and so more insightful than is the otherwise equivalent linear momentum analysis. 

The fluid flow equivalent of angular velocity is the curl of the fluid velocity, 

ξ ≡ �× V, 

called the vorticity. If the fluid velocity is a three-dimensional vector, then so too is the vorticity. 

Because the shallow water velocity is two-dimensional, the shallow water vorticity 

∂V ∂U 
ξ = �× V = (

∂x 
−
∂y 

)z (81) 

has a vertical component only and is effectively a scalar. You can visualize vorticity as the rotation of 

small (but not quite point-like) cylinders, or two-dimensional parcels, that make up the fluid.40 The 

vorticity of a fluid is unlike the angular momentum that we associate with a solid object in that it is 

defined at every point in a fluid, i.e., we associate a vorticity field with a fluid flow, just as there is a 

velocity field and a thickness field in the shallow water model. 

The governing equation for vorticity may be found by taking the curl of the momentum equation, 

∂/∂x of the y-component minus ∂/∂y of the x-component. The effect of applying the curl operator is 

that all of the forces that are derivable from a potential are eliminated, most notably the pressure 

gradient, i.e., ∂2η/∂x∂y − ∂2η/∂y∂x = 0. A divergence term ∂u/∂x + ∂v/∂y will arise and may be 

eliminated using the thickness (continuity) equation, (78). After a little further rearrangement (which 

you should verify, first with the linear shallow water system of Section 6.3) the result is a conservation 

law for a scalar called the potential vorticity, q, 

f + ξ Dq 
q = and = 0 (82) 

h Dt 

that includes the vorticity, ξ. In this context, 

40An essential resource for vorticity and much else in fluid mechanics is the collection of fluid mechanics films available 

online at http://web.mit.edu/hml/ncfmf.html Vorticity and potential vorticity are treated in every GFD text8, and some of 

the kinematic aspects of are discussed in Section 6 of the companion essay ’Lagrangian and Eulerian representations...’ 

http://ocw.mit.edu/ans7870/resources/price/index.htm 

If the sense of the rotation is in the same direction as Earth’s rotation, the vorticity is often said to be cyclonic (from the 

Greek kyklon, for circular motion). Cyclonic rotation is thus counterclockwise in the northern hemisphere and clockwise in 

the southern hemisphere. Anticyclonic is the reverse. 

http://web.mit.edu/hml/ncfmf.html
http://ocw.mit.edu/ans7870/resources/price/index.htm
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Figure 21: Schematic fluid columns and a rotating Earth. (left) Rotating fluid columns that have 
a constant volume but variable height, h. Absent external torques, the potential vorticity of the 
column, (f + ξ)/h, will be conserved under changes of thickness. Hence the absolute vorticity, 
f + ξ, will change in proportion to h as indicated by the variable length of the rotation vectors, i.e., 
(f1 + ξ1)/h1 = (f2 + ξ2)/h2 etc. (right) The columns perched at upper and right on the Earth are in
tended to show that the vorticity (twice the rotation rate) of a fluid column due solely to Earth’s rotation 
is � × VΩ = 2Ω n = 2Ωsin(latitude) = f , where VΩ = −Ω× X is the planetary velocity due to · 
Earth’s rotation (Eqn. 51, Section 4.3). The planetary velocity VΩ is apparent to an inertial observer, 
as is the accompanying planetary vorticity, f . An Earth-bound observer will see only the relative veloc
ity of winds and ocean currents, and the accompanying relative vorticity, ξ. The three columns in the 
North Atlantic are shown end-on to illustrate the sense of the relative vorticity that would be acquired 
by a q-conserving column that was displaced north or south away from a reference site where ξ = 0, all 
the while maintaining constant thickness (and absent external torques). An inertial observer will report 
that the column conserved the absolute vorticity, f + ξ. An Earth-bound observer will report that the 
north-south displacement of the column caused the ξ of the column to change in the sense indicated here. 
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ξ is often termed the relative vorticity, since it is the vorticity of the relative velocity, i.e.,


the winds and currents observed from an Earth-attached reference frame, and the V� of


Eqn. (51), though by now we have dropped the prime superscript on V,


f is termed the planetary vorticity, and is the vorticity of the planetary velocity due to


Earth’s rotation, f = �× VΩ, Fig. (21) and Section 4.3,


f + ξ is termed the absolute vorticity, since it is the vorticity of the absolute velocity,


�× (VΩ + V�). 

q conservation is powerful and useful precisely because it is remarkably simple and yet includes an 

important part of the velocity field — absent external forcing or friction, q of the shallow water model is 

conserved following a parcel. There is nothing comparable to the pressure work term found in the 

energy balance, Eqn. (80), that transmits energy at the speed of gravity waves. Instead, potential 

vorticity has the conservation property of a dye that, once put into a fluid, remains with the fluid no 

matter how complex the flow may be. Said a little differently, q is transported with the fluid velocity, 

and not the gravity wave velocity. But quite unlike a simple dye, the potential vorticity includes an 

important part (not all) of the velocity field. In some cases it may be sufficient to calculate the evolution 

of a flow from q-conservation only (the low frequency waves of Section 7.3 are an example), which is a 

marked simplification over solving the full shallow water system. In other cases, however, q may be 

irrelevant (the pure gravity wave dynamics of Section 7.1). 

Potential vorticity amounts to a generalized angular momentum insofar as it accounts for a variable 

moment of inertia (thickness) as well as the vorticity f due to the Earth’s rotation. The planetary 

vorticity is extremely important in this regard, because, for most large scale flows, f is considerably 

larger than is ξ, often by a factor of 10 or more. A fluid column having potential vorticity will exhibit a 

kind of gyroscopic rigidity in the sense that it will respond to changes in the parcel configuration 

(thickness) or to changes in latitude and thus f . For example, suppose that a fluid column has absolute 

vorticity (f1 + ξ1) and thickness h1 in an initial state, and is then squashed from h1 to h2. Assuming 

only that the squashing occurs without frictional or external torques, then the absolute vorticity of the 

column will change to (f2 + ξ2) = (f1 + ξ1)h1/h2 (Fig. 21). Because f � ξ, generally, a change in 

thickness of 10% is often highly significant, as is a change in latitude (and thus f) of only a few 

degrees.41 

41Two problems for you: 1) A right cylinder or radius r and height h has a moment of inertia I = Mr2/2 where M is 

the mass of the cylinder. The angular momentum due to rotation at a rate ω about the central axis is L = Iω. Show that 

conservation of angular momentum under changes of h and r that are mass (volume) conserving can be summarized with a 

vorticity conservation law like Eqn. (82). 2) Assume that a fluid column having a radius of 50 km and a thickness of 500 

m is moved from 20 ◦N to 25 ◦N and that it conserves q. Assuming that all the change in f is accounted by changes in ξ 

(no thickness change), estimate the magnitude of the resulting current. Now suppose that the change in f is accommodated 

entirely by a change in thickness.....how much? 
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The winds or currents that we might infer from a q-conservation argument can always be computed 

via the full shallow water system and in that regard, q-conservation may seem to be a bit superfluous. 

However, when it is time to interpret a solution or observations, a potential vorticity-based description 

will oftentimes be far simpler and more insightful than the corresponding linear momentum description, 

provided that potential vorticity concepts have been made a part of our fluid dynamics vocabulary. We 

can make a small start on that here by using potential vorticity balance to help interpret each of the 

geostrophic adjustment experiments that follow. 

6.3 Linearized shallow water equations 

There are a few nonlinear (finite amplitude) phenomena that arise here, but our emphasis will be mainly 

the linear dynamics that shows the effects of Earth’s rotation. The amplitude of the initial thickness 

anomaly was therefore kept small enough, η0 <� H, that the nonlinear advective terms, which are 

quadratic in the dependent variables, were much smaller than the local time rate of change, which is 

linear in the dependent variables. Hence D( )/Dt ≈ ∂( )/∂t and η << H are valid approximations for 

these solutions, which may be diagnosed adequately by means of the linearized shallow water system; 

in Cartesian components, 

∂u 
∂t 

= fv − g � 
∂η 
∂x
, (83) 

∂v 
∂t 

= −fu − g � 
∂η 
∂y 
, (84) 

∂η ∂u ∂v 
= H( + ). (85) 

∂t ∂x ∂y 

Once we have a linear solution and diagnosis in hand, we can then run additional experiments with 

increased amplitude of η0 to see what the nonlinear effects may be (generally small here, because the 

configuration of the initial condition does not promote interaction among neighboring eddies, for 

example). 

7 Models of the Coriolis parameter. 

To this point we have presumed that the Coriolis parameter f was a constant for any given problem. But 

now we are thinking about a spatially extended fluid system and so it is time to acknowledge that f 
varies in space; from Section 4.2 you may recall that f = 2Ωsin(φ), with φ the latitude. Some of the 

surprising consequences of this are shown in Section 7.3. Before we come to that, it will be very helpful 

to build some intuition for the shallow water system by first examining a problem in which f = 0 so 

that there is no rotation and gravity waves only (Section 7.1), then allow that f = constant, so that 
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there are gravity waves, inertial oscillations and geostrophic motion all at once (Section 7.2), and then 

we will be ready for f = f(y), which, of course, is what actually obtains (Section 7.3). This third 

model will include all of the phenomena that came before plus a low frequency wave motion. 

Our specific goal will be to model some aspects of the baroclinic ocean eddies seen in Fig. 3. We 

have therefore chosen values for H = 500 m, and δρ = 2 kg m −3 that are representative of the ocean 

main thermocline. The resulting gravity wave speed (discussed in detail below) C = 
√
g�H = 3.1 m 

s −1, is that of an internal (or baroclinic) wave. So far as the shallow water model goes we could have 

chosen instead the full ocean depth, H = 4000 km, and δρ = 1000 kg m −3, the density difference across 

the sea surface, in which case C = 640 m s −3, the speed of an external (or barotropic)42 wave, e.g., a 

tsunami wave or a tidal wave. The width of the initial ridge or eddy thickness anomaly was taken to be 

400 km, comparable to the observed eddy diameter, and the amplitude was 20 m, so that η0 � H, as 

noted in Section 6.3. 

7.1 Case 1, f = 0, nonrotating 

Immediately after the ridge was released, it began to divide into two equal wave pulses of amplitude 
−1ηo/2 (Fig. 22). These moved steadily outward at the expected gravity wave speed, 

√
g�H = 3.1 m s , 

as we will discuss further below. The current that accompanied the wave pulses was in the direction of 

the pulse movement, i.e., toward positive x within the rightward-traveling pulse. This could be said to 

be a longitudinal wave motion; in Section 7.3 we will find a low frequency wave that is transverse. 

Aside from these pulses, there was nothing. If you had expected the response to look something like the 

waves on the surface of a pond or tsunami waves on the ocean, then this solution will seem a little 

strange. Is there a way to verify that this numerical solution is accurate enough with regard to these 

features to merit further discussion? 

There is a well-known, exact analytic solution for the initial value problem of the elementary wave 

equation that we can use as a reference. The wave equation of the linear, nonrotating shallow water 

system (Eqns. 83 - 85) is easily found by eliminating u and v in favor of η, 

∂2η 
∂t2 

= g �H 
∂2η 
∂x2 

. (86) 

Given that the initial data is 

η(x, t = 0) = ηo(x) (87) 

then the D’Alembert solution 

1 1 
η(x, t) = 

2 
ηo(kx − ωt) + 

2 
ηo(kx + ωt), (88) 

42A barotropic fluid is one in which the density depends upon the pressure only, while in a baroclinic fluid the density may 

vary otherwise. The single layer model is degenerate in this regard, since density is assumed uniform throughout the active 

layer. The dimensional values of H and δρ chosen here are consistent with the lowest vertical mode of the baroclinic waves 

of a more general, multi-layer model. 
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solves (86) and (87) provided that 

ω = k g�H. (89) 

The wave frequency is ω = 2π/(wave period), or waves per time, and the wavenumber is k = 2π/(wave 

length), or waves per space interval. The relationship ω(k) is called the dispersion relation, and is the 

crucial and distinguishing property of a wave system.43 Gravity waves, and moreover gravity waves that 

all have the same phase speed, Cp = (wave length)/(wave period) = ω/k = 
√
g�H, and the same group 

speed, Cg = ∂ω/∂k = 
√
g�H, are the only possible nontrivial motion. The derived parameter 

√
g�H 

44 arises so often that it is useful to assign a new symbol, just plain C = 
√
g�H. 

Because all of the waves (that is to say, waves of all wavelengths) have the same phase speed, they 

retain the relative phase that they were assigned in the initial condition. Thus, the initial shape, ηo(x), is 

retained in the propagating wave pulses, and so the system is said to be nondispersive. It is also 

isotropic (from Greek iso + tropos, equal in all directions) and hence by symmetry half of ηo goes in 

one direction, and half goes the other.45 

The energy budget was evaluated over a domain ± 1000 km (Fig. 23). Several features of the 

energy budget are in common with the parcel on a slope. First, the only source of energy in this 

problem was the potential energy stored in the initial ridge, η0 (and this will be true in all of the 

geostrophic adjustment problems treated here). Second, after the ridge was released and began to 

slump, the decrease of PE was accounted for by the increase of kinetic energy, KE. Thus the total 

energy, KE + PE, was approximately conserved (aside from small losses due to numerical viscosity and 

to a small but numerically necessary diffusion). Other aspects of the energy budget were quite different: 

notice that once the outward-going wave pulses were fully separated, t ≥ 0.8 days, the kinetic energy 

43Some important things have gone by rather quickly here. You should verify that 1) any function whose argument is 

(kx ± ωt) satisfies the elementary wave equation provided that ω/k = 
√

g�H , and 2) the initial data is satisfied by Eqn. (88) 

for any ηo(x). However, if ηo � H does not hold, then the assumption that the system is linear would not be appropriate. 
44If phase speed and group speed are not familiar, an excellent resource is Chapter 1 and 2 of Pedlosky’s ’Waves in 

the Ocean and Atmosphere’.8 For a quick refresher, you might take a look at the script twowaves.m (Section 9), which 

allows you to define an arbitrary dispersion relationship between two waves that are then superimposed. The envelope of the 

superposition, and thus a wave form or pulse, propagates at the group speed, Cg = δω/δk, where δ is the difference between 

the two waves. This demonstration of group speed is purely kinematic since we specify the dispersion relation for the two 

waves and then look for the consequences. In a full problem, the dispersion relationship is determined by the physics of the 

wave medium, and specifically the relationship of restoring force to wavelength. 
45Our numerical solution (Fig. 22) differs slightly from the D’Alembert solution in that these pulses did not retain the 

exact shape of the initial ridge. In part this is a finite amplitude effect of advection of thickness anomaly by the current, 

u∂η/∂x, which was present in the numerical model and numerical solution, but not in the linear shallow water model and the 

D’Alembert solution. Thickness advection tends to steepen the advancing edge of the wave pulse (where the phase speed and 

the current are in the same direction) while stretching out the trailing edge. You can investigate finite amplitude effects in the 

numerical model geoadj 1d.m (Section 9) by choosing a much larger value for the initial thickness anomaly, say ηo = 200 

m. Can you show that finite amplitude effects are large or small according to the Mach number, M = U/C , where U is the 

amplitude of the current? The solution shown here was computed with the linear damping set to a very small value so that 

frictional effects were negligible. What value of r is required to damp the outgoing wave pulse to half initial amplitude as it 

arrives at x = 1000 km? How does the required r vary with the nominal layer thickness, H? 
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Figure 22: (upper) The layer thickness 
anomaly, η(x, t), of a non-rotating fluid 
layer following the release of a rectan
gular ridge. The thin red lines have a 
slope given by the gravity wave speed, 
C = 

√
g�H(= 3.1 m s −1 in this case). 

This solution was computed by the nu
merical model, geoadj 1d.m (Section 
9). (lower) A snapshot of the solution at 
t = 2.0 days. The green line shows the 
initial thickness anomaly. The current, 
which is shown by the array of vec
tors plotted above, is in the x-direction 
only (left-to-right in this figure), and 
is scaled with Cηo/H = 0.12 m s−1 . 
A curious feature of the linear, nonro
tating shallow water model is that the 
gravity wave speed, C , is the only in
trinsic scale; there is no intrinsic hor
izontal length scale or time scale (as 
there will be when rotation is included). 
We have therefore chosen dimensional 
units that are convenient for this spe
cific initial condition, kilometers and 
days. If you are viewing with Acro
bat Reader, you may click on the lower 
panel to start an animation. 
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Figure 23: The energy budget for the 
gravitational adjustment problem of Sec
tion 7.1. The energy and work terms are 
nondimensionalized with the initial po
tential energy, PE0, and time is in days. 
The first four curves shown here have 
the same meaning as the curves with the 
same name (and color) in the parcel on 
a slope of Section 5.3. FW was vanish
ingly small since the frictional parameter 
r was effectively zero in this experiment. 
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and potential energy were thereafter equal. Energy equipartition is a fundamental characteristic of 

(nonrotating) gravity wave motion and thus provides a useful check on the numerical solution in the 

much more common case that an exact analytic solution is not available. At t ≈ 3.1 days, the wave 

pulses reached the edge of the control volume, and thereafter energy was lost from the system by 

outward-going wave radiation represented by the pressure work, PW.46 

Potential vorticity is interesting, too, but in quite a different way — there isn’t any! There was no 

planetary vorticity since f = 0, there was no vorticity in the initial condition since the ridge was at rest, 

and no vorticity was produced by the subsequent gravity wave processes, which are completely 

dependent upon the pressure gradient. Potential vorticity budgets can be invaluable for the analysis of 

low frequency phenomenon (next sections), but we are warned here that potential vorticity is blind to 

gravity waves. 

You probably noticed that geostrophy does not appear to hold in near-equatorial regions of the 

atmosphere (Fig. 1). In part this is because near-equatorial pressure variations are quite small compared 

to those at mid-latitudes and so pressure isolines are not always evident in the near-equatorial regions of 

weather maps. Our experiments with the single parcel model (Section 5.2) may appear at first to offer 

an explanation for both the small values of the equatorial pressure gradient and the absence of 

geostrophy: for a given linear frictional parameter k, the Ekman number E will become very large as 

the latitude goes to zero, and hence geostrophy would not be expected to hold at near-equatorial 

46A difference between the single parcel energy budget (Section 5.3) and the present single fluid layer budget is that when 

we had only a single parcel, there was no choice about where to evaluate the energy budget — of course we followed the 

moving parcel. In a fluid dynamics context we would call that a Lagrangian (material-following) budget. Here we have a fluid 

continuum, and so we do have choices. We evaluated the energy budget over a fixed control volume that extended ± 1000 

km about the center, the part of the model domain that we have plotted, but less than the width of the computational domain. 

This energy budget is Eulerian, in that the spatial coordinates and the control volume are fixed in space. As one consequence, 

energy can leave the control volume through the sides, something that could not happen in the single parcel energy budget. 
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latitudes on account of strong frictional damping. The conclusion is correct as far as it goes, but the 

reason is not. The single parcel model makes a very poor analogy to the winds and currents of 

equatorial regions because of things omitted, i.e., gravity wave dynamics. Thus when pressure isolines 

are shown in the equatorial region, the winds often appear to be almost normal to the pressure isolines, 

the (longitudinal) pressure/velocity relationship associated with gravity waves. Long before being 

damped by friction, an equatorial mass and pressure anomaly will disperse into large scale gravity 

waves that may propagate for thousands of kilometers along the equator. A gravity wave response to 

distant wind shifts (that includes wave modes not present in this nonrotating model) is a key element of 

the El Nino/Southern Oscillation phenomenon and of the equatorial atmosphere and oceans generally. 

Summary: The nonrotating, shallow water system is truly austere. It is isotropic and it is 

characterized by just one intrinsic property, the phase and group speed, C, of (nondispersive) gravity 

waves, the only possible nontrivial motions. 

7.2 Case 2, f = constant, an f -plane, 

The one-dimensional domain and initial condition were repeated in the next experiment, but the latitude 

was set to 20 degrees N so that rotation effects would be appreciable. The Coriolis parameter f was 

taken as constant, an approximation that is often denoted by ’f−plane’ (made clearer below). The 

coefficients in the linearized, shallow water system — f , g� and H — were then constants for a given 

problem. 

Given the previous experiment, we might expect that a significant aspect of the adjustment process 

will be wave radiation away from the ridge. That is indeed the case, and the wave properties may be 

told from the dispersion relationship that links the wave frequency ω and the wave number, k. To find 

the dispersion relation, we postulate a plane wave solution of the form 

u(x, y, t) = Uexp(i(kx + ky − ωt)) and similarly for v and η, where U, V, Υ are the constant but 

unknown amplitudes of the wave velocity components and η. The kx and ky are the components of the 

wave number vector K = kx 
2 + ky 

2 = 2π/λ. Substituting into the governing equations and rewriting 

the resulting algebraic, homogeneous equations in a matrix format yields


⎡ ⎤⎡ ⎤ −ω −f g�kx U 
⎣ f −ω g�ky 

⎦⎣ V ⎦ = 0. (90) 

Hkx Hky −ω Υ 

This homogeneous system will have nontrivial solutions only when the determinant of the coefficients 

vanishes, 

ω3 − ω(g �HK2 + f2) = 0 (91) 

and thus the roots are given by (Fig. 24) 

ω = 0, and ω2 = g �HK2 + f2 . (92) 
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Figure 24: (upper panel) The disper
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1/Rd = f/C , discussed in the text. 
(lower panel) The phase and group 
speeds of the inertio-gravity waves. 
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Unlike the pure gravity waves of 
Section 7.1, these waves are disper
sive, i.e., the phase speed varies with 

0 
−4 −2 0 2 4 K. Note that the group speed goes 

K R
d	

to zero for very long waves that have 
frequencies near f , i.e., for near
inertial motions. 

Before we plot the dispersion relation we should consider whether there may be a choice of 

nondimensional variables that makes sense. The Coriolis parameter f is an obvious (inverse) time scale 

for normalizing the frequency, ω, and when we follow through we find that K is automatically scaled 

by a length scale, 

Rd = C/f 

called the radius of deformation (recall that C = 
√
g�H). The resulting nondimensional dispersion 

relation (Fig. 24) suffices for all values of f , g� and H, i.e., for all shallow water, f-plane models. Rd is 

the intrinsic horizontal scale of the rotating, shallow water model and will arise again more than once; it 

has a clear physical interpretation that we will come to just below. For now we will note that the value 

of Rd depends upon the stratification through C and the latitude through f . In the ocean thermocline at 

20◦N, Rd ≈ 60 km. The Rd of the atmosphere at this latitude is much larger, Rd ≈ 1000 km, because 

the atmosphere is both thicker than the ocean thermocline, and more strongly stratified. We are not 

prepared to explain why, but this very large disparity in Rd is reflected directly in the dominant 

horizontal scales of the variability seen in the atmosphere and ocean (cf. Figs. 1 and 3), i.e., much 

larger horizontal scales in the atmosphere. 

There are three important limits, or modes, evident in the dispersion relation that we have seen 

before in a simpler guise, Sections 5 and 7.1. The root ω = 0 corresponds to steady, geostrophic motion 

(the green line of Fig. 24, upper). The non-zero ω root (the blue line) corresponds to gravity waves that 

are modified by rotation, often called inertio-gravity waves. There is a short and long wave limit of 
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inertio-gravity waves: as KRd becomes very large (wavelength very short compared to Rd), 

inertio-gravity waves asymptote to pure gravity wave motion in which the phase speed is C = 
√
g�H , 

just as in the non-rotating, shallow water model (Section 7.1).47 As KRd becomes very small 

(wavelength very long compared to Rd) inertio-gravity waves asymptote to pure inertial motion, which 

occur also in the single parcel model of Section 5.48 Plane waves on an f−plane are thus dispersive, 

meaning that Cp varies with K so that the shape of η0(x) is not, in general, preserved as waves 

propagate away from a source (cf. the nonrotating, pure gravity wave case of Section 7.1). Instead, the 

initial form η0(x) will become more or less spread out, or ’dispersed’, over time as waves of different 

wavelengths propagate at different Cp. Notice that there is a low frequency range 0 < ω < f within 

which there are no free waves possible in this system. 

Back to our geostrophic adjustment problem: when the ridge was released in this rotating 

environment, the result overall was very different from that found when only pure gravity waves were 

possible (Section 7.1). There were again gravity waves that propagated away from the ridge (Figs. 25 

and 26), and the phase speed of the fastest moving wave front was almost equal to the gravity wave 

speed, 
√
g�H, and the current that accompanies the first wave front was polarized in the x-direction. The 

amplitude of these waves was, however, much less than half the initial thickness of the anomaly as seen 

in the non-rotating case. As time ran and waves continued to arrive in the far field, the current 

associated with the waves changed to a nearly circular, clockwise-rotating motion that approximates an 

inertial oscillation. The frequency of rotation was slightly higher than f (cf. Fig. 16 and which is 

easiest to see in the animation of Fig. 25). These qualitative features of the wave response were as we 

would have expected from the dispersion relation for the (linear, plane) waves of the rotating, shallow 

water system, Fig. (24): pure gravity waves have the fastest group speed and would be expected to 

arrive first in the far field; inertial motions, once they are generated, are likely to persist for days since 

they have very low group speed.49 

After about five days had passed, gravity wave dispersion had been largely completed, though 

some inertial motion persisted. What remained of the ridge and the associated currents was then in an 

approximately steady balance between the pressure gradient associated with the sloping layer thickness, 

47If the wavelength is less than the layer thickness, H , then the wave motion will become a short gravity wave that is 

surface-trapped. These are the high frequency, wind-generated waves that make up most of the sea state. Their frequency 

can be high enough that the pressure is nonhydrostatic and so these waves, sometimes called deep-water waves, are not in the 

domain of the shallow water system. 
48Go back to the shallow water system Eqns. (77) - (78) and identify which of the terms are relevant in each of these three 

limits. 
49One could solve the linear initial value problem via Fourier transform. An example for the non-rotating case is carried 

out by the script ftransform.m (Section 9), which allows for the choice of a dispersion. In the non-rotating case, the initial 

thickness anomaly ηo all goes into propagating waves. In the rotating case, a more or less significant fraction of ηo remains in 

the geostrophically balanced end-state. The linear dispersion relation is an invaluable guide to the kinds of wave motions that 

we will find in the geostrophic adjustment process, but does not tell us how much of the initial ridge will appear in waves vs. 

the balanced geostrophic state. This is an aspect of geostrophic adjustment best treated with potential vorticity conservation, 

described next. 
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Figure 25: (upper) The layer thick
ness anomaly, η(x, t), of a rotating 
fluid layer following the release of 
a rectangular ridge. This solution 
was computed by the numerical model 
geoadj 2d.m Time and horizontal dis
tance are shown in days and kilome
ters to facilitate direct comparison with 
the nonrotating problem shown in Fig. 
22. The thin red lines have a slope 
given by the gravity wave speed, C = √
g�H = 3.1 m s −1 in this case. (lower) 

A snapshot of the solution at t = 2.0 
days. The green line shows the initial 
displacement ηo. The current, which 
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∂η/∂x, which would tend to spread the ridge further, and the Coriolis force acting on the along-ridge 

current (normal to the page) which would tend to compress the ridge. When these opposing forces were 

balanced so that 0 ≈ fv − g�∂η/∂x at every point, the ridge was then in a steady, nearly geostrophic 

balance. An exactly steady, exact geostrophic balance is possible in this system, but our numerical 

solution didn’t quite realize that. 

A key result of this experiment is that most of this wide ridge survived the geostrophic adjustment 

process, e.g., about 80% of the initial potential energy (Fig. 26). In a loose sense, we might say that 

rotational effects exceeded gravity wave dispersion in this experiment. The conservation law for 

potential vorticity, Dq/Dt = 0, provides significant insight into why this was the case. In words, the 

q−conservation law Eqn. (82) states that q(α) is unchanged by the process of geostrophic adjustment, 

where α is a parcel (or column) tag. In this linear case we know even more, that q is conserved in place 
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Figure 26: The energy budget for 
the f-plane geostrophic adjustment 
problem evaluated over x = ± 1000 
km. The energy and work terms are 
nondimensionalized with the initial 
potential energy, PE0, and time is 
in days. These data may be com
pared directly with that of the non-
rotating case Fig. (23), and are re
markably different: very little en
ergy was radiated out the sides of 
the domain, and the final, geostroph
ically balanced ridge (t = 6 days) re
tained most of the potential energy 
of the initial state. In other words, in 

0 2 4 this f-plane case, there was a signif
time, days icant steady state. 

in the sense that q(x) = q0(x) with q0 the initial state and x is the usual (Eulerian) spatial coordinate. 

The initial state includes the ridge within which the layer thickness was H + η0, and elsewhere the 

thickness was H. The q distribution in the initial and in the final state was then (recall that 
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f + ∂v/∂x f 
q = 

H + η 
= q0 = 

H + η0 

if | x | ≤ L, (93) 

f + ∂v/∂x f 
H + η 

= 
H 

if | x | > L. (94) 

In addition, we have come to expect that the final state will be in geostrophic balance, and hence we 

have a relationship between v and η, viz. 

∂η 
0 = fv − g � . 

∂x 

If we substitute this geostrophic balance into the q conservation law, say for the region x ≥ L, Eqn. 

(94), then with rearrangement we have a constant coefficient, second order ordinary differential 

equation for η(x), 
g�H d2η 
f2 dx2 

− η = 0. 

The boundary conditions on η may be applied over four segments, for example for the right-most 

segment x ≥ L, η(L) = η0/2 and η(∞) = 0 and the solution is then 

η(x) = 
ηo 

exp (− x − L 
). 

2 Rd 
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Figure 27: Elements of the poten
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Notice that the length scale for the adjusted ridge is Rd = C/f , which has a clear physical interpretation 

in this problem. Recall from Section 5.3 that 1/f is the time it takes for rotation to turn a parcel (started 

from rest) by one radian with respect to the applied force. Rd is thus the distance that a gravity wave 

will propagate in the time 1/f , and hence Rd is proportional to the distance that the ridge will spread 

outward (as a gravity wave) before being arrested by the Coriolis force. The experiment of Section 7.1 

in which f = 0 can now be seen as the limit Rd/L → ∞ in which rotational effects would be expected 

to be negligible — literally zero in that case — compared to spreading by gravity wave processes. 

Continuing on we, can construct the complete profile v(x), of the q-conserving, linear, geostrophic 

solution and find that it matches very well with the numerical solution (Fig. 27, upper, red curve and 

blue curve). The part of the adjusted ridge that slumps during the geostrophic adjustment process has a 

half-width (e-folding)Rd; the full width of the edge adjusted ridge is then about 3 or 4 times Rd. This 

analysis provides a definite meaning to the phrase ’large scale’ as applied to a mass anomaly or eddy of 

radius L: the appropriate standard against which to compare (or measure) a horizontal length is once 

again found to be the radius of deformation, Rd = C/f . Thus an eddy having a radius of L = 50 km 
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would be large scale and would survive geostrophic adjustment if found in a polar ocean where Rd ≈10 

km, but the same eddy would be decidedly small scale if found in the tropics, where Rd may be several 

hundred km.50 

The geostrophic currents, or ’jets’ since they have a well-defined maximum, have a relative 

vorticity (Fig. 27, middle) that we can readily understand from the change in thickness and q 
conservation. For example, over the right-most segment, x > L, the layer thickness H + η increased, 

and hence the shear of the geostrophic current in that region must have been ∂v/∂x ≥ 0, or cyclonic. By 

similar reasoning one can understand the sign of the relative vorticity over both jets.51 If a calculation of 

the final, geostrophically balanced state had been our only goal, then the best route would surely be the 

analytic solution built upon q conservation and geostrophy. On the other hand, if we had needed to 

know the inertio-gravity waves that accompany geostrophic adjustment, then we would have to solve 

the momentum and continuity equations that contain q-conservation plus the gravity wave dynamics. 

Over longer times, say 50 days, this (numerical) ridge would slowly dissipate on account of either 

linear drag (if that has been included in the numerical model equations) or just by numerical viscosity, a 

numerical error that is endemic to most finite differencing and integration schemes. Dissipation aside, it 

is fair to say that nothing especially interesting happened in the f-plane problem after the geostrophic 

adjustment had been completed. 

Summary: The f-plane shallow water model supports gravity waves as in the previous case, and two 

new modes of motion dependent upon f ; free inertial oscillations and steady geostrophic motion. The 

intrinsic horizontal length scale is the radius of deformation, Rd = C/f . If an anomaly of layer 

thickness is wide compared with Rd, say L > 6Rd, then it will survive geostrophic adjustment. A 

narrow ridge, say L < 2Rd will be largely dispersed by gravity waves before coming into geostrophic 

balance. These results were found in numerical solutions of the momentum and continuity equations, 

but are most readily understood as a consequence of potential vorticity conservation. 

7.3 Case 3, f = fo + βy, a β-plane, 

The mesoscale eddies of Fig. 3 and the gyres of Fig. 2 have north-south horizontal scales of several 

hundred and several thousand kilometers respectively. The Coriolis parameter f varies a little or a lot 

50Using the Matlab script geoadj 1d.m to construct new solutions, verify that the width of the geostrophic current along 

the flank of the adjusted ridge is proportional to Rd. Show that variations of g� and of H are (almost) irrelevant except as they 

enter Rd. What happens when the thickness anomaly is made very large, say ηo = 200 m? The solution shown here was made 

with a very small value of the linear damping coefficient. What happens to the wave response and to the geostrophic response 

when damping is made significant? Connect the results you obtain here with the notion of an Ekman number developed in 

Section 5. 
51Can you go a step further and reconstruct the velocity scale, Cη0/H , used to nondimensionalize the currents? How 

would you test this scaling law? For example, for a given g�, how does the magnitude of the along-ridge geostrophic current 

vary with latitude? How and why does the current magnitude vary with H? 
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over these north-south scales, and it isn’t clear that the f-plane model of Section 7.2 is entirely 

appropriate for these phenomena. To learn some of the consequences of the north-south variation of f 
we will carry out an adjustment experiment styled loosely on the oceanic mesoscale eddies of Fig. 3. 

The initial thickness anomaly will be made circular, with radius L = 200 km but otherwise the 

stratification and central latitude are as before. The spatial domain is two-dimensional and extends for 

several thousand kilometers around the eddy center. The important new feature of this experiment is 

that the north-south variation of the Coriolis parameter will be acknowledged. From Section 4.2 you 

may recall that f = 2Ωsin(φ) is the projection of Earth’s rotation vector onto the local vertical unit 

vector. This form f(φ) could be used in the numerical model, but for a number of purposes it is helpful 

to utilize a linear approximation found by expanding f in a Taylor series about a central latitude, φ0 

(this repeats Eqn. 57): 

f(y) = f(φ0) + βy + HOT, (95) 

where y = Re(φ − φ0) is the north-south (Cartesian) coordinate, and Re is Earth’s nominal radius, 

approx. 6370 km. The coefficient of the linear term is beta, 

df 2Ω 
β = = cos(φ0) (96) 

dy Re 

When the higher order terms (HOT) are ignored, the resulting linear model f(y) is often called a 

beta-plane. The leading factor, 2Ω/Re = 2.29 × 10−11 m −1 s −1, looks to be a very small number, but β 
will be multiplied by a north-south distance y of megameters. Notice that β is positive in both 

hemispheres, has a maximum along the equator and zeroes at the poles. 

7.3.1 Beta-plane phenomena 

When the eddy was released into the β−plane environment, the initial response included gravity wave 

propagation away from the center (Fig. 28), more or less as expected from the previous one-dimensional 

case with rotation, Section 7.2. There are several differences in detail compared to the one-dimensional 

case: 1) the outward traveling waves had a decreasing amplitude with distance on account of geometric 

spreading ∝ 1/r, and 2) the region inside the expanding wave front continued to oscillate, though with 

decreasing amplitude in time. In these respects, this two-dimensional adjustment process looks much 

more like the wave response to a rock thrown into a pond than did the previous one-dimensional cases. 

The first few days of the gravity wave response looked fairly symmetric azimuthally (isotropic), 

but after about five days there developed a noticeable north-south asymmetry, Fig. 29. The 

inertio-gravity waves that propagated poleward (northward in this case) were propagating toward higher 

f . Within a few thousand kilometers these waves reached a latitude at which their intrinsic frequency 

approached f . Recall from the previous section that free inertio-gravity waves can not exist at a latitude 

where ν < f ; this is true approximately also on a beta-plane. The poleward-travelling waves were 

reflected equatorward, and after about ten days, the poleward (northern) side of the eddy was nearly free 
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Figure 28: An experiment in geostrophic adjustment on a beta-plane solved by the numerical model 
geoadj 2d.f (Section 9). The anomaly of the layer thickness, η, is shown at four times: (upper left) the 
initial state of rest at t = 0; (upper right) at t = 2.5 days after the eddy was released, and while inertio
gravity waves were prominent; (lower left) at t = 20 days; and (lower right) at t = 150 days, by which 
time the beta-induced westward translation of the eddy peak was pronounced. This experiment is shown 
as an animation in the cover graphic. 
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Figure 29: A snapshot at t = 10 days 
from the beta-plane adjustment exper
iment. Compared with Fig. 28, this 
figure shows a larger area, and the ver
tical scale is severely truncated to em
phasize the comparatively small ampli
tude inertio-gravity waves. Notice that 
the wave amplitude was much reduced 
on the northern (poleward; toward the 
left in this figure) side of the eddy. 
This north-south asymmetry was due to 
a beta-induced reflection of poleward
travelling inertio-gravity waves. An an
imation of this case is available in the 
supplementary material (Section 9). 

of inertio-gravity waves while the equatorward side was still fairly energetic. This beta-induced 

reflection of inertio-gravity waves is inherently interesting and is an important process of the ocean’s 

internal wave sea state. However, our emphasis from here on will be mainly the low frequency 

phenomenon and we won’t discuss this any further. 

The inertio-gravity waves had largely diminished after several weeks, and the high pressure 

anomaly associated with the elevated layer thickness was nearly balanced by the Coriolis force acting 

on the anticyclonic currents that encircled the eddy (Fig. 30). In other words, the eddy had settled into a 

near geostrophic balance.52 Aside from the details of the wave radiation, the geostrophic adjustment 

process per se was about as we would have expected from our experience with the previous 

one-dimensional case (Section 7.2). 

Over a longer period there emerged a wholly new process that followed from the seemingly small 

change in the representation of the Coriolis parameter — the nearly geostrophically balanced eddy 

moved steadily westward at a rate of about 5 kilometers per day. This slow, steady propagation 

persisted until the eddy reached the western boundary of the computational domain.53 An apparently 

52Some near-inertial oscillations persisted for a week or more, as we noted above. Can you explain why that might be 

expected from the dispersion relation, Fig. (24) ? If inertial motions persist, then in what sense can we claim that the eddy is 

in geostrophic balance? 
53The subsequent evolution of the eddy depended entirely upon the boundary condition imposed on the western edge of 

the domain. The radiation boundary condition used here, ∂( )/∂t = −C∂( )/∂x with C = 
√

g�H, Eqn. (79), is effective at 

minimizing the undesirable reflection of gravity waves. However, this comparatively large gravity wave C acts to push the 

eddy through the boundary more rapidly than it would otherwise go. An adaptive C might be preferable. 
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similar westward propagation of mid-ocean eddies is a striking feature of the sea surface height field of 

all of the major ocean basins, e.g., the North Atlantic in Fig. 2. Along with westward propagation, there 

was also a significant change in the eddy amplitude and shape. The eddy amplitude slowly diminished, 

and a trough (low pressure ridge) formed to the southeast of the eddy center, almost in the initial 

location of the eddy. Our goals for the remainder of this section are to develop an understanding of the 

westward propagation of the eddy peak and of the apparent smearing of the eddy over time. 

7.3.2 Rossby waves; low frequency waves on a beta plane 

The (mainly) westward propagation of this eddy is reminiscent of the gravity wave propagation seen in 

Section 7.1. However, the eddy propagation was, by comparison, very slow, only a few percent of C . At 

a fixed point the time rate of change (and thus the frequency) was correspondingly much less than f . Is 

there a useful wave description of this phenomenon? The corresponding wave motion is not contained 

within the f-plane model, since no free motion exists in the frequency band 0 ≤ ω ≤ f (Fig. 24) and 

too, the eddy remained in place in the f-plane experiment. An understanding of this low frequency 

motion will evidently require that we take explicit account of the variation of f with latitude. The 

straightforward and appealing technique of looking for plane wave solutions directly in the governing 

equations (Section 7.2) does not go through when f = f(y) since all of the coefficients in Eqs. (85) are 

then not constant. 

How to proceed? Two clues: 1) The velocity and pressure fields associated with the propagating 

eddy were very nearly geostrophic (Fig. 30); it is hard to see any discrepancy between the velocity 

direction and the local pressure isolines, though we know that geostrophy can not hold exactly. 2) The 

low frequency and nearly geostrophic motion of the eddy may be contained within the q-conservation 

relation, Eqn. (82), which we have seen gives a complete account of the spatially-varying geostrophic 

fields. These two taken together imply that we might take geostrophy as the basic state, 

u = −(g�/f)∂η/∂y = 0 and v = (g�/f)∂η/∂x = 0, and substitute into the linear q conservation law to 

arrive at a governing equation for the slowly evolving, nearly geostrophic η and V.54 

The shallow water q-conservation equation expanded is just 

Dq 1 Dξ Df f + ξ Dη 
= ( + ) −

(H + η)2 
= 0. 

Dt H + η Dt Dt Dt 

To put this into a form that might permit plane wave solutions we will use that Df/Dt = βv (since 

∂f/∂t = 0), and linearize; H + η ≈ H wherever it appears in denominators, the material derivative is 

54A more formal and so more reliable approach to the same result is a perturbation method known as successive approx

imations, i.e., that we use the geostrophic basic state to estimate the small departures from geostrophy. This method is the 

starting point for much of the theory that has been developed to describe the slowly evolving, nearly geostrophic (often called 

quasi-geostrophic) phenomenon of the atmosphere and ocean (see Cushman-Roisin (1994)8 for a particularly clear exposition 

of this technique). 
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Figure 30: (upper panel) The hori
zontal currents and thickness anomaly 
η (color contours, proportional to 
pressure) associated with the two-
dimensional geostrophic adjustment 
problem of Fig. (28). This is a snap
shot at t = 99 days; click on this figure 
to start an animation. The currents were 
very nearly parallel to the lines of con
stant η suggesting a nearly geostrophic 
balance and yet were clearly time-
dependent. Notice that the current 
swirling anti-cyclonically around the 
high pressure eddy peak varied with 
y, being larger to the south, i.e., to
ward the equator. This gives rise to 
the β-induced divergence mechanism 
that is characteristic of long, diver
gent Rossby waves discussed in Sec
tion 7.3.2. (lower panel) Terms of the 
linear potential vorticity balance Eqn. 
(97) evaluated at t = 99 days on the 
fields above along the line y = 0. The 
beta term (blue line) was very closely 
balanced by the sum of the time rate 
of change of relative vorticity (red line) 
and the stretching (green line), confirm
ing that the potential vorticity balance 
was nearly linear in this small ampli
tude experiment. Near the eddy peak, 
the stretching term was about three 
times the magnitude of the relative vor
ticity term. Over the eastern-most por
tion, x ≥ 100 km, the relative vorticity 
and stretching terms were about equal. 
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reduced to the partial time derivative, and finally note that ξ � f , as we can verify for the mesoscale 

eddies of Fig. 3. To this stage the linearized q-conservation equation reduces to 

∂ξ f ∂η 
∂t 

−
H ∂t 

= −βv (97) 

relative + stretching = beta, 

where it is understood that f and β are evaluated at the central latitude of interest. Next we substitute 

the geostrophic relation for the north-south velocity, v = (g�/f)∂η/∂x, and for the vorticity, 

ξ = (g�/f)�2η, and after a little further rearrangement come to a linear, third order governing equation 

for η, 
g�H ∂η βg�H ∂η 

(1 − 
f2 

� 2)
∂t 

= − 
f2 ∂x 

. (98) 

Notice that the time derivative of η is proportional to the first derivative of η in one direction, east-west, 

which is thus a special direction on a β-plane. If ∂η/∂x = 0, which means that the north-south 

(meridional) geostrophic v = 0, then one possibility is that ∂η/∂t = 0 and the η field could be steady. 

The mechanism that causes time-dependence in this system is evidently the north-south movement of 

fluid through a varying planetary vorticity, βv (Fig. 21, right). In this respect, north-south also looks 

like a special direction, and indeed it is. What we can conclude is that the β-plane shallow water system 

is anisotropic (not isotropic) though in different ways for different variables. 

Substitution of a presumed plane wave solution η(x, t) = η0exp(i(kxx + kyy − ωt)) into Eqn. (98) 

yields a dispersion relation for waves on a beta-plane, sometimes called planetary waves, but more often 

termed Rossby waves, Fig. (31), 

� � 

ω 
f 

= − βRd 

f 
Rdkx 

1 +R2 

d(k
2 
x + k2 

y) 
, (99) 

which is very different from the dispersion relation of inertio-gravity waves (Eqn. 24). In the first place, 

these are very low frequency waves; the factor in parentheses is O(1) for the scales of interest here in 

which K is O(Rd), and the frequency is determined largely by the leading factor, 

βRd/f ≈ Rd/Re ≈ 0.03, where Rd = 60 km, appropriate to the subtropical (baroclinic) ocean. 

Secondly, this dispersion relationship is anisotropic; for a given wavelength, the frequency is a 

maximum when the wave vector is directed east or west (ky = 0, K = kx) and the frequency is zero if 

the wave vector is directed due north or due south. Zero frequency implies steady and exactly 

geostrophic motion, and hence any purely zonal (east-west) motion satisfies Eqn. (99) regardless of ky. 

The north-south component of phase velocity can have either sign, while the east-west component is 

always negative, i.e., always westward (Fig. 32). This crucial distinction between north-south and 

east-west can be attributed to Earth’s rotation vector (Fig. 4), which defines a specific direction for 

everything that is significantly effected by Earth’s rotation, and to the thin-fluid form of the Coriolis 

force. A more general version of this dispersion relation includes also the variation of bottom depth 
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Figure 31: The dispersion 
relation for planetary Rossby 
waves, Eqn. (99). The Rd 

was 60 km, appropriate to a 
baroclinic ocean. The surface 
is symmetric north-south, and 
anti-symmetric east-west. 

(noted briefly in Section 7.3.3). In that case, Rossby waves propagate in the direction that has higher 

background q = f/H to the right of the wave vector. 

The dispersion relation for planetary Rossby waves Eqn. (31) is symmetric north-south, and since 

we are concerned with east-west propagation it is helpful to simplify to the case of an east-west wave 

vector, i.e., (K, 0) = (kx, 0), Fig. (32), 

� � 

ω βRd RdK 
f 

= − 
f 1 +R2K2 

. (100) 
d

This dispersion relation has two distinct limits: long waves, KRd � 1, and short waves, KRd � 1.55 

This implies that there are two distinct mechanisms for Rossby waves that we will discuss further in 

Section 7.3.3. For now we note the consequences for wave dispersion. Long Rossby waves have a zonal 

phase velocity Cp = −βR2 that is westward, and independent of K. Hence, long Rossby waves are d 

nondispersive and their zonal group velocity, Cg = Cp = −βR2, is also westward (and the same as the d

phase velocity). This is a candidate mechanism for the westward translation seen in the oceanic eddy 

field (Fig. 3). Short Rossby waves have a zonal phase speed Cp = −βK−2. Thus short Rossby waves 

are highly dispersive and will not maintain an initial wave form.56 The zonal group velocity of short 

Rossby waves is Cg = −Cp = βK−2 and opposite the phase velocity. 

55This is now the third time that the radius of deformation has arisen as the appropriate length scale against which to 

compare (or measure) horizontal scales, in this case the wavelength of Rossby waves. Are we being overly enthusiastic about 
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The westward translation of the eddy seen in the solution is consistent with the westward group 

(and phase) speed of long Rossby waves, and so a wave description appears hopeful, at least. To make a 

quantitative estimate of phase or group speed from Eqn. (100) requires that we characterize our discrete 

(and two-dimensional) eddy by a wavelength, i.e., we will have to do a rough Fourier transform. As a 

first guess, we might try to estimate a dominate wavelength, the peak in the spectrum, while keeping in 

mind that other wavelengths will also be present. This eddy has a diameter of 400 km, and since it has 

one sign over that distance, a plausible equivalent wavelength would be twice that or 800 km. Given the 

baroclinic Rd = 60 km, then KRd ≈ 2π60 km/800 km ≈ 0.4. Hence, the dominant horizontal scale of 

this eddy appears to be consistent with a fairly long wave, although not KRd � 1. From Fig. (32) the 

group speed at this KRd is Cg ≈ 0.01C ≈ 3 km day−1, which is somewhat less but comparable to the 

westward translation of the eddy peak seen in the numerical solution (Fig. 28). 

So far so good, but recall the trough that developed to the east of the eddy center; something more 

than an elementary (single) plane wave description will be required to explain this feature of the 

solution. One bleak possibility is numerical error. We have been careful to emphasize that all numerical 

Rd, or is it just that there is nothing else suitable? What about the layer thickness, H? Surely it too is an intrinsic length scale. 
56Rossby waves exhibit normal dispersion in that longer waves have greater phase speed. It can happen that shorter waves 

have a greater phase speed, a property dubbed anomalous dispersion. An example of anomalous dispersion that you can 

readily investigate is that of capillary waves (http://www.terrapub.co.jp/journals/JO/pdf/5404/54040343.pdf) generated by the 

movement of a small object across the surface of still water. If the object moves more slowly than the slowest gravity/capillary 

wave, about 0.2 m s −1, there are no waves. But when the speed of the moving object exceeds this minimum wave speed, 

a wave pattern will suddenly appear around and in front of the object. Short capillary waves lead the pack. Anomalous 

and normal dispersion may be investigated also via numerical experiments that solve an initial value problem, ftransform.m 

(Section 9). 
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solutions are less than perfect, and the question is whether the errors swamp the physical, intended 

behavior or vice versa. A second possibility is wave dispersion. The Rossby waves that (we can 

imagine) make up this particular eddy are not expected to have a common phase speed since the 

estimated dominant scale does not satisfy KRd � 1, and hence Rossby wave propagation would not be 

expected to preserve the initial shape of this eddy (compare with the gravity wave pulses of Section 

7.1). To decide this question we will have to look within the solution for evidence of dynamically 

consistent behavior that goes beyond just the sign and approximate magnitude of westward propagation. 

7.3.3 Modes of potential vorticity conservation 

We identified two limits of the Rossby wave dispersion relationship: short waves, KRd � 1, and long 

waves, KRd � 1. These limits correspond to modes (two-term balances35) of the q−conservation 

equation (82) and by examining the mechanisms and phase relationships that go along with each mode 

we can understand how westward propagation (and anisotropy generally) arises on a β-plane. The 

restoring force provided by the β-effect is slightly subtle compared to, say, the elastic restoring force 

that acts upon a plucked string. Westward propagation arises when there is a specific phase relationship 

between η and ∂η/∂t, that the former lags the latter by π/2, or between north-south displacement, y, 

and the north-south velocity, v. However, wave propagation is not guaranteed by q-conservation alone, 

as the first q-conservation mode described below illustrates. 

Stretching and relative vorticity. Consider that the balance of q-conservation is between the 

stretching term and the relative vorticity term (the case sketched in Fig. 21, left) so that the change in 

relative vorticity occurs in phase with the stretching. If stretching stops, so does the rate of change of 

relative vorticity; there is no inertia or overshoot, and so there is no restoring force that might lead to 

wave propagation. This first mode of q-conservation is (or can be) local in time and space and does not 

lead to wave propagation. 

When the β term is a part of the q balance there will be westward propagation. To follow along 

with this discussion it will be very helpful for you to make sketches of η(x), v(x), etc. as you fill in the 

very brief calculations outlined here. 

Beta and stretching. A very important mode of q-conservation is a balance between stretching and 

planetary vorticity, i.e., f/(H + η) = const. To see how this may support a wave, presume a sinusoidal 

thickness anomaly, η(x, y, t) = η0cos(Kx − ωt), that is in geostrophic balance with a north-south 

(meridional) current, v(x, y, t) = (g�/f(y))∂η/∂x, where f(y) is given by a beta-plane approximation. 

Whether there is an ω that is consistent with westward propagation is to be determined. The key point is 

that this meridional geostrophic current will vary with y simply because f varies with y, viz., 

∂v/∂y = (−g�β/f2)(∂η/∂x), evident in Fig. (30). The meridional geostrophic current will thus be 

convergent, ∂v/∂y < 0, and water will pile up where ∂η/∂x > 0. A convergent flow will cause a 

positive rate of change of the layer thickness, ∂η/∂t ≈ −H∂v/∂y from the continuity equation (78) 
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and hence ∂η/∂t = (g�Hβ/f2)(∂η/∂x). The maximum positive rate of change of layer thickness will 

thus correspond to the maximum positive ∂η/∂x, which is just the phase relationship that is required to 

produce a westward propagation of the η phase lines. The dispersion relation for this mode is readily 

calculated to be ω = −βR2K, the small KRd limit (i.e., the long Rossby wave limit) of Eqn. (99). d

Because the mechanism of long Rossby waves is the beta-induced divergence of the north-south 

geostrophic current, long Rossby waves are sometimes called divergent Rossby waves. This beta-effect 

plus forcing by wind stress curl are important mechanisms for the westward intensification of the 

wind-driven ocean gyres (Fig. 2). 

Beta and relative vorticity. Now suppose that the geostrophic current is nondivergent so that column 

thickness H + η is effectively constant and the q-balance is ξ + f = const., i.e., the absolute vorticity is 

conserved (Fig. 21, right). It is easiest to see the resulting phase relationships if we use the the 

north-south velocity v and the y-displacement as the dependent variables. In terms of these variables, 

the conservation of absolute vorticity reads ∂v/∂x + βy + f0 = constant, and with no loss of 

generality we can take the constant = f0 Thus a northward displacement, y > 0, induces negative 

relative vorticity, ∂v/∂x < 0. The implied phase relation between v and y is consistent with a westward 

propagating wave (you will have to make the appropriate sketches to see this). The dispersion relation 

associated with this mode is ω = −βK−1, the short Rossby wave limit. Because the stretching term 

(divergence) is not involved in the q balance of this mode, short Rossby waves are sometimes referred 

to as non-divergent Rossby waves. 

Beta, relative and stretching vorticity. For Rossby waves having a wavelength that yields KRd ≈ 1, 

all three terms are important in the q-balance. The lower panel of Fig. (30) shows these terms evaluated 

for the somewhat smeared out eddy at t = 99 days. The ratio of relative vorticity to stretching vorticity is 

(KRd)
2, i.e., there is more contribution from relative vorticity for shorter wavelengths. Said a little 

differently, if the wavelength is sufficiently long, e.g., as it is for the ocean gyres (Fig. 2), there will be 

very little contribution by the relative vorticity term.57 

57An elementary Rossby wave description appears to give a semi-quantitative account of the eddy translation found in this 

single numerical experiment, and appears to be at least roughly consistent with the oceanic mesoscale eddy observations of 

Fig. 3 as well. To gain some confidence in this tentative result, we would surely need to verify that the parameter dependence 

of the eddy translation speed is in common between the wave theory and the numerical solutions. For example, does the eddy 

translation speed vary with latitude and g� as predicted by Eqn. (99)? Much better that you design and run the experiments that 

you deem relevant, but a few cases with varying latitude are made available as animations listed in Section 9. An elementary 

wave description certainly does not account for the apparent dispersion of the eddy with time (the appearance of a low pressure 

trough in our geostrophic adjustment experiment, Fig. 28). How could we test the conjecture that the relevant mechanism 

is wave dispersion vs. some gross numerical error? For example, how does the initial horizontal scale of the eddy effect its 

translation speed and the apparent dispersion? More generally, does the vorticity balance in our numerical experiment follow 

the expected tendency toward greater relative vorticity contribution at larger KRd? (a start on this is Fig. 30, lower). 



� � 

7 MODELS OF THE CORIOLIS PARAMETER. 86 

7.3.4 Some of the varieties of Rossby waves 

Topographic: Topographic Rossby waves are an important phenomenon of many coastal oceans and 

other regions having a sloping sea floor. The simplest form of these waves occurs when the fluid is 

homogeneous (not density stratified) and the flow is uniform with depth as in the shallow water model. 

The relevant, background potential vorticity is then f/h(y), with h(y) = H + b(y) the water column 

thickness (Fig. 20), here allowed to vary in y only. A fluid column that moves across bottom contours 

will then necessarily be stretched (or squashed), inducing relative vorticity exactly as does flow across 

lines of constant f . The ratio of planetary to topographic vorticity change over a typical continental 

shelf is 
1 ∂f 

planetary f ∂y h 
= 

1 ∂h 
= is O(10−1),

topographic 
h ∂y 

αRe 

given a bottom slope α = 10−3 and nominal depth H = 200 m. The magnitude of the topographic term 

can easily exceed the planetary β term since the bottom depth typically varies on much shorter spatial 

scales than does f (radius of Earth, Re). Topographic effects would prevail over much of the deep, open 

ocean as well, except that stratification partially shields the upper water column from a direct bottom 

slope effect (something outside the domain of a single layer model). 

Assuming that topographic variation dominates the gradient of the background q = f/H, and that 

the fluid is homogeneous, then the frequency of the resulting topographic Rossby waves is given by 

ω αg RdK 
f 

= 
fC 1 +R2 

dK
2 

, 

where Rd = C/f is the barotropic radius of deformation, with C = 
√
gH computed from a nominal H 

and the full gravity. For a nominal shelf water depth H = 200 m, C ≈ 45 m s −1 and Rd ≈ 900 km (mid 

latitudes). Topographic Rossby waves require a non-zero planetary vorticity, f , but not the gradient of 

f . These waves have considerably higher frequencies than do planetary Rossby waves, with 5 - 20 day 

periods being common. They have correspondingly greater phase and group speeds as well. Just as 

planetary Rossby waves propagate phase westward - with higher background potential vorticity to the 

right of the wave vector - so too these topographic Rossby waves propagate phase with shallower water 

and thus larger f/H on their right.58 

Equatorial: At the subtropical site chosen here, the initial geostrophic adjustment was completed in 

about four or five days, and the subsequent westward propagation of the nearly balanced eddy became 

evident only after several weeks (though westward propagation started as soon as there was an 

appreciable north-south current). There is evidently a significant gap in time scales between two very 

different kinds of dynamics that are represented in this experiment: fast time scale inertio-gravity waves 

58An excellent description of (baroclinic) topographic Rossby waves observed under the Gulf Stream is available at 

http://www.po.gso.uri.edu/dynamics/wbc/TRW.html An analysis of a short-lived topographic Rossby wave is in the compan

ion essay, ’Lagrangian and Eulerian Representations of Fluid Flow’, http://ocw.mit.edu/ans7870/resources/price/index.htm 

http://www.po.gso.uri.edu/dynamics/wbc/TRW.htmlAn
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and geostrophic adjustment, and much slower Rossby wave, quasi-geostrophic dynamics that lead to 

westward propagation. If one’s interest was mainly one or the other of these regimes, then it would 

make sense to treat these processes with a model designed to handle specific requirements efficiently. 

Here we have not done that, in part because we wanted to see that these two regimes emerge naturally 

from an initial value problem. And too, there is a very interesting and important case, central latitude = 

0, that blurs the otherwise sharp distinction between gravity waves and Rossby waves. Here we go, back 

to the equator, again. On this trip we are ready to acknowledge that f varies toward both poles, i.e., we 

can envision an equatorial beta plane. f is very small (but of course non-zero just off the equator) and β 
is as large as it gets. The result is that the frequency difference between gravity and Rossby waves is 

much less than is found at subtropical and higher latitudes. Some equatorial waves appear to be a blend 

of gravity and Rossby waves (see the animation of the equatorial case in Section 9). 

Westerlies: Rossby waves and the associated dynamics are a very significant phenomenon in the 

atmosphere. Indeed, the pioneering study of this phenomenon was carried out by Carl G. Rossby and 

colleagues in the late 1930s8 with the aim of understanding the zonal motion of the often prominent, 

wave-like undulations of the westerly winds (Fig. 1). These waves on the westerlies may have a 

planetary wavenumber (waves per circumference of the Earth) of anywhere from 3 to 15. The longest 

such waves (Fig. 1 is an example) often appear to be nearly stationary, despite that the westerly winds 

in which they are embedded have a spatially averaged speed, Ū of O(30 m s −1) toward the east. The 

longest waves have a westward propagation speed that is just sufficient to stem this eastward advection 

and may appear to be nearly stationary with respect to the Earth. Quasi-stationary waves of this sort are 

very common in fluid flows around fixed obstacles: ’rapids’ on the surface of a river and ripples on the 

flow of water from a faucet are familiar examples. On the other hand, the shortest waves on the 

westerlies, which may dominate the instantaneous pattern of the westerlies at other times (the web site 

noted in footnote 3 shows instances of this) clearly translate from west to east. In some cases short 

waves move eastward at a speed that is not much less than Ū. Short westerly waves (which still have 

wavelengths of several thousand kilometers) thus appear to be more or less passively advected by the 

westerly wind. Rossby proposed that westerly waves may propagate zonally within a zonal mean flow 

Ū as 

Cw = Ū − βK−2 , (101) 

which is the short (non-divergent) limit of the Rossby wave dispersion relation Eqn. (99). This relation, 

and the analysis that led to it, proved to have great merit, both as a fundamental explanation of the 

observations and as a practical guide for weather forecasting.59 

Summary: When the northward increase of f is included in the shallow water model there arises a 

59Rossby’s highly readable papers are available at http://www.aos.princeton.edu/WWWPUBLIC/gkv/history/general.html 

An analysis of westerly waves is available from http://journals.ametsoc.org/toc/atsc/1/3 A comprehensive, modern resource 

for oceanic Rossby wave observations and theory is http://www.noc.soton.ac.uk/JRD/SAT/Rossby/index.html The wide vari

ety of mainly atmospheric phenomenon is reviewd by http://carlsbad.princeton.edu/∼dynamics/wiki/images/e/e9/Rhines.pdf 

(you may have to type this address into your web browser). 

http://www.aos.princeton.edu/WWWPUBLIC/gkv/history/general.html
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low frequency wave motion, often called a Rossby wave. These are a very useful idealization of some 

of the most important low frequency phenomenon observed in the atmosphere and the ocean. Rossby 

waves are markedly anisotropic, in that they propagate phase westward only. Long (divergent) Rossby 

waves are nondispersive, while short (non-divergent) Rossby waves are highly dispersive. 

8 Summary of the essay. 

This essay has come two parts. In Part I, Sections 2 - 5, we used a very simple, single parcel model to 

examine the kinematics of a steadily rotating reference frame. The Coriolis force accounts for 

rotationally-induced accelerations, and is one of the most significant forces that shape the pattern and 

evolution of winds and currents. In Part II, Sections 6 and 7, we utilized a single layer fluid model, 

often called the shallow water model, to solve several problems in geostrophic adjustment. In the 

context of a fluid model, Earth’s rotation is very important in the conservation of potential vorticity, the 

fluid equivalent of angular momentum conservation. To summarize further we will return to the 

questions raised in Section 1.2. 

Q1) The origin of the term 2Ω× V�: The Coriolis and centrifugal forces arise from the rotational 

acceleration of a reference frame rather than from an interaction between physical objects. Since there 

is no physical origin for these forces, neither should we expect a physical explanation of their origin. 

The sole, reliable explanation of the Coriolis force is the transformation law for acceleration (Section 

2.5). Whether we should call the Coriolis term a force (as we have done) or an acceleration is less clear. 

The latter is sensible insofar as the Coriolis term arises from the transformation of acceleration, and too 

because it is independent of the mass of the parcel. However, when we use a rotating reference frame 

we seek to analyze (and necessarily observe) the acceleration seen in the rotating frame, d2X�/dt2, and 

not the rotated acceleration, (d2X/dt2)�, of which the Coriolis term is a part (Section 2.5). To 

understand the contribution of the Coriolis term to the acceleration that we observe, it is then natural to 

regard the Coriolis term as the Coriolis force. 

The choice of reference frames is binary, as is the existence or not of the Coriolis and centrifugal 

forces; either it’s inertial, in which case there is no Coriolis or centrifugal force, or it’s rotating, and 

there definitely is (notwithstanding that they may be negligible in a given circumstance). If we choose 

to (or must) use a rotating frame, then the centrifugal and Coriolis forces are exact consequences of 

transforming the equation of motion (Section 2.4). There is nothing ad hoc or discretionary about their 

appearance in the rotating frame equation of motion, and there is no good in calling or thinking of the 

Coriolis force as a ’pseudo force’, or a ’fictitious correction force’ or any usage that might seem to 

question whether the Coriolis force is a full-fledged member of the equation of motion. 

Q2) Global conservation and the absence of the centrifugal force: Because the centrifugal and 

Coriolis are not central forces between physical objects, they contribute peculiar and unphysical 
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behavior to the rotating frame dynamics. Recall the elementary trajectory of Section 3.4; when 

observed from a rotating frame the parcel veered to the right as expected from the deflecting Coriolis 

force. However, there was no object in the environment that revealed a corresponding reaction force. 

Similarly, the parcel speed and kinetic energy increased with time due to work by the centrifugal force, 

and yet there was no source for the energy. The rotating frame equation of motion thus does not support 

global conservation of momentum and neither does it preserve invariance to Galilean transformation. At 

first these would appear to be dire failings, but in practice they are not an issue, so long as we recognize 

and expect them. The overriding point is that the analysis and interpretation of geophysical flow 

phenomena is far simpler when viewed from an Earth-attached, rotating reference frame. In the special 

case of a reference frame attached to a rotating planet, the centrifugal term is cancelled by a small 

deformation of the planet. Because the atmosphere and the oceans are thin, when viewed in the large, 

and stably stratified, the horizontal component of winds and currents is generally much larger than the 

vertical component. In place of the full three-dimensional Coriolis force, we usually need consider only 

the horizontal component of the Coriolis force acting upon the horizontal wind or currents, f × V, 

where f is the Coriolis parameter times the vertical unit vector. 

Q3) New modes of motion: In the very simple, single parcel model (Section 5) we found that there 

were two modes of motion that depended directly upon the Coriolis force. The rotational modes include 

a free oscillation, usually called an inertial oscillation, in which an otherwise unforced current rotates at 

the inertial frequency, f . Inertial oscillations are often a prominent feature of the upper ocean current 

following the passage of a moving storm. A crucial, qualitative effect of rotation is that it makes 

possible a non-trivial, steady motion that is in balance between an external force (wind stress or 

buoyancy force) and the Coriolis force. The characteristic of this steady mode is that the velocity is 

normal to the applied force. We have to be cautious not to over-interpret the single parcel model, but a 

correct inference from this result is that rotation (and the Coriolis force) is indeed the basis for the 

nearly steady winds and currents that make up majority of atmospheric and oceanic circulation outside 

of equatorial regions. 

Q4) Establishment of geostrophy: In Sections 6 and 7 we considered a much more realistic model of 

a geophysical flow, a single layer model, often termed a shallow water model. This model allows for 

gravity wave motions that, in the absence of rotation, have a phase and group speed C ( = 
√
g�H, where 

H is layer thickness). Absent rotation, these gravity waves will rapidly disperse any anomaly in the 

layer height (Section 7.1). With rotation present (Section 7.2), and provided that friction is not large 

(E = r/f � 1, where r is the linear friction parameter and E is the Ekman number) a thickness 

anomaly will evolve toward a state of geostrophic balance. The currents that accompany the geostrophic 

adjustment process may be characterized as gravity waves, inertial oscillations and geostrophic 

currents. One mode or the other may dominate depending upon the time and place, but in general all 

occur at once. 

Perhaps the most important result of the f-plane experiments (Section 7.2) was that the fraction of 

a ridge of width λ that survived to reach a steady geostrophic balance was found to depend upon KRd, 
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where K = 2π/λ and Rd = C/f is the radius of deformation. Most of a wide ridge, KRd � 1, will 

survive in the geostrophic state. On the other hand, a narrow ridge, KRd � 1 will be dispersed by 

gravity waves. These important results are best understood as a consequence of potential vorticity 

conservation which links changes in layer thickness with changes in f and changes in relative vorticity. 

Q5) Departures from geostrophy: The end state of a geostrophic adjustment process may be an 

almost exact geostrophic balance (assuming small E). An exact geostrophic balance would be exactly 

steady. It is clear that the atmosphere and the ocean evolve continually, though generally fairly slowly 

compared to f , so that geostrophic balance must be an approximation of the momentum balance of real 

winds and currents. From this perspective, it can be fruitful to take (near) geostrophy for granted, and 

then focus attention on the the small departures from geostrophic balance that are most clearly revealed 

in the balance of potential vorticity. Earth’s rotation enters as the planetary vorticity, f . The variation of 

f with latitude, often called the beta-effect, gives rise to a westward propagation tendency for all large 

scale, nearly geostrophically balanced eddies, waves or gyres. 

9 Supplementary material. 

The most up-to-date version of this essay plus the Matlab and Fortran source codes noted in the text 

may be downloaded from the author’s public access web site: 

http://www.whoi.edu/science/PO/people/jprice/education/aCt.update.zip 

9.1 Matlab and Fortran source code 

All of the following are public domain for all educational purposes. 

coriolis.m solves for the motion of a parcel as seen from an inertial and a rotating reference frame. Used 

to make Fig. 29. It is much easier to see the results in the onscreen plotting vs. the hardcopy figure. 

partslope.m solves for the motion of a single dense parcel on a slope and subject to buoyancy, bottom 

drag and Coriolis forces. Used to make the figures of Section 5, and configured to carry out additional 

experiments. 

twowaves.m shows the result of superposing two sine waves whose dispersion relation may be 

specified arbitrarily. 

ftransform.m solves an initial value problem in one-dimension and without rotation. Shows the wave 

forms that result from dispersion that is normal, anomalous or none. 

geoadj 1d.m is a one-dimensional, shallow water model used for the geostrophic adjustment 

experiments of Sections 7.1 and 7.2. The latitude, layer depth, friction parameter, etc. may be easily 

http://www.whoi.edu/science/PO/people/jprice/education/aCt.update.zip
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varied from experiment to experiment. 

geoadj 2d.for is a two-dimensional shallow water model used to do the beta-plane gesotrophic 

adjustment experiments of Section 7.3. Written in a very simple Fortran. Solutions like those shown in 

Section 7.3 can be generated on a reasonably capable PC in a few minutes. Model parameters including 

latitude, the kind of f model, eddy amplitude, etc. are entered from the keyboard. Output is saved to 

disk. This model was written for educational rather than research purposes, and the numerical methods 

are simple rather than optimal. As would be true for any numerical model, the results should be 

approached with considerable caution. 

geoadj 2d plot.m is a Matlab script used to plot the data generated by geoadj 2d.for. 

9.2 Additional animations 

Some additional animations are available as follows: 

igwaves beta.mpg; an animation of the beta-plane geostrophic adjustment case shown here in Fig. 29. 

ga2d eta lat0.mpg; animation of layer thickness anomaly, η, for an equatorial beta-plane geostrophic 

adjustment experiment. Unlike the other adjustment experiments listed below, this case employed no 

normal flow boundary conditions on walls set at x = ± 3000 km. The northern boundaries were 

specified by radiation boundary conditions. 

ga2d eta latxx.mpg; animations of thickness anomaly, η, for latitude xx = 10, 20, 40, and 60 ◦N. 

ga2d u latxx.mpg; the currents that go with the η animations above. 
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