
Contents:

Textbook:

Topic 4

Total Lagrangian
Formulation for
Incremental
General Nonlinear
Analysis

• Review of basic principle of virtual work equation,
objective in incremental solution

• Incremental stress and strain decompositions in the total
Lagrangian form of the principle of virtual work

• Linear and nonlinear strain increments

• Initial displacement effect

• Considerations for finite element discretization with
continuum elements (isoparametric solids with
translational degrees of freedom only) and structural
elements (with translational and rotational degrees of
freedom)

• Consistent linearization of terms in the principle of
virtual work for the incremental solution

• The "out-of-balance" virtual work term

• Derivation of iterative equations

• The modified Newton-Raphson iteration, flow chart of
complete solution

Sections 6.2.3,8.6,8.6.1



TOTAL LAGRANGIAN
FORMULATION

We have so far established that

{ H.:ltS" -.::H.:lt c .. 0dV _ H.:ltr17l
JOv 0 I./' U OVIJ- - ;'lL

is totally equivalent to

J t+.:lt,.,.. .. -.:: e.. H.:ltdV - H.:ltr17l
t+/ltv I I./' UH.:lt IJ- -;'lL

Recall :

J t+.:lt,.,.. .. -.:: e.. t+.:ltdV - H.:ltr17l
IlL Ut+.:lt IL -;'lL

t+/ltv • •

is an expression of

• Equilibrium

• Compatibility

• The stress-strain law

all at time t +dt.
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~ We employ an incremental solution
procedure:

Given the solution at time t, we seek
the displacement increments Ui to
obtain the displacements at time t +~t

We can then evaluate, from the total
displacements, the Cauchy stresses at
time t+ ~t. These stresses will satisfy
the principle of virtual work at time
t+~t.

~ Our goal is, for the finite element
solution, to linearize the equation of the
principle of virtual work, so as to finally
obtain

tK ~U(1) = t+ l1tR - tF
~~" -,/ ~

tangent~ pOint! externan: applied ~vector of
stiffness displacement loads at nodal point forces
matrix increments time Hl1t corresponding to

the element
internal stresses

at time t

The vector ~u(1) now gives an
approximation to the displacement
increment U = Hl1tU - tU.



The equation
tK dU(1)

[ ] []
nxn nx1

[]
n x 1

[]
n x 1
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is valid

• for a single finite element
(n = number of element degrees of

freedom)

• for an assemblage of elements
(n = total number of degrees of

freedom)

~ We cannot "simply" linearize the prin
ciple of virtual work when it is written
in the form

• We cannot integrate over an unknown
volume.

• We cannot directly increment the
Cauchy stresses.
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~ To linearize, we choose a known
reference configuration and use 2nd
Piola-Kirchhoff stresses and Green
Lagrange strains as described below.

Two practical choices for the reference
configuration:

• time = 0~ total Lagrangian
formulation

• time = t ~ updated Lagrangian
formulation

TOTAL LAGRANGIAN
FORMULATION

Because HdJSij- and HdJEy. are energetically
conjugate,

the principle of virtual work

1 HatT__ ~ e-- HdtdV - t+dtTh
It UHdt t - '(}t

l+.1tv

can be written as



We already know the solution at time t
(JSij, JUi,j' etc.). Therefore we
decompose the unknown stresses and
strains as
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t+~ts tso i}= 0 i} +
'---'

known unknown increments

In terms of displacements, using

, 1 (' , ")
Oc" = - oU" + ou" + OUk' OUk'It 2 1,1' ~.I ,I '/

and

we find
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1+ - OUk' OUk'2 ,I .J

nonlinear'in Uj

initial displacement
effect
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LINEAR STRAIN INCREMENT
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We note 8t
+

dJEij. = 8oEij-

• Makes sense physically, because each
variation is taken on the displacements
at time t+ ~t, with tUi fixed.

0time t+L\t
variation

1
oTJij- = 2: OUk,i OUk,}

, NONLINEAR STRAIN INCREMENT

Hence



An interesting observation:

• We have identified above, from continuum
mechanics considerations, incremental strain
terms

oet - linear in the displacement increments Uj

oTlt - nonlinear (second = order) in the
displacement increments uj

• In finite element analysis, the displacements
are interpolated in terms of nodal point
variables.

• In isoparametric finite element
analysis of solids, the finite element
internal displacements depend linearly
on the nodal point displacements.

Hence, the exact linear strain increment
and nonlinear strain increment are
given by oet and 0 'Tli~·
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• However, in the formulation of
degenerate isoparametric beam and
shell elements, the finite element
internal displacements are expressed
in terms of nodal point displacements
and rotations.,.,....... ..

tUi = f (linear in nodal point
displacements but nonlinear in
nodal point rotations)

• For isoparametric beam and shell
elements

- the exact linear strain increment is
given by oe~, linear in the
incremental nodal point variables

- only an approximation to the
second-order nonlinear strain
increment is given by V2oUk,i oUk,j'
second-order in the incremental
nodal point displacements and
rotations
.... "'t.wJ: W""



The equation of the principle of virtual
work becomes

J,yOSi} DOCi} °dV +J,y JSi} DOTlij- °dV

= t+~t01 - r JSij- Doeij- °dVJoy
Given a variation DUi, the right-hand
side is known. The left-hand-side
contains unknown displacement
increments.

Important: So far, no approximations
have been made.

force

tu t+atu displacement

All we have done so far is to write the
principle of virtual work in terms of tUi
and Uj.
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• The equation of the principle of virtual
work is in general a complicated
nonlinear function in the unknown
displacement increment.

• We obtain an approximate equation
by neglecting all higher-order terms in
Ui (so that only linear terms in Ui

remain). This leads to

JK LlU = t+/ltR - JF

The process of neglecting higher-order
terms is called linearization.

Now we begin to linearize the terms
that contain the unknown displacement
increments.

1) The term J,v JSij- OOTJi} °dV

is linear in Ui:

• JSi} does not contain Ui.

1 1
• OoTJi} = 2 OUk,i OOUk,} + 2 OOUk,i OUk,}

is linear in Ui.



2) The term f,voSi}8oEi} °dV contains

linear and higher-order terms in Ui:

• oSi} is a nonlinear function (in
general) of oEi}.

• 8oEi} = 80ei} + 80'TIi} is a linear
function of Uj.

We need to neglect all higher-order
terms in Uj.

Linearization of oSi}8oE~:

Our objective is to express (by
approximation) oS~ as a linear
function of Ui (noting that oSi} equals
zero if Ui equals zero).

We also recognize that 8oEi} contains
only constant and linear terms in Uj.
We will see that only the constant
term 80ei} should be included.
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OSi} can be written as a Taylor series in oEt :

oSt = aa?ESi~ ~ + higher-order terms
o rs t ~

~~1- linear and
known quadratic in Uj

(oers + o'Tlrs) • oCijrs oers
t """-""" """-""". ,

I, ~ d~ t' I' ~d tInear qua ra IC Ineanze erm
in Uj in Uj
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Example: A one-dimensional stress- strain law

Js • computed solution

3 4

/
/

//t-lit
-.f----------------Je



At time t,

-+----------0£

Hence we obtain

OSi} OOEi} • oCi}rs oers (oOei} + OOTli})
~ \ J

+ +
= oCij-rs oers oOei} + oCi}rs oers OOTli}

'--""" '--"""
does not linear in Uj

contain Uj
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linear in Uj

linearized result

quadratic in Uj



4-16 Thtal Lagrangian Formulation

Transparency
4-27

Transparency
4-28

The tinal linearized equation is

r oCijrS oers Boeij- °dV + r JSij- BO'Tlij- °dVjev jev
I I

BUT JK dU

= H"m - ~ JS~ &oe~Od>-
I jov V, \1\

when
BUT (H.:ltR - JF)~ discretized

using the
finite element
method

• An important point is that

r JSij-Boeij- 0dV = r JSij-BJEij- °dVjev Jev'"-'--=-----.-.---'
the virtual work due to

because the element internal
stresses at time t

BOeij- = BJEij-

• We interpret

H.:ltg't - r JSij- Boeij- 0dV
jev

as an "out-at-balance" virtual work term.



Mathematical explanation that 8oey. = 8JE~:

If Ui = 0, then the configuration at time
t+ L1t is identical to the configuration at
time t. Hence 8HaJEi~Ui=O = 8JEy..

It follows that 8oey. 0

Hat I /1 /1 t8 oE~ = 80eii + 8o'TJii = 8oEii.
w=O ·w=O ·w=O •

This result makes physical sense
because equilibrium was assumed to
be satisfied at time t. Hence we can
write

( oC~s oers 8oey. °dV + ( dsy. 8o'TJy. °dVJov Jov

= Ha~ _ ~

Check: Suppose that Hatffi = tffi and
that the material is elastic. Then
Hatui must equal tUi, hence
Ui = O. This is satisfied by the
above equation.
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We may rewrite the linearized governing
equation as follows:

= l+l>~ _ t:"J.S~; ~t+l>~E~~ °dV
JSy. 8JEy.

When the linearized governing equation
is discretized, we obtain

JK AU(1) = H.1tR - H.1JF(O)
- - - ,. u-.J

JF

We then use

H.1tU(1) = H.1tU(O) + ~U(1)
- \. .. ,/

tu



(for k = 1, 2, 3, ",)

Having obtained an approximate
solution t+

6tU(1), we can compute an
improved solution:

( oCijrS ~oe~;) OOei} °dV + { JSi} O~oll~2) °dV
Jov Jov

= l+d1m _ ( IHJS~) OI+~£i~1) °dV
Jov

which, when discretized, gives

J.!:S ~U(2) = l+dlR - t+dJE(1)

We then use

In general,

( oCi}rs ~oe~~) oOei} °dV + { JSi} O~Olli}k) °dV
Jov Jov

= l+d1m _ ( l+dJS~k-1) OI+dJ£~k-1) 0dV
Jov

which, when discretized, gives

J.!:S ~U(k) = l+dlR - t+dJE(k-1)

,...... computed
"" 'from t+.llufk-1)

k

Note that t+dIU(k) = IU + L ~U(}).
- - }=1 -
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Equilibrium
not satisfied

T

Equilibrium
is satisfied
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I
I k=k+1 I

l
Compute t+~dE(k)

using t+~tU(k)

t

[Compute d!S, dEl
~

t+~dE(O) = dE, t+~tu(O) = tu

k = 1

1

d!S LlU(k) = t+~tR - tHdE(k 1)

t+~tU(k) = t+~tU(k~1) + Ll1!(k)

I
CHECK FOR CONVERGENCE I

t
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