Topic 4

Total Lagrangian Formulation for Incremental General Nonlinear Analysis

Contents:	Review of basic principle of virtual work equation, objective in incremental solution
	Incremental stress and strain decompositions in the total Lagrangian form of the principle of virtual work
	Linear and nonlinear strain increments
	Initial displacement effect
	Considerations for finite element discretization with continuum elements (isoparametric solids with translational degrees of freedom only) and structural elements (with translational and rotational degrees of freedom)
	Consistent linearization of terms in the principle of virtual work for the incremental solution
	The "out-of-balance" virtual work term
	Derivation of iterative equations
	The modified Newton-Raphson iteration, flow chart of complete solution

Textbook:

Sections 6.2.3, 8.6, 8.6.1

TOTAL LAGRANGIAN FORMULATION

We have so far established that

$$\int_{0_{V}}^{t+\Delta t} S_{ij} \, \delta^{t+\Delta t} \varepsilon_{ij} \, {}^{0} dV = {}^{t+\Delta t} \Re$$

is totally equivalent to

 $\int_{t+\Delta t_{V}}^{t+\Delta t} \tau_{ij} \, \delta_{t+\Delta t} e_{ij} \, {}^{t+\Delta t} dV = {}^{t+\Delta t} \Re$

Recall :

$$\blacktriangleright \qquad \int_{t+\Delta t} t^{t+\Delta t} \tau_{ij} \, \delta_{t+\Delta t} e_{ij} t^{t+\Delta t} dV = t^{t+\Delta t} \Re$$

is an expression of

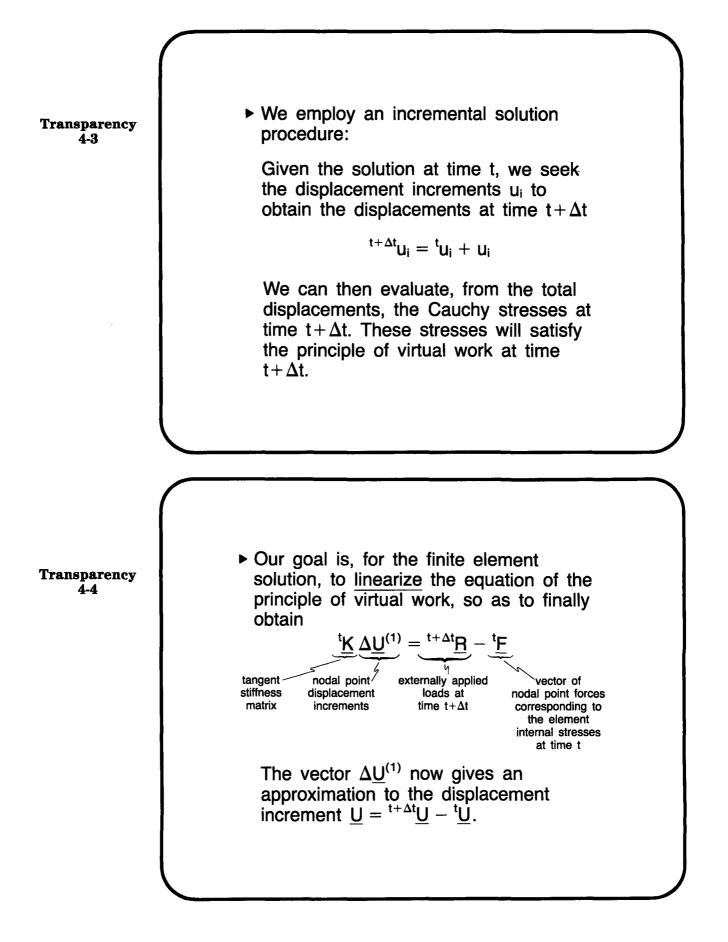
- Equilibrium
- Compatibility
- · The stress-strain law

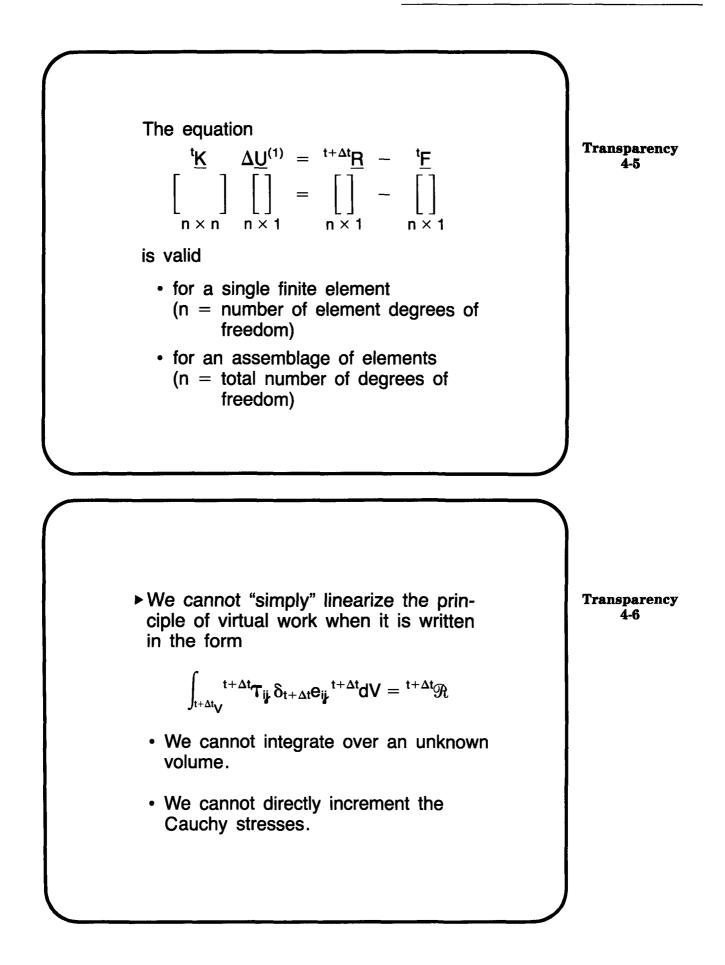
all at time $t + \Delta t$.

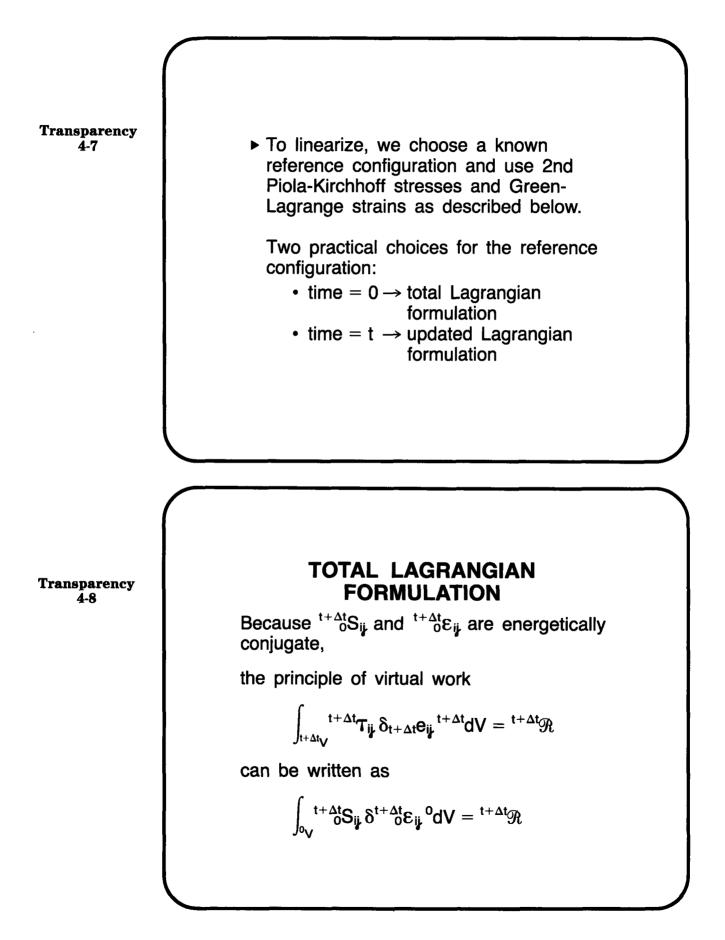
Transparency

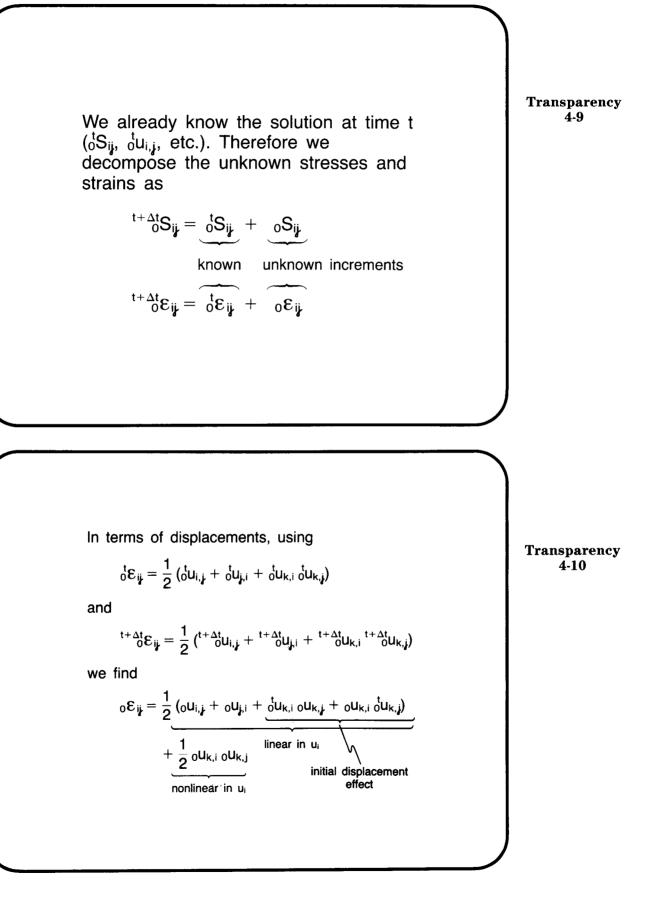
4-1

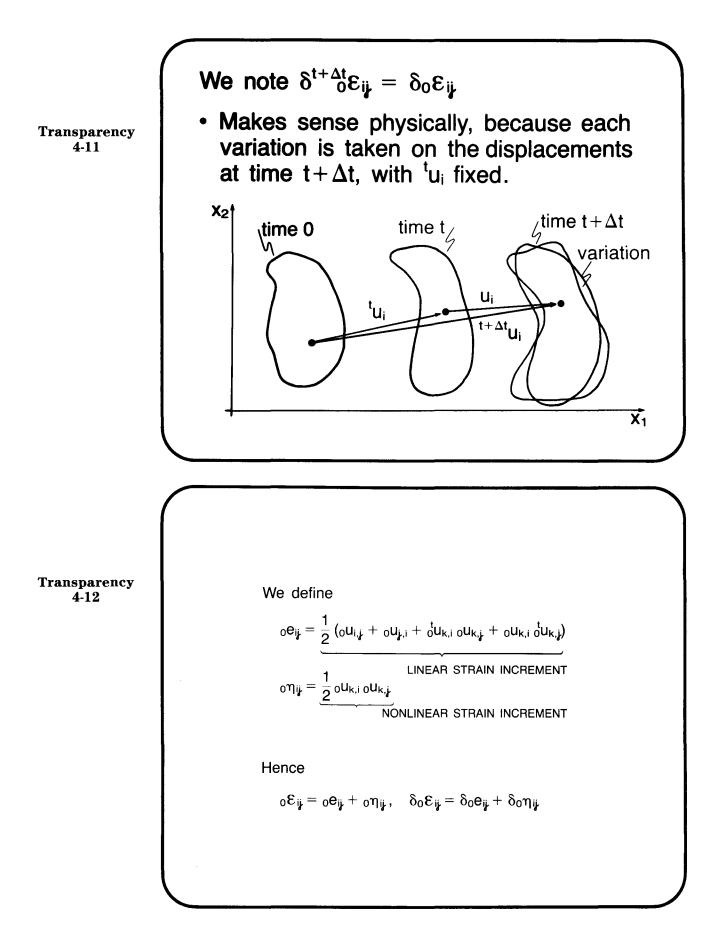
Transparency 4-2

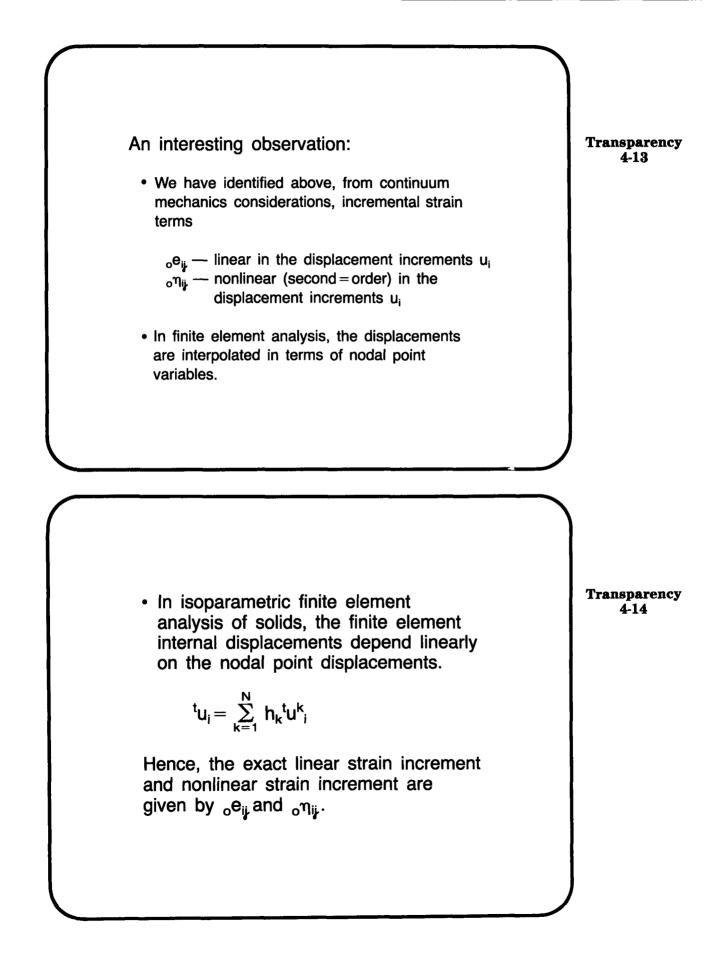


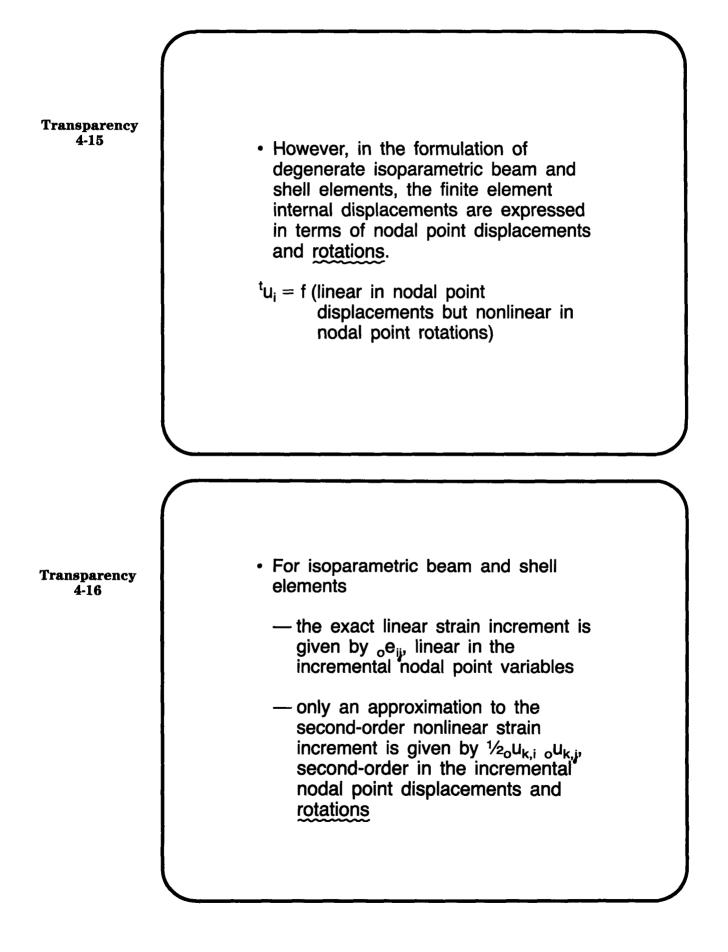


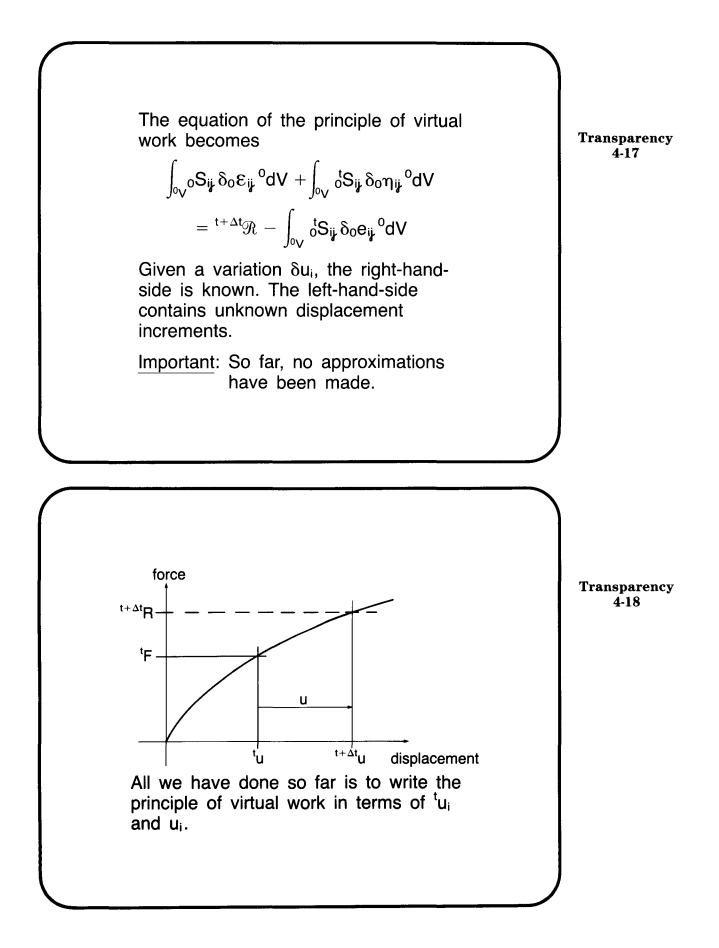


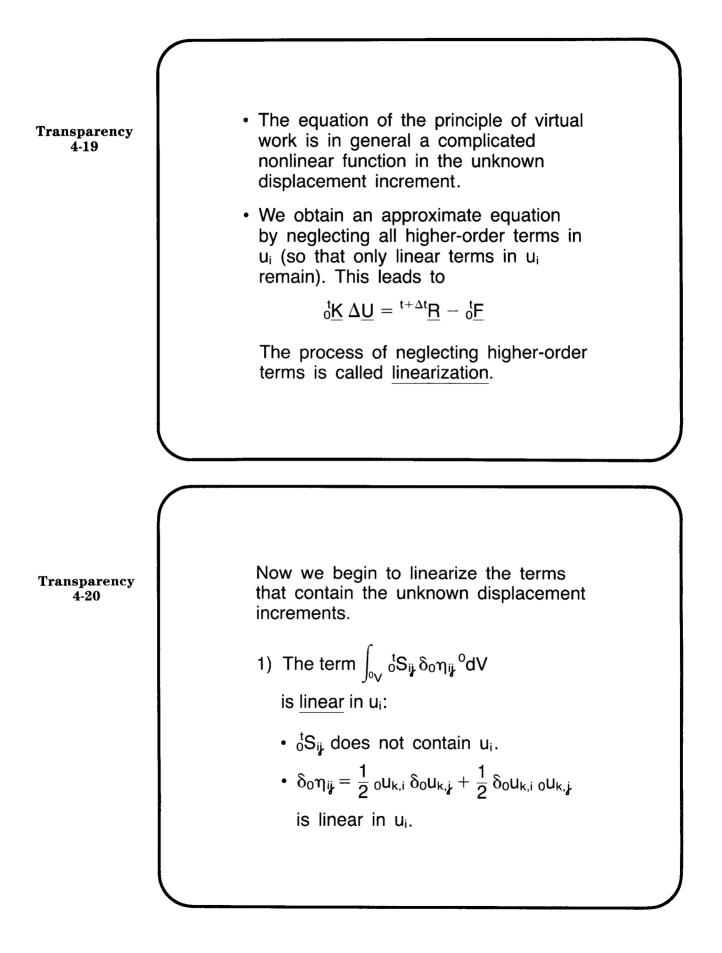


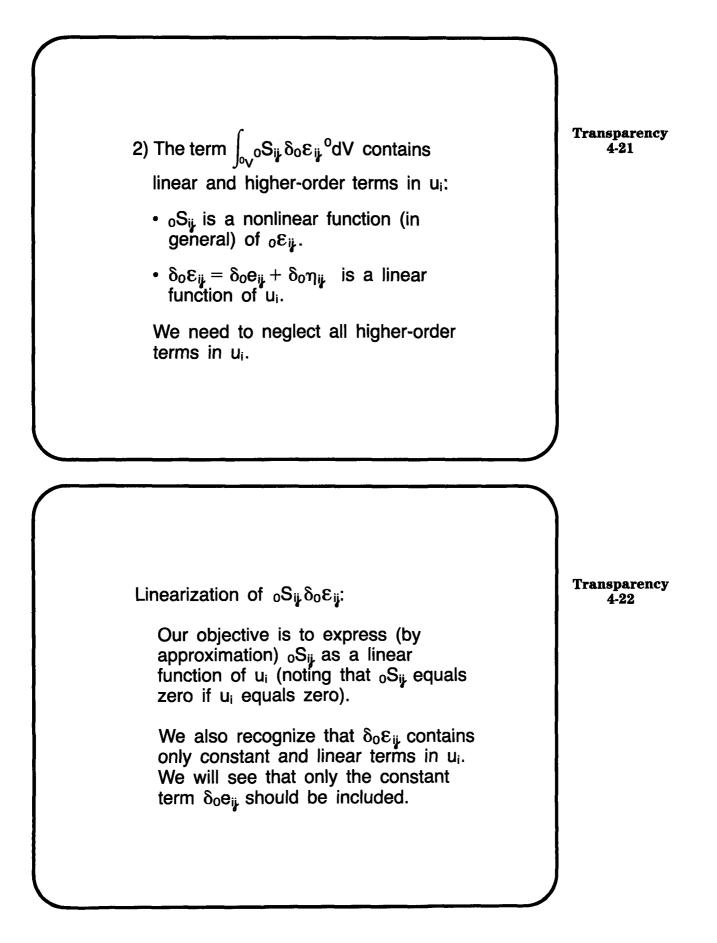


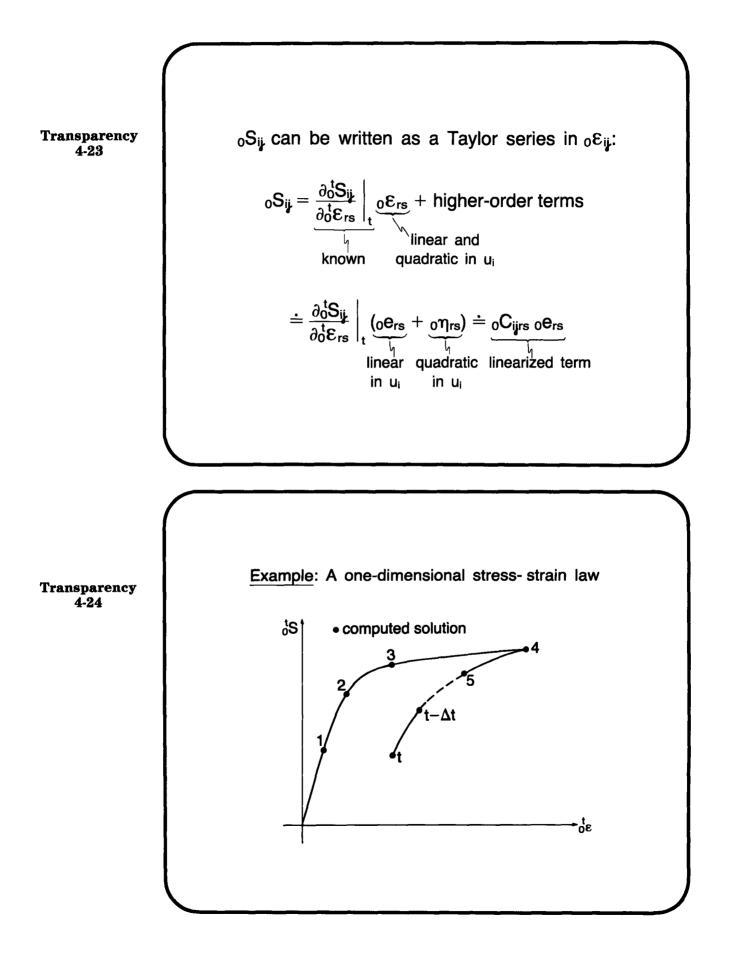


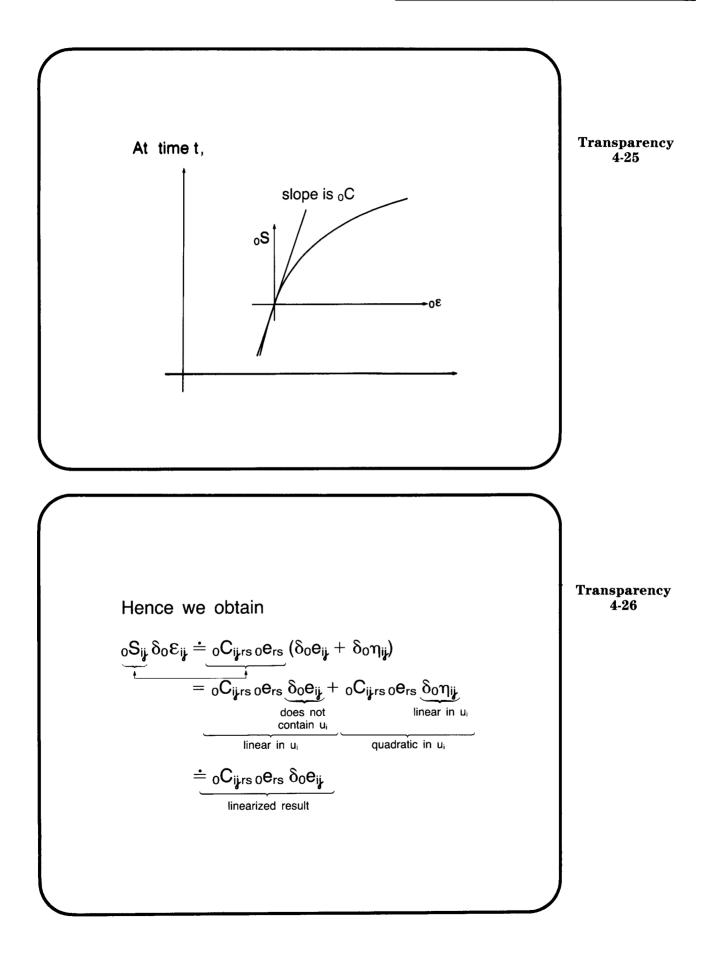


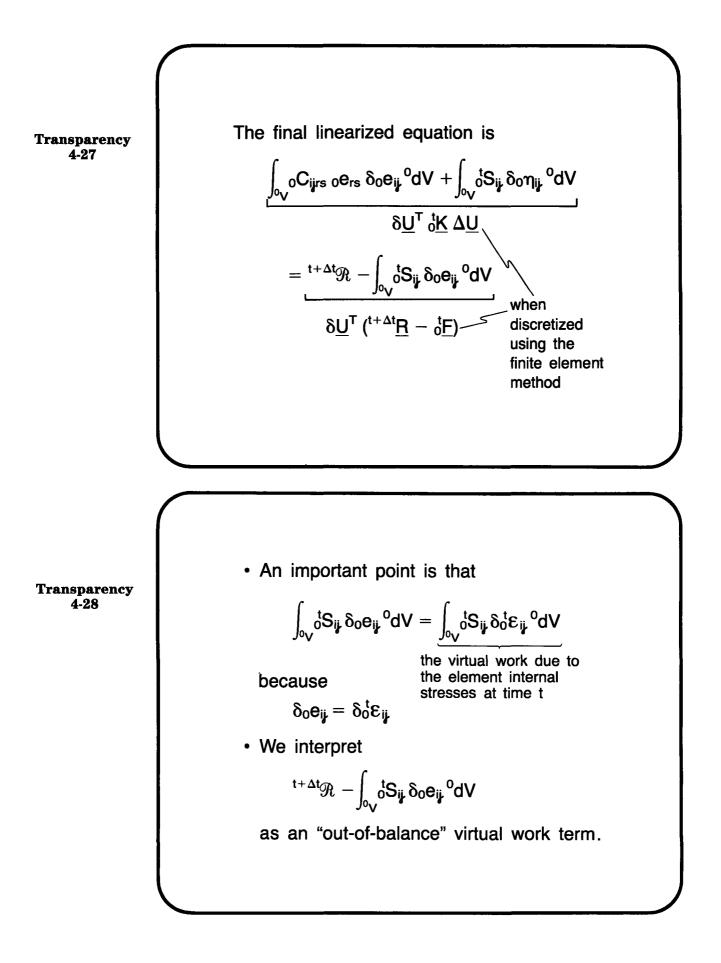


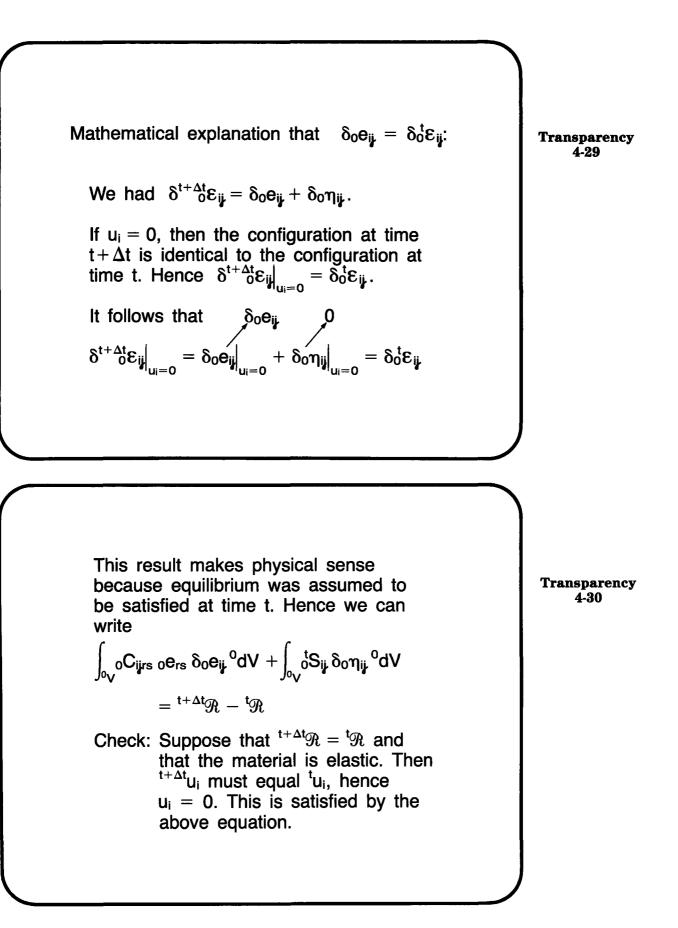


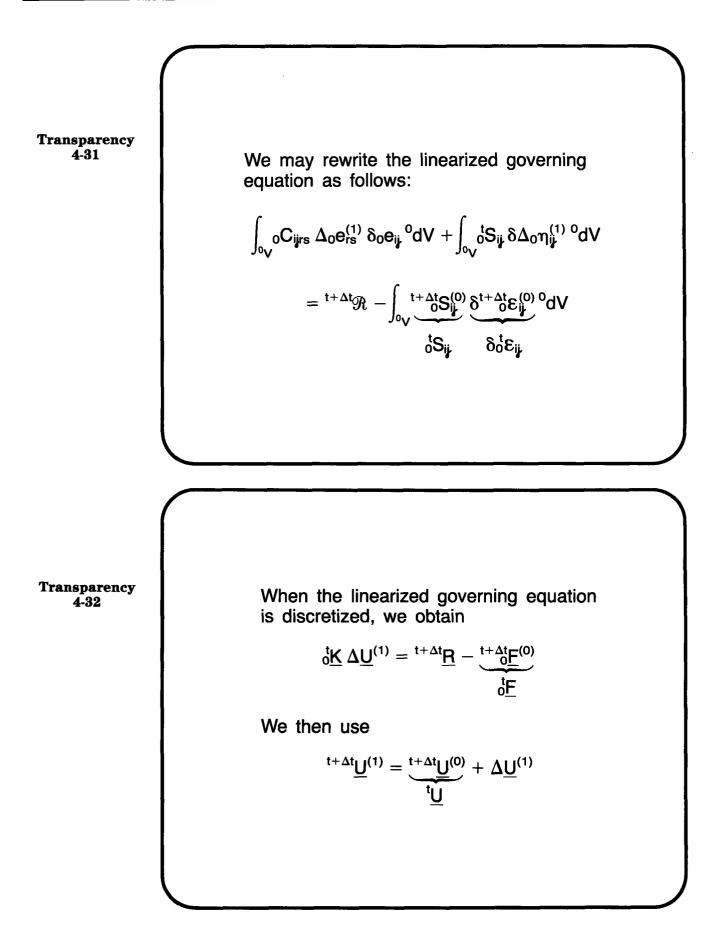












Having obtained an approximate solution ${}^{t+\Delta t}\underline{U}^{(1)}$, we can compute an improved solution:

 $\int_{0_{V}} C_{ijrs} \Delta_{0} e_{rs}^{(2)} \delta_{0} e_{ij} {}^{0} dV + \int_{0_{V}} {}^{t} S_{ij} \delta \Delta_{0} \eta_{ij}^{(2)} {}^{0} dV$ $= {}^{t+\Delta t} \mathcal{R} - \int_{0_{V}} {}^{t+\Delta t} S_{ij}^{(1)} \delta^{t+\Delta t} \mathcal{E}_{ij}^{(1)} {}^{0} dV$

which, when discretized, gives

$${}_{0}^{t}\underline{\mathsf{K}}\;\Delta\underline{\mathsf{U}}^{(2)}={}^{t+\Delta t}\underline{\mathsf{R}}\;-{}^{t+\Delta t}\underline{\mathsf{F}}{}^{(1)}$$

We then use

$${}^{t+\Delta t}\underline{U}^{(2)} = {}^{t+\Delta t}\underline{U}^{(1)} + \Delta \underline{U}^{(2)}$$

Transparency 4-33

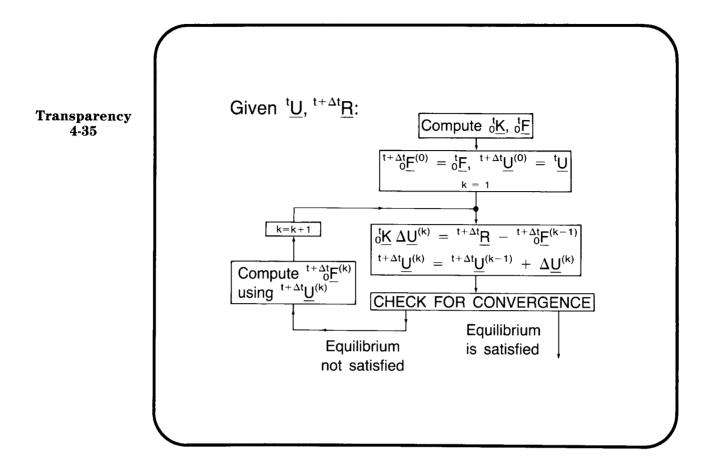
Transparency 4-34

In general,

which, when discretized, gives

$${}_{0}^{t}\underline{\mathsf{K}} \ \Delta \underline{\mathsf{U}}^{(k)} = {}^{t+\Delta t}\underline{\mathsf{R}} \ \underbrace{- {}^{t+\Delta t} \underline{\mathsf{C}}^{(k-1)}}_{\text{of } \underline{\mathsf{F}}^{(k-1)}} \underbrace{\operatorname{computed}}_{\text{from } {}^{t+\Delta t} u_{i}^{(k-1)}}$$

Note that ${}^{t+\Delta t}\underline{U}^{(k)} = {}^{t}\underline{U} + \sum_{j=1}^{k} \Delta \underline{U}^{(j)}$.



MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.