Topic 5

Updated Lagrangian Formulation for Incremental General Nonlinear Analysis

Contents:	Principle of virtual work in terms of 2nd Piola-Kirchhoff stresses and Green-Lagrange strains referred to the configuration at time t
	Incremental stress and strain decompositions in the updated Lagrangian form of the principle of virtual work
	Linear and nonlinear strain increments
	Consistent linearization of terms in the principle of virtual work
	The "out-of-balance" virtual work term
	Iterative equations for modified Newton-Raphson solution
	Flow chart of complete solution
	Comparison to total Lagrangian formulation

Textbook:

Section 6.2.3

WE HAVE

$$\begin{aligned}
& WE HAVE \\
& WE SATISFY: \\
& - \int_{0}^{t+at} \int_{0}^{(k-1)} \int_{0}^{t+at} \int_{0}^{(k-1)} \int_{0}^{0} V \\
& WE SATISFY: \\
& - COMPATIBILITY \\
& - COMPATIBILITY \\
& - STRESS-STRAIN \\
& LAW \\
& - EQUILIBRIUM \\
& - EQUILIBRIUM \\
& - EQUILIBRIUM \\
& NODAL POINT EQUILIBRIUM \\
& V \\
& V \\
& V \\
& V \\
& - EQUILIBRIUM \\
& - EQUILIBRIUM \\
& V \\
& - EQUILIBRIUM \\
& - EQUILIBRIUM \\
& V \\
& - EQUILIBRIUM \\
& - EQUILIBRIU$$

Markerboard 5-2

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.