Topic 9

The Two-Noded Truss Element— Total Lagrangian Formulation

Contents:	Derivation of total Lagrangian truss element displacement and strain-displacement matrices from continuum mechanics equations
	Mathematical and physical explanation that only one component (¹ ₀ S ₁₁) of the 2nd Piola-Kirchhoff stress tensor is nonzero
	Physical explanation of the matrices obtained directly by application of the principle of virtual work
	Discussion of initial displacement effect
	Comparison of updated and total Lagrangian formulations
	Example analysis: Collapse of a truss structure
	Example analysis: Large displacements of a cable
Textbook:	Section 6.3.1

Examples:

Section 6.3.1 6.15, 6.16

We directly derive all required matrices

Recall that the linearized equation of

 $\int_{0_{V}} {}_{0}C_{ijrs 0}e_{rs} \delta_{0}e_{ij} {}^{0}dV + \int_{0_{V}} {}_{0}^{t}S_{ij} \delta_{0}\eta_{ij} {}^{0}dV$

 $= {}^{t+\Delta t} \Re - \int_{0,t} {}^{t} \mathbf{S}_{ij} \, \delta_0 \mathbf{e}_{ij} \, {}^{0} \mathrm{dV}$

in the stationary global coordinate

the principle of virtual work is

system.

Transparency 9-1

We will now show that the only nonzero stress component is ${}_{0}^{t}S_{11}$.

1) Mathematical explanation: For simplicity, we assume constant cross-sectional area Transparency 9-2

Time step	Comment	Number of equilibrium iterations required per time step
1	The gravity loading is applied.	14
2-1001	The prescribed displacement is applied in 1000 equal steps.	≤5

Transparency 9-29

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.