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Statics and Dynamics of Systems
Having a Static Equilibrium
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8.1 Introduction

In general, it is not possible for a fluid to be at rest while subject to an electric or magnetic
force density. Yet, when a field is used to levitate, shape or confine a fluid, it is a static equi-
librium that is often desired. The next section begins by identifying the electromechanical conditions
required if a state of static equilibrium is to be achieved. Then, the following three sections
exemplify typical ways in which these conditions are met. From the mathematical viewpoint, the subject
becomes more demanding if the material deformations have a significant effect on the field. These
sections begin with certain cases where the fields are not influenced by the fluid, and end with models
that require numerical solution.

The magnetization and polarization static equilibria of Sec. 8.3 also offer the opportunity to
explore the attributes of the various force densities from Chap. 3, to exemplify how entirely different
distributions of force density can result in the same incompressible fluid response and to emphasize
the necessity for using a consistent force density and stress tensor.

Given a static equilibrium, is it stable? This is one of the questions addressed by the remaining
sections, which concern themselves with the dynamics that result if an equilibrium is disturbed. Some
types of electromechanical coupling take place in regions having uniform properties. These are exem-
plified in Secs. 8.6-8.8. However, most involve inhomogeneities. The piecewise homogeneous models
developed in Secs. 8.9-8.16 are chosen to exemplify the range of electromechanical models that can be
pictured in this way.

The last sections, on smoothly inhomogeneous systems, serve as an introduction to a viewpoint
that could equally well be exemplified by a range of electromechanical models. Once it is realized
that the smoothly inhomogeneous systems can be regarded as a limit of the piecewise inhomogeneous sys-
tems, it becomes clear that all of the models developed in this chapter have counterparts in this domain.

The five electromechanical models that are a recurring theme throughout this chapter are sum-
marized in Table 8.1.1.

Table 8.1.1. Electromechanical models.

Model Approximation

Magnetization (MQS) or polarization (EQS) No free current or charge

Instantaneous magnetization or polarization

Flux conserving (MQS) T << T

Charge conserving (EQS) T << T or Tmig

Instantaneous magnetic diffusion (MQS) T >> Tm
Instantaneous charge relaxation (EQS) T >> Te or Tmig

Magnetization and polarization models for incompressible motions require an inhomogeneity in mag-
netic or electric properties. The remaining interactions involve free currents or charges which gener-
ally bring in some form of magnetic diffusion or charge relaxation (or migration). How such rate
processes come into the electromechanics is explicitly illustrated in the sections on homogeneous sys-
tems, Secs. 8.6 and 8.7. However, in the more complex inhomogeneous systems, the last four models of
Table 8.1.1 not only result in analytical simplifications, but give insights that would be difficult
to glean from a more general but complicated description. "Constant potential" continua fall in the
category of instantaneous charge relaxation models.

STATIC EQUILIBRIA

8.2 Conditions for Static Equilibria

Often overlooked as an essential part of fluid mechanics is the subject of fluid statics. A re-
minder of the significance of the subject is the equilibrium between the gravitational force density
and the hydrostatic fluid pressure involved in the design of a large dam. On the scale of the earth's
surface, where g is essentially constant, the gravitational force acting on a homogeneous fluid
obviously is of a type that can result in a static equilibrium.

Except for scale, electric and magnetic forces might well have been the basis for Moses' parting
of the Red Sea. Fields offer alternatives to gravity in the orientation, levitation, shaping or

Secs. 8.1 & 8.2



Fig. 8.2.1. (a) Electric field used to shape a "lens" of conducting liquid resting on a pool of
liquid metal. Molten plastics and glass are sufficiently conducting that they can be re
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garded as "perfect" conductors. (b) Polarization forces used to orient a highly insulating
liquid in the top of a tank regardless of gravity. The scheme might be used for providing
an artificial bottom in cryogenic fuel storage tanks under the zero-gravity conditions of
space. (c) Liquid metal levitator that makes used of forces induced by a time-varying mag
netic field. At high frequencies, the flux is excluded from the metal, and hence the fields
tend toward a condition of zero shearing surface force density. (d) Cross-sectional view
of axisymmetric magnetic circuit and magnetizable shaft with magnetizable fluid used to seal
penetration of rotating shaft through vacuum containment.

1-3
otherwise controlling of static fluid configurations. Examples are shown in Fig. 8.2.1.

For what force distributions can each element of a fluid be in static equilibrium? If the ex
ternal electric or magnetic force density is Fe, then the force equation reduces to

++
-V'(p - pg·r) (1)

This expression is a limiting form of Eq. 7.4.4 with the velocity zero. Even if effects of viscosity

1. J. R. Melcher, D. S. Guttman and M. Hurwitz, "Die1ectrophoretic Orientation," J. Spacecraft and
Rockets i, 25 (1969).

2. E. C. Okress et al., "Electromagnetic Levitation of Solid and Molten Metals," J. Appl. Phys. Q,
545 (1952).

3. R. E. Rosensweig, G. Misko1czy and F. D. Ezekiel, "Magnetic-Fluid Seals," Machine Design March 28
1968. ' ,
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are included in the model, because v = 0, Eq. 1 still represents the static equilibrium. Thus, it is
also the static limit oZ Eq. 7.4.4. The curl of a gradient is zero. So, the curl of Eq. 1 gives a
necessary condition on Fe for static equilibrium:

V x Fe = 0 (2)

To achieve a static equilibrium, the force density must be the gradient of a scalar, -VS. Then Eq. 1
becomes

V(p - pg'r + S) = 0 (3)

which will be recognized as Eq. 7.8.4 in the limit v = 0.

More often than not, in an electromagnetic field a fluid does not reach a static equilibrium.
Electromagnetic forces do not generally satisfy Eq. 2. Fields designed to achieve an irrotational force
density are exemplified by Secs. 8.3-8.5.

These sections also illustrate that stress balance at interfaces is similarly restricted. A clean
static interface is incapable of sustaining a net electrical shearing surface force density. Formally,
this is seen from the interfacial stress balance, Eq. 7.7.6, which states that the normally directed
pressure jump 

f 
and surface tension surface force density must be balanced by the electrical force density.

The last, Te[ 0 nj, is in general not normal to the interface.

To be specific about what types of interfaces do satisfy this requirement, consider an interface
having a normal vector in the x direction. Then, nj = 6jx and for the directions i 0 x the surface
force density is

OTix - E= Dx D = EinDx (EQS)
(4)

Tix f = HIBx  = B Bx (MQS)

In writing the second equalities, advantage is taken of the continuity of tangential E (EQS) and normal

' (MQS). From Eq. 4a, two EQS idealizations are distinguished for having no electrical shearing surface

force density at the interface. First, the tangential electric field intensity can vanish, in which

case (4a) is satisfied. The interface is "perfectly" conducting. Secondly, the jump in electric dis-

placement at the interface can vanish, and again, there is no shear stress at the interface. The inter-

face then supports no free surface charge density. Two MQS circumstances exist for achieving no

shearing surface force density. First, the normal flux density can vanish at the interface. Physically,

this is realized if the interface is perfectly conducting. Alternatively, the jump in tangential f can

vanish, and this means that there is no surface current density on the interface.

The four static equilibria of Fig. 8.2.1 exemplify the four limiting situations in which there is

no electrical shearing force density at an interface. In Fig. 8.2.1a, the lens is pictured as suffi-

ciently highly conducting that it excludes the electric field, and hence behaves as a perfect conductor.

Molten glass is more than conducting enough to satisfy this condition. Polarization forces are used to

orient highly insulating fluids with no free charge density either on the interface or in the bulk, as
illustrated in Fig. 8.2.1b. Metallurgists use high-frequency magnetic fields to make a crucible with

magnetic walls, as shown in Fig. 8.2.1c. Here, because of the high frequency used, the magnetic field

penetrates the liquid metal only slightly, and tends to the limit of no normal flux density. Thus, a

static configuration with the melt levitated in mid-air is in principle possible. Magnetic fluids are

being exploited as the basis for making vacuum seals for shaft penetrations as sketched in Fig. 8.2.1d.

Here, the magnetic field is used to orient the liquid in the region between shaft and walls. Generally,

the magnetizable fluids are highly insulating and so there is not only no surface current to produce a

surface shearing force density, but also no volume force density due to I x A.

In all of the examples in Fig. 8.2.1, the electromechanical forces can be regarded as confined to

interfaces. This is clear for the free charge and free current interactions of parts (a) and (c) of

that figure, because there are no fields inside the material. In the polarization and magnetization

interactions, the properties are essentially uniform in the bulk. Thus, the force density expressed as

Eq. 3.7.19 or 3.8.14 is concentrated at the interfaces.

Some common static configurations involving volume forces are evident from symmetry. For example,

if the force density is in one direction and only depends on that direction, i.e., if

F = F (x) (5)

then it is clear that the force density is the gradient of (- S):

Sec. 8.2



C= -f Fx(x)dx (6)

Similar arguments can be used if the force density is purely in a radial direction.

Other approaches to securing a static equilibrium using bulk force densities are illustrated in
Sec. 8.4.

8.3 Polarization and Magnetization Equilibria: Force Density and Stress Tensor Representations

For an incompressible fluid, the pressure is a dangling variable. It only appears in the force
equation. Its role is to be whatever it must be to insure that the velocity is solenoidal. As a con-
sequence, those external forces which are gradients of "pressures" have no influence on the observable
incompressible dynamics. Any "pressure" can be lumped with p and a new pressure defined. Although
true for dynamic as well as static situations, this observation is now illustrated by two static
equilibria.

The first of these illustrates polarization forces, and is depicted My Fig. 8.3.1. A pair of
diverging conducting electrodes are dipped into a liquid having permittivity E. A potential differ-
ence Vo applied between these plates results in the electric field

SV V o .
E = ie (1)

in the interior region well away from the edges. At any given radius r, the situation is essentially
the dielectric of Fig. 3.6.1, drawn into the region between parallel capacitor plates. Because the
field increases to the left, so also does the liquid height. What is this height of rise, &(r)?

There are two reasons that this experiment is a classic one. The first stems from the lack of
coupling between the fluid geometry and the electric field. The interface tends to remain parallel
with the 6-direction, and as a result the electric field given by Eq. 1 remains valid regardless of the
height of rise. As a result, the description is greatly simplified. The second reason pertains to
its use as a counterexample against any contention that the polarization force density is p p, where
p2 is the polarization charge density. In this example, there is neither polarization charge in the
liquid bulk (in the region between the electrodes and even in the fringing field near the lower edges
of the electrodes in the liquid) nor is there surface polarization charge at the interface (where E is
tangential). If pp9 were the force density, the liquid would not rise!

Illustrated now are two self-consistent approaches to determining the height of rise, the first
using Kelvin's force density and the second exploiting the Korteweg-Helmholtz force density.

Kelvin Polarization Force Density: The force density and associated stress tensor are in this
case (Table 3.10.1)

F = P. VE (2)

Tij = EiDj - ijEoEk (3)

The liquid is modeled as electrically linear with P and I collinear,

P= ( - E )E (4)

Throughout the liquid, E is uniform. Hence, Eqs. 2 and 3 and the fact that E is irrotational combine
to show that the force density is

aE iE
P(.VE) = (E - E)E Eo)E- j • - E) E ( o ) ( EEJ) (5)

So long as the force density is only used where E is constant (in the bulk of the liquid or of the air)
Eq. 6 is in the form of the gradient of a pressure,

4 1 + _)
F = -VC; ~E - E o)E-E (6)

This makes it clear that the polarization force density is irrotational throughout the bulk. In the
bulk, Eq. 8.2.3 applies. With G evaluated using Eq. 1, it follows that in the bulk.regions

( - E)V2

P + pgz - 222 = constant 2 2 (7)
2a r

Secs. 8.2 & 8.3
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Fig. 8.3.1. (a) Diverging conducting plates with potential difference V are immersed ino
dielectric liquid. (b) Interfacial stress balance. (c) From Reference 12, Appen
dix C; corn oil (E = 3.7 Eo) rises in proportion to local E2. Upper fluid is com
pressed nitrogen gas (E ~ Eo) so that E can approach 107 Vim required to raise
liquid several cm. To avoid free charge effects, fields are 400 Hz a-c. The fluid
responds to the time-average stress. The interface position is predicted by Eq. 12.

Thus, with the interface elevation, ~, measured relative to the liquid level well removed from the elec
trodes, positions a and d in the air (where E = Eo and p ~ 0) and positions band c (in the 1iq~id) are
joined by Eq. 7:

(8)
2

(8 - 8 )V
o 0

p (9)c

To complete the formulation, account must be taken of any surface force densities at the interface that
would make the pressure discontinuous at the interface. In general, the boundary condition is
Eq. 7.7.6. As discussed in Sec. 8.2, there is no free surface charge, so there is no shearing component
of the surface force density. If the electrodes are very close together, capillarity will contribute
to the height of rise, as described by the example in Sec. 7.8. Here the electrodes are sufficiently
far apart that the meniscus has a negligible effect.

If the local normal to the interface is in the x direction, the surface force density is 0TO.
Because the electric

0
field is entire1y perpendicular to x and is continuous at the interface, it f~!lows

1from Eq. 3 that TxxO = 0- 2 EoE~O = 0, so that there is no surface force density. Hence, the stress
equilibrium for the interface at lOcations a-b and c-d is simply represented by

o (10)

o (11)

The pressures are eliminated between the last four relations by multiplying Eq. 8 by (-1) and adding

8.S Sec. 8.3
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the four equations. The resulting expression can then be solved for E(r):

(E - 6o)V2
5 (12)

2a pgr2

This dependence is essentially that shown in the photograph of Fig. 8.3.1.

Korteweg-Helmholtz Polarization Force Density: It is shown in Sec. 3.7 that this force density
differs from the Kelvin force density by the gradient of a pressure. Thus, the same height of rise
should be obtained using (from Table 3.10.1) the force density and stress tensor pair

+ 1 2
F - E VE (13)1

Tij = EiEj - 6, EkE (14)

Now, there is no electrical force in the volume and the static force equation, Eq. 8.2.3, simply requires
that

p + pgz = constant (15)

Thus, points a and d and points b and c are joined through the respective bulk regions by Eq. 15 to
obtain

Pa = Pd (16)

Pb + pgE = PC (17)

By contrast with Eqs. 8 and 9 there is no bulk effect of the field. Now, the electromechanical coupling
comes in at the interface where e suffers a step discontinuity and hence a surface force density exists.
At the interface, 0 Txx 0 = o - E)Ee, so that the stress balances at the interface locations a-b and
c-d are respectively

2
(E - E)V

Pa - Pb 2 2 (18)
2a r

P - Pd = 0 (19)

Multiplication of Eq. 16 by (-1) and addition of these last four equations eliminates the pressure and
leads to the same deflection as obtained before, Eq. 12.

Korteweg-Helmholtz Magnetization Force Density: The force density and stress tensor pair
appropriate if the fluid has a nonlinear magnetization are (from Table 3.10.1)

+ m aw
F = E ak- Vak (20)

k=1 k

Tij - HiBj - ijW' (21)

where B and H are collinear:

2 +
B = 1(al ,a2 2 , m,H )H (22)

In the experiment of Fig. 8.3.2, the magnetic field

÷ I *
H =rr i (23)

is imposed by means of the vertical rod, which carries the current I. The ferrofluid in the dish has
essentially uniform properties ai throughout its bulk, but tends to saturate as the field exceeds about
100 gauss.

The Korteweg-Helmholtz force density has the advantage of concentrating the electromechanical
coupling where the properties vary. In this example, this is at the liquid-air interface. Because

Sec. 8.3
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Courtesy of Textron Corporation. Used with permission.
Fig. 8.3.2. A magnetizable liquid is drawn upward around a current-carrying wire in accordance

with Eq. 29. (Courtesy of AVCO Corporation, Space Systems Division.)

Eq. 20 is zero throughout the bulk regions, Eqs. 16 and 17 respectively pertain to these regions.

Stress balance at the interface is represented by evaluating the surface force density acting
normal to the interface, to write

owID (24)

o (25)

for locations a-b and c-d, respectively. The pressures are eliminated between Eqs. 16, 17, 24 and 25
to obtain

n WI n
~ = -~ (26)pg

To complete the evaluation of ~(r), the magnetization characteristic of the liquid must be specified.
As an example, suppose that

(27)

where a and a are properties of the liquid. Then, the coenergy density (Eq. 2.14.13) isl 2
+
H

+ + 1 /2 2 a2 1 2
WI B·oH =  la + H - - + -

f
~ H

2 a 2
o al l

0 (28)

and, in view of Eq. 23, Eq. 26 becomes

~ = .1... Ii k2 + <_1_)2_ a~ (29)
pg ~l 2 2~r aJ]

As for the electric-field example considered previously, the relative simplicity of Eq. 26 origi
nates in the independence of H and the liquid deformation. If there were a normal component of Hat
the interface, the field would in turn depend on the liquid geometry and a self-consistent solution
would be more complicated.

8.7 Sec. 8.3

d)



8.4 Charge Conserving and Uniform Current Static Equilibria

A pair of examples now illustrate how the free-charge and free-current force densities can be
arranged to give a static equilibrium.

Uniformly Charged Layers: A layer of fluid having uniform charge density qb and mass density pb
rests on a rigid support and has an interface at x = 6. A second fluid above has charge density qa
and mass density Pa. Gravity acts in the -x direction. The objective is control of E(y) by means of
the potential V(z) applied to the electrodes above.

X
Fig. 8.4.1

Sp, (y) a
(e) Uniformly charged aerosols

d.- . .: f entrained in fluids of dif-
fering mass densities assume

. . . .- - - . ;Ph b . . * static equilibrium deter-
. .. b(y) mined by the applied poten-

. .. J . •
tial V(y).

As an example, the upper fluid might be air which is free of charge (qa = 0) and the lower one
a heavier gas such as CO2 with entrained submicron particles previously charged by ion impact. Thus,
the fluids have essentially the permittivity of free space and there is no surface tension.

The time-scales of interest are sufficiently short that migration of the charged particles
relative to the fluids is inconsequential. Thus, the charge is frozen to the gas. Because the gas
is incompressible (V.v = 0), the charge density of a gas element is conserved. Regardless of the
particular shape of the interface, the charge densities above and below remain uniform, qa and qb
respectively. It is for this reason and because t is irrotational that the force density in each fluid
is irrotational:

F = qE = -qV( = -V(q0)

Thus, Eq. 8.2.3 shows that within a given fluid region

p + pgx + qt = constant

Evaluation of the constant at the points (e) and (f) adjacent to the interface where C = C gives

pa+P gx + qa = + ago + qa(); x >

(3)
p + pbgx + qb = p+ Pbgo + oqb(o); x < C

The force density suffers a step discontinuity at the interface. This means that there is no surface
force density, so that the pressure is continuous at the interface. Continuity of p also follows
formally from the stress jump condition, Eq. 7.7.6 with the surface tension Y = 0.

So that stability arguments can be made, an external surface force density Text(y) is pictured
as also acting on the interface. By definition Text = 0 at location (e-f):

c d e f
p - p = Text; p - p = 0

Subtraction of Eqs. 3a and 3b then gives

g(C ~o)(Pb - - Pa) + (qb - qa) [ '(C) o- =I(%)] Text

where (CC) is the potential evaluated at the interface.

Of course, the potential distribution is determined by the presently unknown geometry of the

interface and the field equations. Here, the relation of field and geometry is simplified by con-
sidering long-wave distributions of the interface. The electric field is approximated as being
dominantly in the x direction. Thus, Poisson's equation reduces to simply

-q qfa: x >a20 2- =--;
x2  ax o q = b: 0 x <

Sec. 8.4
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V(qb-q),''

V_0 C Fig. 8.4.2

V 9- P-P)
- / Graphical representation

S , of Eq. 9.

With the boundary conditions that 4(d) = V(y), that 0 c0 = 0 and ] 81/a8xU = 0 at the interface and that
N(0) = 0, it follows that

() = -V+ qa (d - 2 qb 2(d - ) (7)
d 2c d 2e d

o o

Thus, with Tex t = 0, Eq. 5 becomes a cubic expression that can be solved for C(y) given V(y)

) 
g(ý- o)(P- Pa + (qb q (- d -- V _

(8)

+ ( qa (d-2 2 b [2(d)-(do)] Text
+(qb-qa) 2e d 0 0 2E d

o o

Given a desired E(y), Eq. 8 can also be solved for the required V(y). If the field imposed by the elec-

trode potential V(y) is large compared to the space charge field, the last term in Eq. 8 can be ignored:
Then, the equilibrium is represented by

) + g(-- E )(Pb P (qb- q )(IT -V )= ext (9)

To picture how the interface responds to V(y), it is helpful to use the graphical solution of Fig. 8.4.2.

The interfacial deflection is given by Text = 0. Increasing V has the effect of decreasing the inter-

cept and increasing the slope of the electrical "force" curve.

In this imposed field limit, Eq. 9 can be solved for the layer thickness as a function of the

imposed potential:

S  + Yo (qb - V() (10)
1 gd(pb V(y)

0 

Illustrated in Fig. 8.4.3 is an example which represents what would happen if the potential shown were

imposed on a light layer over a heavier layer, with the upper one uncharged and the lower one negatively
charged.

Stability of the equilibrium can be argued from the dependence of Text on C. If

(11)- ) +  ) 
g(Pb b - a > 0 

a positive force is required to produce a positive deflection, much as if the interface were equivalent

to a spring with a positive spring constant. Thus, the condition of Eq. 11 is required for stability.

In terms of the normalized voltage used in expressing Eq. 10, the interface is stable where V > -1.

A more complete stability argument that includes the effects of space charge is given in Sec. 8.14.

Sec. 8.4



0.5

V(y)1

-0.5

CY
~cy Fig. 8.4.3

3 Imposed field equilibrium
with V = -0.7 sin(y).
Shape of charge layer is
given by Eq. 10.

0

Uniform Current Density: Static equilibrium with the free-current force density Jf x poH dis-
tributed throughout the volume of a fluid is now illustrated. In the MQS system of Fig. 8.4.4, a layer of
liquid metal rests on a rigid plane at x = 0 and has a depth ý(y). The system, including the fields
and currents, is assumed to have a uniform distribution with the z direction, so that the view shown
is any cross section.

The magnetic field is to be used in deforming the liquid interface. A d-c electromagnet produces
a magnetic flux density with components in the x-y plane. In addition, a voltage source drives a uni-
form current density Jo in the z direction throughout the fluid volume. This current density interacts
with the imposed flux density to produce a vertical component of magnetic force in the liquid, and a
resultant deformation of the interface. Note that because the fields are static, there are no surface
currents. Also, the liquid metal is not magnetizable, so there are no magnetization forces to consider.
Finally, effects of surface tension are ignored. Therefore, the interface is in stress equilibrium,
provided the pressure there is continuous.

The essential approximation in obtaining the irrotational force density throughout the volume
is that the imposed magnetic flux density is very large compared to the flux density induced by the
imposed current density Jo. Thus, the force density takes the approximate form

+4 t 
F = J i x [Bi + Bi ] (12)

The vector potential is convenient for dealing with B, because if the substitution is made B = V x A,
then Eq. 12 becomes ? = -VC, wherein

9= -JoA(x,y) (13)

The imposed field approximation and the uniform imposed current result in the irrotational force density
required for static equilibrium. Given the particular field structure and the magnitude of the field
excitation, A(x,y) is known.

In an engineering application, the liquid metal might serve as a base for the casting of plastic
or glass products.l The magnetic field can be controlled so that there is a ready means of altering
the shape of the mold without a need for replacing the casting material. If a quiescent fluid state is
desirable, conditions for a static equilibrium are essential. From Eq. 8.2.3 and Eq. 13

p + pgx - J A = constant (14)

There is no current density in the gas above the interface, and hence no force density. The depth
as y + -- is defined as E, and A (x = 5, y + -~o) is defined as A,. Then, Eq. 14 shows that for points

1. See U.S. Patent #3,496,736, "Sheet Glass Thickness Control Method and Apparatus," February 24,
1970, M. Hurwitz and J. R. Melcher.

Sec. 8.4 8.10



Fig. 8.4.4. Layer of liquid- metal has the depth C(y) which is controlled by the
interaction of a uniform z-directed current density Jo and a magnetic flux
density induced by means of the magnetic structure.

(a) and (a') of Fig. 8.4.4

Pa' + P ag = Pa + P ag (15)

and for points (b) and (b')

(16)Pb' + bg - + J oA  = P Pbgb - JoA  

Because the hydrostatic pressures are the same at the primed and unprimed positions, subtraction of
Eq. 15 from Eq. 16 gives a relation that can be solved for the height ý(y):

ý = ý6- Jo(A, - A)/g(p b - Pa )  (17)

The vector potential has the physical significance of being a flux linkage per unit length in the
z direction. To see this, define X(y) as the flux linked by a loop having one edge outside the field
region to the right, the other edge at the position y and height C of the interface and unit depth in
the z direction. Then the flux linked per unit length is

S= Bnda = A.dk = Am - A(ý,y) (18)

and in terms of this flux, Eq. 18 becomes

o
(19)g(m -b Pa)  

The flux passing through the interface to the right of a given point determines the depression at that
point. Proceeding from right to left, the flux is at first increasing, and hence the depression is
increasing. But near the middle, additions to the total flux reverse, and the net flux tends toward
zero. Hence, ý returns to m?, as sketched in Fig. 8.4.4. Even if used only qualitatively, Eq. 19
gives a picture of the interfacial deformation that is useful for engineering design. Measurements
can be used to determine X(x,y).

8.5 Potential and Flux Conserving Equilibria

Typical of EQS systems in which an electric pressure is used to shape the interface of a somewhat
conducting liquid is that shown in Fig. 8.5.1a. Provided that the region between the cylindrical elec-
trode and the liquid is highly insulating compared to the liquid, the interface is an equipotential.
Because the applied voliage is constant and the equilibrium is static, this is true even for what might
be regarded as relatively insulating liquids. Certainly water, molten glass, plasticizers and even

used transformer Oil will behave as equipotentials with air insulation between electrodes and interface.
The liquid is in a reservoir. By virtue of its surface tension, the interface attaches to the reser-
voir's edges at y = +4. Thus, continuity requires that the upward deflection of the interface under
the electrode be compensated by a downward deflection to either side. To be considered in this section
is how the static laws make it possible to account for such requirements of mass conservation.
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In the MQS system of Fig. 8.5.1b, the liquid is probably a metal. To achieve the conditions for
a static equilibrium, the driving flux source Fo is sinusoidally varying with a sufficiently high
frequency that the skin depth is small compared to dimensions of interest. Thus, the normal flux den-
sity at the interface approaches zero. The liquid responds to the time average of the normal magnetic
stress.

IV•.

0'2 N i 

Fig. 8.5.1. (a) EQS system; liquid interface stressed by d-c field is equipotential. (b) MQS
system; driving current has sufficiently high frequency that currents are on surfaces of
liquid and electrode. Liquid responds to time average of magnetic pressure.

This pair of case Ptudies exemplifies the free charge and free current static equilibria, from
Sec. 8.2, involving electromagnetic surface force densities. The EQS static equilibrium is possible
because there is no electric field tangential to the interface, while the MQS equilibrium results
because there is essentially no normal magnetic flux density.

Antiduals: The two-dimensional fields in the two systems have an interesting relationship. For
the moment, suppose that the geometry of the interfaces is known. Then, the electric field is repre-
sented by the potential, while the magnetic flux density is represented in terms of the z component
of the vector potential, as summarized by Eqs. (a)-(c) of Table 2.18.1. Thus, in the regions between
electrodes and interfaces,

V2 4 = 0 V2A = 0

Boundary conditions on the respective systems are

A = F= Vo on S ° on S1

O f 0 on A = S 0 on 2 S2

where S1 is the surface of the electrode or bus above the interface and S2 is the interface and ad-
jacent surface of 1he container. By definition, Fo is the flux per unit length (in the z direction)
passing between the bus and the interface. Note that to make the magnetic field tangential to these
surfaces, A is constant on the interface and on the surface of the bus.

With the understanding that n denotes the direction normal to the local interface, the electric
and magnetic stresses on the interfaces are

2
1 E2 1 e 2i€2 1 2 1 1 A)

nn 2 on 2 E T = - pH = - Po n
n nn 2 0t 2 oU 3n

o

Thus, if the interface had the same geometry in the two configurations, the magnetic stress would "push"
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on the interface to the same degree that the electric stress would "pull." The magnetic stress is the
negative of the electric stress and can be formally found by replacing Co 4 Po and ac/In + (@A/Dn)/Vo.

Although limited to two-dimensional fields, the antiduality makes it possible to extend the elec-
tromechanical description of one class of configurations to another by simply changing the sign of the
electromechanical coupling term. Provided that charge can relax sufficiently rapidly on the EQS inter-
face to render it an equipotential even under dynamic conditions, and provided that motions remain slow
compared to the period of the sinusoidal excitation for the MQS system (so that the interface responds
primarily to the time-average magnetic stress), the antiduality is valid for dynamic as well as static
interactions.

Bulk Relations: Bernoulli's equation, Eq. 7.8.7, applied to the air and liquid bulk regions, show
that

Ila x >
P i b - pgx x < (5)

where Ha and H
1b are constants. The mass density of the air is ignored compared to that of the liquid.

Stress Equilibrium: The normal component of the stress balance, Eq. 7.7.6, requires that

p = Tnn- yV.n (6)

Evaluation of the pressure jump using Eqs. 5 and of V.n with n given by Eq. 7.5.3 gives

2] 2
(IIH - ) + pgr = T + Y1+ d(i [1+ )1 (7)
a b nn dy dy dyj

Evaluation of Surface Deflection: Suppose that in the absence of a field, the interface is flat.
Then, as the excitation Vo or Fo is raised, ý(y) increasingly departs from this initial state, C = 0.
One way to compute ý(y) at a given excitation is to find the deflections as the excitation is raised,
in stages, to this final value. Thus, Tnn(y) in Eq. 7 is approximated by solving Eq. 1 with E(y) ap-
proximated by its shape at the previous somewhat lower level of excitation. Thus, Tnn is a known func-
tion of y and the new Q(y) is approximated by integrating Eq. 7. Once this is done, the new E(y) can
be used to refine the determination of the fields. This interaction can be repeated until a desired
accuracy is achieved. Then, the excitation can be incrementally raised and the process repeated.

For a system that is symmetric about the x axis boundary conditions appropriate to the solution
of the second-order differential equation, Eq. 7, are

d- (0) = 0 (8)
dy

(-E ) = 0 (9)

In addition, mass conservation requires that

jo dy (10)=0 

-P

This condition translates into a determination of the pressure jump. In view of Eqs. 8 and 10, integra-

tion of Eq. 7 between y = -k and y = 0 shows that

H- = Td1ny ( u (1)
-a1 an y W /+u y=-1

where normalized variables and dimensionless parameters are

y = y; a - b = (a - 4() 2oVo/ 2) =(
(12)

T = (1 E V2 / 2 ) T W - V2 /y; G -pga2/

and u is the slope of the interface, defined as

dy ~ 
dy (13)

(
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In terms of u, Eq. 7 is normalized and written as a first-order differential equation

du (1 u2)3/2
S(1 + u ) [(a - lb)W + Gý - WTnn] (14)

This last pair of relations, equivalent to Eq. 7, take a form that is convenient for numerical incegra-
tion. (The integration of systems of first-order nonlinear equations, given "initial conditions," is
carried out using standard computer library subroutines. For example, in Fortran IV, see IMSL Integra-
tion Package DEVREK.) With Tnn(y) given from the solution of Eqs. 1-3 (to be discussed shortly), the
integration begins at = -1 where Eq. 9 provides one boundary condition. To make a trial integration
of Eqs. 12 and 13, a trial value of u(-l) is assumed. Thus, from Eq. 11, the value of Ha-Hb that in-
sures conservation of mass is determined. Integration of Eqs. 12 and 13 is then carried out and evalu-
-ated at y=0. Using u(-l) as a parameter, this process is repeated until the condition u(O) = 0 (bound-
ary condition, Eq. 8) is satisfied. One way to close in on the appropriate value of u(-l) is by halving
the separation of two u(-l)'s yielding opposite-signed slopes at y = 0.

Evaluation of Stress Distribution: To provide Tnn(y) at each step in the determination of the
surface deflection which has just been described, it is necessary to solve Eq. 1 using the boundary con-
ditions of Eqs. 2 and 3. A numerical technique that is well suited to this task results in the direct
evaluation of the surface charge density af on the interface. Because Tnn = 2CoE /2 = a2/2c , this is
tantamount to a direct determination of the desired stress distribution.

In the two-dimensional configuration of Fig. 8.5.2, the solution of Laplace's equation can be
represented by a potential (at the location t) that is the superposition of potentials due to incremen-
tal line charges per unit length afds':

( -1 af o ') Inj - t' ds' (15)

This expression is normalized such that

EV
4 = V 4; a = ; s =  (s

o- f Y f, (16)

Although in 1 - fl = in - ( + In £, so long as the net charge in the system is zero, integration

of the In 1 term gives no contribution and so is omitted from Eq. 15. The desired (normalized) surface

charve 
y

charge 

is 
is 

a 
o 

and 
and 

ds'is-r 
dg' is 

the 
the (normalized) 

noralied)incemenal 
incrementa 

e of

The integral equation is solved numerically by approximating the
integral by a sum over segments of the boundaries. These are denoted
by the index n, as shown in Fig. 8.5.3. The first N segments are on
the zero potential interface, the next 2M are on the surrounding zero
potential plane and the remaining P segments are on the cylindrical
electrode, and hence have the potential 4 = 1. Thus, the potential at
the mth segment is the superposition of integrations over each of the
charge segments. Because the latter have a length As that is small, Fig. 8.5.2. Potential given
the surface charge on each segment can be approximated as constant by Eq. 15 at r is su-
and the integration carried out analytically. For example, the con- perposition of poten-
tribution to the potential of the mth segment from the surface tials due to line
charge ao on at n the nth segment is (see Fig. 8.5.4), charges P'.

a s n+As
SE n ns In 2+ s2 dsm 27 n (17)

n

Thus, Eq. 15 becomes

N+2M+P
= = a a (18)

m n= mn n
n=1

where
2 2a 21 (As + s )In[(A s + sn) + d - As

an 'n 2 n n n

- 1 In[s 2 + d2 ] + d tan-l(As +  ) - tan-1 sn (19)
2 n n n n d t

Now, Eq. 18 can be written for each of the N+2M+P segments. Thus, it represents a set of N+2M+P
equations, linear in as many unknowns an. These equations are then inverted to obtain the desired an's.
(Matrix inversion is carried out using standard computer library subroutines. For example, in Fortran IV,
see IMSL Matrix Inversion Routine LINVlF.)
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2
Because T = a /2, the normalized stress distribution on each segment follows. So that the

-nn -n
numerical integration of the surface equations, Eqs. 13 and 14, can be carried out with an arbitrary
step size, the discrete representation of Tnn on the interface is conveniently converted to a smooth
function by fitting a polynomial to the values of Tnn. (Polynomial fit can be carried out using a Least
Square Polynomial Fit Routine such as the Math Library Routine LSFIT.)

m th segment
n th segment s

dn\\ -A-

Fig. 8.5.3. Definition of segments and geometry for Fig. 8.5.4. Typical segment on inter-
numerical solution. face.

Typical results of the combined numerical integration to determine Tnn(y) and the interfacial de-
formation are shown in Fig. 8.5.5. (These computations were carried out by Mr. Kent R. Davey.) The
procedure begins with a modest value of W and a flat interface and starts with a determination of Tnn.
Then, Eqs. 13 and 14 are integrated and this integration repeated until the boundary condition u(0) = 0
is satisfied. Using this revised distribution of C(y), the distribution of Tnn is recalculated, followed
by a recalculation of the interface shape. This process is repeated until a desired accuracy is achieved.

Fig. 8.5.5

Shape of interface with
G = 3, r = 0.5 and h = 1.
Broken Brokn culrves crve areforsu-are for suc~-

cessive iterations 
0.02

l1) witn
W fixed. (a) EQS system
with W = 0.5. (b) MQS sys-
tem with W = -0.5. Note
that electric case conver-
ges monotonically, while
magnetic one oscillates.

0

-0.02

With W raised to a somewhat higher value, the previously determined shape is used as a starting
point in repeating the iteration described.
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HOMOGENEOUS BULK INTERACTIONS

8.6 Flux Conserving Continua and Propagation of Magnetic Shear Stress

Alfvyn waves that propagate along magnetic field lines in the bulk of a highly conducting fluid
result from the tendency for arbitrary fluid surfaces of fixed identity to conserve their flux linkage.
The physical mechanisms involved are apparent in the one-dimensional motions of a uniformly conducting
incompressible fluid permeated by an initially uniform magnetic field intensity Hoi , as in Fig. 8.6.1a.
By assumption, each fluid particle in a y-z plane executes the same motion.

Y

(a) (b) (c)
Fig. 8.6.1. (a)Perfectly conducting fluid initially at rest in uniform magnetic field.

(b) For flux conservation of loops of fixed identity initially lying in x-z planes,
translation of layer in y-z plane requires induced currents shown. (c) Force den-
sities associated with currents induced by initial motion. (d) Translation of
layers resolves into wave fronts propagating along magnetic field lines.

Consider the consequences of using an external force density Fexiy (Fig. 8.6.1b) to give a
y-directed translation to a layer of fluid in one of these y-z planes. Because of the translation,
fluid elements initially in any x-z plane form a surface that would be pierced twice by the initial
field Ho . It is shown in Sec. 6.2 that if the fluid is perfectly conducting, the total flux linked
by such a surface of fixed identity must be conserved. As a result of material deformation, a current
density (sketched in Fig. 8.6.1b) is induced in just such a way as to create the y component of mag-
netic field required to maintain the net field tangential to each material surface initially in an
x-y plane.

Note that because charge accumulation is inconsequential, the current density is solenoidal, so
that current in the z direction must be returned in the -z direction in adjacent planes. The force
density associated with these return currents is also shown in Fig. 8.6.1b. Because these currents are
proportional to the displacement of a layer, the external force is retarded by a "spring-like" force
proportional to the magnitude of the displacement. Similarly, the returning currents in adjacent y-z
layers cause magnetic forces above and below, but here tending to carry these layers in the same direc-
tion as the original displacement. Thus, fluid layers to either side tend to move in the same direc-
tion as the layer subjected to the external force. Adjacent layers in the y-z planes are coupled by
a magnetic shear stress representing the force associated with currents induced to preserve the con-
stant flux condition.

In the absence of viscosity, the magnetic shear stress on adjacent layers is only retarded by
inertia. There is some analogy to the viscous diffusion (Sec. 7.19), with the interplay between
viscosity and inertia now replaced by one between magnetic field and inertia. The viscous shear stress
of Sec. 7.19 is proportional to the shear-strain rate. By contrast, the magnetic shear stress in the
perfect conductor is proportional to the shear strain (the spatial rate of change of the material dis-
placement rather than velocity). Thus, rather than being diffusive in nature, the motion resulting
from the magnetic shear stress in a perfect conductor is wave-like. As suggested by Fig. 8.6 .1c, the
motion propagates along the lines of magnetic field intensity as a transverse electromechanical wave.
Just how perfectly the fluid must conduct and how free of viscosity it must be to observe these waves
is now determined by a model that includes magnetic and viscous diffusion.
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A layer of fluid having conductivity 0, vis-
osity n and thickness A is shown in Fig. 8.6.2.
n static equilibrium, it is permeated by a uni-
orm x directed magnetic field intensity Ho . (Av,)\
ecause the magnetic flux density is solenoidal,
t is written in the form I = PHoIx + V x X, where
 is governed by the magnetic diffusion equation,
q. 6.5.3. Fluid deformations that are now con-
idered are independent of z and confined to x-y i 
lanes, and so only the z component of A exists;

.. .H--.
= AiZ . Moreover, motions are taken as inde- ----- -- L------ -

endent of y, so v = vy(x,t)iy and A = A(x,t).
hus, Y

KVYV)

Fig. 8.6.2. Layer of liquid metal or plasma
1 D2A 3A

with ambient magnetic field H
Po x2 = T + iHo y o .

[Eq. xwhere (b) of Table 2.18.1

here [Eq. (b) of Table 2.18.1]

1 aA
y Iax

he fact that motions are independent of y and that I is solenoidal combine to show that Bx is inde-
endent of x, and hence Bx = ýHo even as the motion occurs. There is no linearization implied by the
ast term of Eq. 1.

For the one-dimensional incompressible motions, conservation of mass is identically satisfied and
nly the y component of the force equation is pertinent. With the magnetic stress substituted into
q. 7.16.1, it follows from Eq. 2 that

2
yv 2 A  v

here the magnetic shear stress is T = pH H and the viscous shear stress is

vyx
Sy =TDx

The self-consistent coupling between field and fluid is expressed by Eqs. 1 and 3. Thesý repre-
ent the one-dimensional response of the layer shown in Fig. 8.6.2. Given the amplitudes [la,A,v^ ,v]
 the boundaries, what are the transfer relations for the amplitudes [ H,HS x, S x] in these same
lanes? (Note that these relations are the limit k + 0 of more general transfer relations for traveling
ave dependences on y. For the two-dimensional motions implied by such a dependence, vx becomes an
dditional variable, and the normal stress Sxx is its complement. Thus, the more general two-dimensional
ransfer relations relate two potentials and four velocity components to two tangential fields and four
tress components, evaluated at the a and 8 surfaces.)

For complex amplitude solutions of the form A = Re A(x) exp(jwt), Eqs. 1 and 3 become differential
ws for the x dependence:

2^
1d v

S---• - jpy - H dA = 0
2

2 y 0 dx

hese constant coefficient expressions admit solutions A c exp(yx) and vy 0 exp(yx). Substitution shows
hat y must satisfy the relation (yA = y):

(y 2  
- Jm (  ) v (7)

WC (Y m(Y _j _j WC V M=I

hus, the spatial distribution with x is determined by the magnetic diffusion time, Tm, the viscous
iffusion time, Tv, and the magneto-inertial time, TMI:

m v MI o
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In the absence of the equilibrium magnetic field (Ho = 0), Eq. 7 shows that what remains is vis-
cous diffusion (Secs. 7.18 and 7.19) and magnetic diffusion (Secs. 6.5 and 6.6). The parameter ex-
pressing the coupling in Eq. 7, the ratio of the geometric mean of the magnetic and viscous diffusion
times to the magneto-inertial time is defined as the Magnetic Hartmann number Hm = TmTv/TMI
ApHo0/O7. With the coupling, there are three characteristic times that determine the dynamics.

Even so, the biquartic form of Eq. 7 shows that there are still only four solutions to Eqs. 5
and 6, y = ±71 and y = +y2 , where

[21 1/2

±~Y[H -- ) 2- + 2jW(T + Tv)H2
(9)

21

Thus, in terms of coefficients A1.* 4A, the solution is

A = A1 sinh Y1x + A2 sinh Y1 (x - A) + A3 sinh Y2x + A4 sinh Y 2 (x - A) (10)

Equation 5 shows how to find vy in terms of these same four coefficients:

^ 1 /d2
v = 2- jal- (11)

y 2H 0 \dx
o

Given the potential and velocity in the a and planes, R Eqs. 10 and 11 become four expressions that can
be inverted to determine A1 ... 4 . Fortunately, Al and A3 are determined by the a variables alone, and
A2 and A4 by the 8 variables alone, so this task is not all that difficult. In fact, with a bit of hind-
sight, the desired linear combination of solutions can be written by inspection:

{[ J •]~l 2 sinh lx 2 2jw )A 2 -] sinh Y1 (x-A)

2 oy sinh 1 2 ov y sinh y1A
(12)

1 + ywc ,V U2Hasnhl Y2x + + F _sinh Jw 2  ^+ sinh y2(x-A) 2

1 1 )A sinh Y 2 1 oHy sinh y 22

Now, by use of Eqs. 11 and 12 in 2 and 4, the transfer relations follow:

= [Mij] (13)

where with -k -YkA and qk = k - jW OA k = 1 or 2:

cosh Y2sinh1(2
cosh

1Y2
jsinh -

- 2 -1 Y2 Y2q 1 sinh-1 7I-/F
Ml(1) w -M2(2 

2 1 l

y ,,osh cosh Y 2 Bi h Y
FM1 (3) = -M (4 = - P H/ 0 2 2 -1 2

2  2 2 (-cosh Y) sixh -cosh Y]F
/F

m M2H o d2 2 1q1 2 1 sinh Y2 -/ 2• sinh Y1 1
M2 3(l p22 H AA 2 Y

2(cosh 3(3) m -M (4) lq2 -1q-1 sinh 71 - Y1 
4 sinh Y /F

2  2F = A(1 - Y2)sinh y1 sinh 72
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Temporal Modes: Suppose that the layer is excited in the a and 1 planes by perfectly conducting
rigid boundaries that (perhaps by dint of a displacement in the y direction) provide excitations
( ,). The perfect conductivity assures Aa = 0 and k = 0 (Eq. 6.7.6). Thus, the electrical and
mechanical variables on the right in Eq. 13 are determined. The temporal modes for this system (that
represent the homogeneous response to initial conditions and underlie the driven response) are then
given by F = 0. The roots of this equation are simply

Y1 = jnT; Y2 = jnT, n = 1,2,*.* (14)

With these values of y, Eq. 7 can be solved for the eigenfrequencies

S (n7 1 +_ 1 (n - (15)
n 2 T Tv 2 4

m v T m v

In the extreme where Tm and Tv are.long compared to TMI ,

nT
n= +  (16)
- TMI

This oscillatory natural frequency is the result of an Alfven wave resonating between the boundaries.
The wave transit time is TMI = A/va, so va = VJHi/p is the velocity of this Alfv6n wave.

Typical of an experiment using a sodium-based liquid metal are the parameters

a = 106 mhos/m A = 0.1 m = 104 sec

= 3 3 3 -2
S 103 kg/m3H o = 1 tesla T = 1.25 x 10 sec (17)

n = 10-3 
2 -3

newton-sec/m2  M = 3.53 x 10- 3 sec

Thus, the characteristic times have the ordering TMI < Tm < Tv with the magnetic diffusion time far
shorter than the viscous diffusion time. (The ratio of these times is sometimes defined as the mag-
netic Prandtl number Pm = Tm/Tv = nrp/p. For the numbers given by Eq. 17, Pm = 1.25 x 10-6.) Thus,
in Eq. 15, 1/Tv can be neglected compared to 1/Tm and it is seen that the natural frequency will dis-
play an oscillatory part if

T
m nW> (18)
TMI 2

That the transit time for the Alfvyn wave be short compared to the time for appreciable magnetic dif-
fusion underscores the flux-conserving nature of the wave dynamics. For the numbers of Eq. 17,
Tm/TMI = 3.54. As a practical matter, Alfv6n waves observed in the laboratory are relatively damped.
Note that as A increases, the inequality of Eq. 18 is better satisfied. The dependence of the natural
frequency on the mode number n reflects how damping increases with the wave number jy in the x direction.
Near the origin in Fig. 8.6.3, the linear relation of frequency and mode number is typical of nondis-
persive wave phenomena. As the mode number increases, magnetic (and possibly viscous) diffusion damps
the oscillations, which then give way to totally damped modes. The oscillatory modes would of course
appear as resonances in the sinusoidal steady-state driven response.

Spatial Structure of Sinusoidal Steady-State Response: The penetration of a sinusoidal excitation
from the surfaces into the bulk is determined by Y1 and Y2 , Eq. 9. As the magnetic field is raised,
the viscous and magnetic skin effect are taken over by the electromechanical coupling. In Fig. 8.6.4,
the transition of these complex wave numbers is shown, with the magnetic Hartmann number Hm representing
the magnetic field. In terms of characteristic times, Hm is increased until the magneto-inertial time
becomes sufficiently short that the Alfvyn wave can penetrate the layer before the flux diffuses to its
original uniform distribution. The magnetic shear stress is then able to penetrate the layer (tending
to set the whole of it into motion) to a greater extent than would be possible via the magnetic or
viscous diffusion alone. This is indicated by the lower of the roots shown, which has an imaginary
part Y + +,/mTv/AHn = +(TMI/A as Hm becomes large. In this same limit of large Hm, the other branch
becomes strongly decaying, with value y = +Hm/A. The physical nature of the dynamics represented by

observing Hm Tthis mode is recognized by that -Tim/TMV, where MV is the magneto-viscous time. The
electrical analogue of this time, which expresses the rate at which a process occurs involving a compe-
tion of viscous and magnetic stresses, will play an essential role in the next section. An experiment
demonstrating Alfvyn waves is sketched in Fig. 8.6.5.1

1. See also J. R. Melcher and E. P. Warren, "Demonstration of Magnetic Flux Constraints and a Lumped
Parameter Alfvyn Wave," IEEE Transactions on Education, Vol. E-8, Nos. 2 and 3, June-September,
1965, pp. 41-47.
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Fig. 8.6.3. Eigenfrequencies of temporal Fig. 8.6.4. Real ( - ) and imaginary ( --- ) parts of
modes as a function of mode number 71 and y2 (Eq. 9) as functions of Hm -- AIHoIV7i.
for TMI = 0.0 1, Tm = 0.1, and Low- and high-Hm approximations are shown. Note
TV = 1. wr - , i ------. m=31.6. that the Alfvyn wave branch is represented by

jwrt-m'Tvm/v = jwrMI.

Fig. 8.6.5

Alfvyn wave, as demonstrated by Shercliff
in film "Magnetohydrodynamics" (Reference 7,
Appendix C). Liquid NaK (sodium-potassium
eutectic) fills conducting circular metal
container having coaxial inner and outer
walls. .Wave is excited at bottom by radial
driving current and detected at middle by
coil that senses the change in magnetic
field accompanying the passage of the up-
ward-propagating electromechanical wave.
As viewed radially inward, layers of liquid
metal undergo shearing motions depicted by
Fig. 8.6.1.

8.7 Potential Conserving Continua and Electric Shear Stress Instability

In an electric counterpart to the magnetic flux conserving fluid introduced in Sec. 8.6, a fluid
element having fixed identity tends to retain its potential even as it moves. Under what physical
circumstances could a homogeneous continuum tend to conserve its potential in this way? Figure 8.7.1
gives a schematic illustration (see Prob. 5.12.1 for charge relaxation in anisotropic conductors).

Initially, the volume is filled with static layers of miscible fluid having the same mechanical

properties. Alternate layers are rendered conducting, perhaps by doping the same fluid as used for the
other layers. At the upper and lower extremities, the conducting layers make electrical contact with
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(a) (b) (c)
Fig. 8.7.1. (a) Example of potential conserving fluid made from numerous conducting layers

buffered by relatively insulating layers. On a macroscale, a given fluid region tends
to retain its potential as it deforms. (b) Shearing displacement causing elevation of
potential in plane (i) relative to that at the same position y in planes (ii) and (iii).
(c) Charge density implied by potential conservation, showing electrical force in-
duced by the motion in adjacent layers.

surfaces having a linear potential distribution in the y direction. Thus, there is an initial
ambient electric field I = Eo y throughout the volume. What would be termed an isotropic inhomo-
geneous system on a microscale typified by the interlayer dimensions, is an anisotropic homogeneous
system on the macroscale considered here. On this macroscale, a material element tends to retain its
initial potential. In the model considered here, the conducting layers are of finite conductivity,
but the layers between are considered perfect insulators. Just how faithfully the potential is con-
served therefore depends on the electrical relaxation time of the composite.

By way of forming an intuitive impression of why the electric field induces instability, consider
motions that are purely y-directed but depend on x. Suppose that the external force density Fexttv is
used to translate a fluid layer in the y-z plane, denoted by (i) in Fig. 8.7.1b. To begin with, the
potential of this and the adjacent layers decreases linearly in the y direction. So, at a given posi-
tion along the y axis, the translation results in the potential in the plane (i) becoming elevated with
respect to that of the adjacent layers (ii) and (iii). The adjacent layers form capacitor plates with
the (i) layer which, in accordance with the relative potentials, are charged as sketched in Fig. 8.7.1c.

The field- and deformation-induced charge of the initially displaced layer, (i), are such that it

is subject to an electrical force tending to further encourage the deformation. Thus, with the adjacent

layer fixed, the external force would act against a negative spring constant. However, the adjacent

layers are not fixed and experience electrical forces tending to carry them in a direction opposite

that of the original displacement. There is an electrical shear stress acting between adjacent layers

that is proportional to the negative of the strain. By contrast with the magnetic shear stress that
gives rise to Alfv6n waves, the electric stress tends to cause instability.

The laws needed to formulate a model begin with a constitutive law for the conduction. With n

defined as a unit normal to a material surface of fixed identity that is initially in an x-z plane,
as shown in Fig. 8.7.1b, the component of the electric field that is tangential to this surface is

-x x t. Thus, if the average conductivity in the plane of the conducting layer is a, the current
density in a stationary sample of the anisotropic material is

J' = -ai x x (1)f

Because Jf = J~ + Pfv, it follows that the statement of charge conservation, Eq. 2.3.25a, is

x x + +p~f ] ] + t2 = 0 
(2)
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The normal vector can be eliminated from this expression by first expressing it in terms of the surface
y = f(x,t)

1

n - = i][l + [i ( )(3)

and then recognizing that because this surface is of fixed identity, the function F = y - 5 must have a
convective derivative that is zero (Sec. 7.5):

v =K-- + V (4)
y =ft x ax

In Eq. 2, n can be replaced by Eq. 3, where E is in turn related to v by Eq. 4.

Before carrying out this elimination for the case at hand, note that because the electric field is
irrotational and the perturbation quantities only depend on x, the electric field in the y direction is
not a function of x. Pinned at Eo in any y-z plane, Ey remains this value even as the fluid deforms:
- = Eoty - (80/8x)x. As a result, Gauss' Law becomes

•- a2• -f- pf
(5)2 Eax

The motions considered are only in the y direction: V = v (x,t). With this understanding,

Eqs. 2, 3 and 4 are linearized and combined to eliminate E, and Eq. 5 s substituted for pf, to obtain

2

- (6) -
2 [Ev --- (0 + -)] = 0 

ax

This statement of the effect of the motion on the fields reduces to the linearized version of DO/Dt = 0

in the limit where the charge relaxation time, /a0, is short compared to times of interest. If the
charge can relax instantaneously, the potential of an element of fluid is conserved even as it deforms.

The y component of the force equation, Eq. 7.16.6 with V.' = 0 and Pex represented by the diver-
gence of the stress tensor (given with Eq. 3.7.22 of Table 3.10.1), is

av 2 2v

p = -EE L + n -  (7)
at o 2  ax ax2

The x-component simply determines the pressure distribution required to equilibrate the x component of
the electrical force density. Equations 6 and 7 represent the electromechanical coupling.

The quantity in brackets in Eq. 6 is zero throughout the volume when the fluid is in static equi-

librium. Hence, the two constants resulting from integrating Eq. 6 twice on x are zero. Then, with
the substitutions vy = Re y(x)ejwt and # = Re^(x)ejwt, Eqs. 6 and 7 become

E o = j[1l + 1]$ = 0 (8)
oy 0

2 2
d d 0

(jwp - n 2 )v + CEo  2 = 0 (9)
dx2)y dx

By contrast with the magnetohydrodynamic system represented by Eqs. 8.6.5 and 8.6.6, the system is only

second order in x, so that there are only two boundary conditions that can be imposed on a layer having

the thickness A (Fig. 8.6.2). Imposing a boundary condition on 0 is (through Eq. 8) tantamount to a

condition on vy. Substitution into Eqs. 8 and 9 of solutions having the form v = exp(yx) and 0 = exp(yx)
gives a pair of homogeneous relations y

= 0 (10)
2 2

jWp - ny SE oY

and the requirement that the determinant of the coefficients vanish gives an expression for the allowed
values of y:
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Y = _Y1 Y1 2(11)

Tjn +
w(l + a )

The situation is now no different than in dealing with Laplace's equation, where solutions take the
form of Eq. 2.16.15 with y - y1. Thus, the transfer relation for the layer is (Table 2.16.1):

DB] -cosh(y 1A) 1

= l e (1 2 )
Ssinh(Y 1 A) (12)

In terms of these variables, the mechanical variables follow from Eq. 8 as

v = [1 + _j (13)
y E 1

o

dA
A JITI [1 + q (14)

yx dx E 0 dx(
o

Temporal Modes: Because the system is unstable, the temporal modes are of most interest. For a
system bounded by planes maintaining the linear equilibrium distribution in potential (constraigedA o
zero pfrturbation potential), the condition on w resulting from there being a finite solution (Da,DO)
with (Oa,$B) = 0 is sinh(y1A) = 0. Thus, the eigenvalues are

y1A jn'r, n = 1,2,3... (15)

The eigenfrequencies follow by substituting Y1 from this expression into Eq. 11. The result is a cubic
equation which determines the allowed frequencies w:

3 2 [ (nr) 1 ( ] S- + (2-(n2 (n2 )- = 0 (16)

2 T T T o' T TTVv EV v E2e 

As a function of the mode number niT, the solutions sn = jW of this expression are illustrated in
Fig. 8.7.2. For each sinusoidal distribution represented by a given n, there are three temporal
modes, one unstable and two decaying.

Typical of a 2-cm liquid layer having 50 times the viscosity of water, the density of water,
an electrical relaxation time of 10-2 sec and Eo = 2 x 10+5 V/m are the times given in the caption.
Note that Te < TEV < TV .

The roots to Eq. 16 in the limit Te - 0 give a good idea of what is happening on time scales
long compared to Te . The quadratic limit of Eq. 16 can then be solved to give

2 4Tv
s = (w [-1 + + (17)

v EV(n )2

Thus, there are roots asn > 0 representing an exponentially growing instability. The fastest growing
modes are those having the largest number of wavelengths in the x direction. In the limit ni + m,
this mode has a growth rate TEV. (In fact, there would be a finite mode exhibiting the maximum rate
of growth, since wavelengths in the x direction shorter than the distance between layers are not de-
scribed by the model.) By contrast with the electro-viscous nature of the short-wavelength insta-
bility, the long wavelengths (small mode numbers) are electro-inertial in nature. In the limit nfr - 0,
Eq. 17 reduces to sn = 1/TEI, where TEI = vTVEV = A/pEE2. Until its rate of decay becomes comparable
to Te, the decaying mode can also be approximated using Eq. 17. At short wavelengths, the basically
viscous diffusion mode and charge relaxation mode couple to produce a pair of modes that are damped in
a sinusoidal fashion.
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S,

Fig. 8.7.2. Frequencies of temporal eigenmodes, sn = jw; --- (Sn)r, -- (sn)i.
For each n there are three modes. Te = 10- 2 see, TEV = 0.1 sec, Tv = 10 sec.

The instability is fundamental to many situations where electric fields are used to augment mass
heat and momentum transfer. Usually a more complicated model is required even to recognize the linear
stages of instability. Shown in Fig. 8.7.3 is an example for which the illustration given in this sec
tion is itself a useful model. The Couette mixer exploits a rotating inner cylinder to promote large
scale mixing. Two liquids entering at the bottom are typically the highly viscous components of a
polymer. Because of the rotation, these form laminae of relatively insulating and conducting liquids
that work their way upward to the exit. With the application of a radial electric field, instability
leads to mixing. The electrohydrodynamic instability provides mixing on a length scale that bridges t
gap between what can be efficiently produced by the mechanical stirring and what is required to insure

Fig. 8.7.3

Couette mixer exploiting in-
stability of components
stressed by electric field.

i ng

,

-

he
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genuine molecular scale mixing. 1 For successful operation the residence time of the liquids must at
least exceed TEV = n/cE2 . Even in its nonlinear stages and on length scales shorter than the distance
between layers, TEV is found to scale the rate at which mixing processes occur." 3  In practical appli-
cations, the "insulating" component actually is itself semi-insulating so the growth rate for instability
is reduced by a factor reflecting the ratio of the component conductivities.

8.8 Magneto-Acoustic and Electro-Acoustic Waves

Electromechanical coupling through dilatational deformation is illustrated in this section.
First considered as one-dimensional examples are perfectly conducting limits of the MQS and EQS
continua of Secs. 8.6 and 8.7, respectively. Then, the incremental motions of a system of magnet-
izable particles randomly suspended in a uniform magnetic field are modeled.

Both the MQS and EQS configurations are shown in Fig. 8.8.1. Also shown in each case are the dis-
tributed elements that embody the same physical phenomena as represented by the continuum models. With-
out electromechanical coupling, the one-dimensional acoustic wave propagates through a continuum of
masses (represented by the perfedtly conducting plates) interconnected by layers of fluid comprising
the springs.

Eg ex(x,t)

x• t) fVx(x,t)
H +h (Xt)

OIzr~ l

/V Z

Fig. 8.8.1. One-dimensional compressional motions. (a) Magneto-acoustic waves in
perfectly conducting liquid across uniform magnetic field. (b) electro-
acoustic waves in potential conserving continuum along uniform electric field.
Lumped models emphasize salient features of dynamics.

In the magnetohydrodynamic case, the fluid is uniform and perfectly conducting. When at rest,
it is permeated by a uniform magnetic field Ho directed transverse to the direction of propagation.
Compression of the fluid results in a decrease in enclosed area for a contour such as C which is
attached to the fluid. To retain the same flux linkage, a current is induced around this contour.
The associated force density tends to counteract the dilatation, thus having the effect of a magnetic
spring between elements. It is not surprising that the magnetic field tends to increase the velocity
of propagation of waves.

1. G. A. Rotz, "A Generalized Approach to Increased Mixing Efficiency for Viscous Liquids,"
S.M. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Mass., 1976.

2. J. H. Lang, J. F. Hoburg and J. R. Melcher, "Field Induced Mixing Across a Diaphragm," Phys.
Fluids 19, 917 (1976).

3. J. F. Hoburg and J. R. Melcher, "Electrohydrodynamic Mixing and Instability Induced by Collinear
Fields and Conductivity Gradients," Phys. Fluids 20, 903 (1977).
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In the electrohydrodynamic case, a given element of fluid conserves its potential, as described
in Sec. 8.7. Either the fluid is a stratification of insulating and conducting components, or it
actually consists of thin conducting sheets dispersed through the fluid. Because the motions are com-
pressional, such sheets would not inhibit the motions. The equivalent distributed lumped parameter
system, shown in Fig. 8.7.1b, consists of perfectly conducting layers constrained to have the same
potential difference even as their relative spacing changes. As a "plate" approaches one of its
neighbors, the intervening electric field increases. So also does the electric force associated with
the charge on that side of the plate. Thus, the electric field is equivalent in its effect to a spring
with a negative spring constant. It has the effect of diminishing the stiffness of the "spring"
separating a pair of plates. The field is expected to reduce the velocity of a wave propagating in the
x direction.

Now, consider the interactions in analytical terms. In both cases, the linearized longitudinal
force equation is simply

av a T
x v + xx

Po at ax ax

where po is the equilibrium mass density, p' is the perturbation pressure, and Txx is the Maxwell stress
With the assumption that pressure is only a function of density, Eq. 7.11.3 can be used to replace the
perturbation pressure with the perturbation density,

'
p' = a2p

where a is the acoustic velocity. The permeability and permittivity in the respective situations are
taken as constant. Thus, with f and e the perturbations in A and t respectively, to linear terms,
Txx becomes simply (Table 3.10.1, Eqs. 3.7.22 and 3.8.14)

S1 2 1 2
T = (H +h )2 1 2H•2-_oho z Txx -E(E +e ) i CE oeoE xx 2 o z f o0 xx 2 0 x 0 0 ox x

These last three equations combine to become

av ah
x 2 2L z avx 2 ex

o -t ax = o ax o -t- + a2 ax- Eo 

To linear terms, conservation of mass, Eq. 7.2.3, requires that

ap' Vx
at + Po ax

These last two statements represent the mechanics, including the effect of the fields.

The reciprocal effects of the deformation on the fields follow from

the requirement that the flux linked the requirement that the potential,0, of
by a surface of fixed identity be an element of fixed identity be constant,
constant, Eq. 8.6.1. To linear terms Eq. 8.7.1. To linear terms

av ah
H - x = z ,

-Ev = 0
oE 8xt at ox

where e = -VO'
x

To combine these last three statements, take the time derivative of Eq. 4 and the space derivative of

Eqs. 5 and 6 and eliminate p and hz or ex:

2 2a2v 2
Sav avx

xa 2 x x 2 x
at2

= a
m ax2 2 e ax2

at

These wave equations make it clear that the effect of the fields is to replace the acoustic velocity
with a pagneto-acoustic velocity:

S H2 CE2 o 2 o
a = a +- a =Na -
m PO e PO
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Acoustic velocities, given in Table .11.1, are typically 300 m/sec in gases and 1500 m/sec in
liquids. In gases, the Alfvyn velocity, I/H~/po , can be made to dominate in its contribution to the
magneto-acoustic velocity. In liquid metals the magnetic contribution to am is greatly reduced by the
increased mass density, although it is still possible for it to be significant. But in the electro-
acoustic wave, electrical breakdown limits the effect of the electric field to a level that would make
it difficult to even measure the effect.

Magnetization Dilatational Waves: Although electromechanical effects on dilatational motions in
natural materials are likely to be small, continua formed from "molecules" that are actually macro-
scopic in their dimensions can give rise to significant electromechanical effects. As an example, mag-
netizable spheres are suspended in a random array, with the voidage a gas or even vacuum. Interest is
confined to deformations characterized by lengths that are large compared to the distance between par-
ticles. Unperturbed, the system is uniform on the macroscopic scale, and is subjected to a uniform
z-directed magnetic field intensity Ho . Because the spheres can interact with each other only through
the magnetic field, the pressure is taken as zero.

Perhaps determined experimentally, the effective permeability of the continuum has been related
to the mass density through a constitutive law, i = 1(p). Thus, the force density of Eq. 3.8.17 from

Table 3.10.1 is applicable. With perturbations from the equilibrium mass density and magnetic field,

Po and Holz, denoted by p' and i, respectively, this force density is linearized to become

2
=PoV[Ho(h)ohz + H 2 ) (9)

Because there are no free currents, It is irrotational and hence H = H 1 - Vi. Thus, the force equation,
Eq. 7.4.4 written with p = 0, is

÷ Po 2
'  p Po at -=opH -o 0 0 ()oV(- o z ) + 2 H( )oVP (10)o=2 o

Mass conservation is represented by a linearized version of Eq. 7.2.3:

50 + poV. = 0 (11)
t o

In terms of the scalar potential, 4, the linearized statement that pH is solenoidal is

)-P(po V2 ý + Ho o = 0 (12)

To obtain an expression for p' alone, the divergence of Eq. 10 is taken. Then Eq. 11 eliminates V-v,
while the D( )/Dz of Eq. 12 can be used to eliminate P. Thus, the expressions combine to give

22p po H2 2 P, 2 (13)

2  (13)2 t 2  2 H2(- 3)VH t (po o z o 20 p' 
)  

A possible relation between permeability and mass density is the Clausius-Mossotti law:1

(--- (P- - 1)) P 2 2p
= C 3 + 2)( 1 ) p- 1 _ = ( 1) 2)p - 2  (14)

(-~ 2) 0o o p2 9 o

where C is determined by the nature of the spheres.

It follows from Eqs. 13 and 14 that compressional motions across the field lines (in the x direc-
tion) are unstable, while those in the direction of the field propagate with the velocity

H 2 P P 1 2 Lo
aM =( + 2)( - 1) (15)

1. J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, New York, 1941, p. 140.
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PIECEWISE HOMOGENEOUS SYSTEMS

8.9 Gravity-Capillary Dynamics

The incompressible dynamics of fluids that are inhomogeneous in mass density are as commonplace
as wave motions in a teacup or at the interface between sea and atmosphere. At the interface, the
mass density suffers a step discontinuity. Fundamentally, the pertinent laws express the fact that
the mass density in the neighborhood of a particle of fixed identity remains constant, Eq. 7.2.4, that
mass is conserved, Eq. 7.2.5, and that inertial and pressure forces balance. For the present purposes
the fluid is represented as being inviscid, and hence the pertinent force law is Eq. 7.4.4 with the
external force density that due to gravity, f = p1.

ex

Because inhomogeneities in electrical properties are often accompanied by variations in mass den-
sity, electromechanical interactions with inhomogeneous systems are commonly interwoven with the fluid
mechanics resulting from effects of gravity. In this section, the mechanics of a fluid interface
illustrates effects of gravity in systems that are inhomogeneous in mass density. If the interface is
between immiscible fluids, effects of capillarity are also important.

In the configuration shown in Fig. 8.9.1, planar layers of fluid each have uniform properties
designated by the subscripts "a" (above) and "b" (below), respectively, and a common interface at
x = C(y,z,t). The lower fluid rests on a rigid boundary while the upper one consists of a deformable
structure. The system is driven from this structure by the traveling-wave excitation shown in the
figure. What is the response of the fluids, and in particular of their interface?

X

(C)R
a k,z)

(d)-
-(e)r_7 ..

Fig. 8.9.1. Fluids of differing mass densities have interface at 5
and are driven by structure at E.

In the absence of the excitation, the fluids are in static equilibrium with the gravitational
force density. Thus, the fluid velocity v = 0 and the pressure balances the gravitational force den-

sity. From the force equation, Eq. 7.8.3, applied to each region:

p = -Pagx + Ha; x > 0
p = (1)

g x -pb + Hb; x < 0

Perturbations from this static equilibrium are represented in terms of complex amplitudes. To
linear terms the pressure and velocity are

p = -pgx + H + p'(x,y,z,t); p' = Rep(x)exp j(wt-k y - kzz) (2)

= Rev(x)exp j(wt - kyy - kzz) (3)

Within a given fluid region the mass density is uniform. Thus, the complex amplitudes in the respective

planes designated in Fig. 8.9.1 are related by the transfer relations for an inviscid fluid given by

Eq. (c) of Table 7.9.1:

^C-coth(ka) 1 c ^ep -coth(ka) sinh(ka) x p -coth(kb) 1 ^e
Jap a JwPb sinh(kb) x

k k (4)
^d -1 cd ^f

sinh(ka) coth(ka) P -i c
sinh(ka) sinh(kb) coth(kb) vJ
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Complex amplitudes are evaluated in the equilibrium planes. But, the jump conditions apply wherever the
interface is actually located and that location is in fact yet to be determined! This difficulty is
sidestepped by linearizing the jump conditions in such a way that they are expressed in terms of per-
turbation variables evaluated at the equilibrium positions of the boundaries.

Taking boundary and jump conditions from top to bottom, observe first that the position of the
deformable upper structure is related to the velocity of the adjacent fluid by Eq. 7.5.5, which to linear
terms is

vc = j~ (5)
X

where it is appropriate to use the complex amplitude evaluated at the equilibrium position because the
difference between that and A (x = a + E) is second order in the perturbation amplitude, E.

Similarly, at the interface the velocities are related to the interfacial deformation by

^d ^ Ae

vx = JW; v = jW (6)

Again, this jump condition, which expresses mass conservation for the interface, has been written in
terms of amplitudes evaluated at the equilibrium interfacial position. Stress balance for the inter-
face is represented by Eq. 7.7.6, which has only a normal component. To linear terms, this is repre-
sented by the i = x component

[-a + a Pd(x=)]-[-Pb +b e(x=)] =  2 + ) (72

where the surface tension force density is given by Eq. (c) of Table 7.6.1. For static equilibrium,

Ha-Hb = 0. Also, to linear terms the perturbation pressures evaluated at the perturbed position E are
equal to these pressures evaluated at the equilibrium position of the interface. Thus, Eq. 7 reduces
to

Ad A 2A
d e (Pa - Pb) - yk E (8)

It is because the fluid is inviscid that the other two components of the interfacial stress balance
equation are, to linear terms, identically satisfied. Finally, on the rigid lower boundary

v = 0 (9)

The boundary and jump conditions, Eqs. 5, 6, 8 and 9, are now used to "splice" together the bulk
solutions reýresented by Eqs. 4. Of the four equations summarized by these relations, the expressions
for Dc and F simply serve to determine these pressures once the fluid motions have been determined.
The other two, Eqs. 4b and 4d, are evaluated using the boundary conditions, Eqs. 6, 7 and 10, and sub-
stituted into the stress balance condition, Eq. 9, to obtain

2 2
W2 A 2 A W 2

- - [pa coth(ka) + pb coth(kb)]+ + [yk+ g(P - a ) = k sinh(ka) (10)

This relation has the same form as would be used to describe the deflections of a spring attached
to a mass at one end and to a displacement source at the other. The "mass" reflects the inertia of the
fluids to either side of the interface while the "spring" results from the combined gravitational and
capillary forces.

From Eq. 10, it follows that the complex amplitude of the interfacial response is

22 2
5 - a (11)

k sinh(ka) D(w,k)

where the dispersion equation, D(w,k), is

D(W,k) [P= coth(ka) + p coth(kb)] + [k 2 g(Pb - Pa)] (12)

Driven Response: The response having the same wave number and frequency as the drive would repre-
sent all of the motions if the system were reentrant in the direction of the traveling wave and suf-
ficient time had elapsed for a temporal sinusoidal state to be established. (This presumes that the
temporal natural modes are stable.) Under the assumption that yk2+g(pb - Pa) > 0 (which is assured
regardless of wavelength if the lower fluid is the heavier), the frequency response of the interface is
as shown in Fig. 8.9.2. Because there are no dissipation mechanisms included in the model, the inter-
face is either in phase or 1800 out of phase with the excitation.
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Gravity-Capillary Waves: The resonance comes

at that frequency that gives synchronism between

and hase
the drive /k of velocit the hase 

velocity of a gravity-capillary wave propagating
on the interface. Solution for w/k of Eq. 13
set equal to zero identifies the phase velocity
of these waves as

yk + g(pb - Pa)/k
v (13)p Pa coth(ka) + pb coth(kb)

Long waves are dominated by gravity while
short ones are of a capillary nature. Often,
the waves are short enough that effects of the
transverse boundaries are not significant,
laki >> IbkI >> 1. Then, Eq. 13 reduces to

vk g(Pb- Pa+
P = Pa + + b + 

k(pb + 
(14)_

Pa
This makes it evident that there is a wave
number for minimum phase velocity, found by
setting the derivative with respect to k of
Eq. 14 equal to zero. The wavelength, 2W/k,
of this minimum will be termed the Taylor
wavelength, AT:

I m 2., (1 ;)
T - "g(pb - Pa)  -

At wavelengths longer than AT, gravity waves
prevail, while shorter wavelengths represent Fig. 8.9.2. Driven response of gravity-
capillary ripples. For an air-water interface, capillary wave system.

AT = 1.7 cm.

In the opposite limit of long waves, Ikal << 1 and Ikbl << 1, the phase velocity becomes

2
Yk + g(Pb - Pa)

v = • a ( (16)
p [(Pa/a) + (pb/b)

and the gravity wave (which is likely to dominate in a long-wave situation) propagates without dis-
persion. A quasi-one-dimensional model for long gravity waves results in the wave equation with a
velocity given by Eq. 16 without the capillary term.

Temporal Eigenmodes and Rayleigh-Taylor Instability: Temporal transients, initiated from conditions
that are periodic in the horizontal plane, are described by D(w,k) = 0 with k real and jw the eigenfre-

quencies sn . The role of the temporal modes in this chapter is very much as introduced in Sec. 5.15.

The roots of D(sn,k) = 0 are either purely real or imaginary. Resonance in the driven response results

from the coincidence of the natural frequency and the driving frequency. Of most interest is the in-

stability resulting from having the heavier fluid on top and sufficiently long wavelengths that

yk2 < g(Pa -b) (17)

Note that this condition prevails for wavelengths longer than the Taylor wavelength defined with Eq. 15.

The eigenfrequencies can be pictured as poles in the complex s plane, with the density difference Pb-Pa
a variable parameter. For Pb > Pa, the poles are conjugates on the imaginary axis. With decreasing
density difference and long enough wavelength, the poles migrate to the origin, and as the condition of
Eq. 17 prevails, the poles separate on the real axis. The instability is incipient at zero frequency.
In general, there might be an infinite set of eigenfrequencies. If all pass into the right-half s plane

through the origin, the principle of exchange of stabilities applies. That is, the incipient condition
could be identified by setting w = 0 at the outset and asking for the condition on pb - P that makes
it possible for all of the fluid mechanics laws to be satisfied. Here, as in Sec. 5.15 where the
charge relaxation eigenfrequencies for a step discontinuity in electrical properties is considered, there
are a finite number of eigenfrequencies (two). There it is shown that a smooth distribution of elec-
trical properties leads to an infinite set of temporal modes. It should come as no surprise that a
smoothly distributed density distribution similarly leads to an infinite set of eigenmodes. In that case
taken up in Sec. 8.18, the principle of exchange of stabilities also applies.
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Fig. 8.9.3a. Heavy liquid is stabilized on top
of lighter fluid by means of polarization
forces induced by applying potential dif
ference to the diverging glass plates.
These plates have a thin transparent
coating that renders them conducting.

The inviscid model is especially justified for predicting the incipience, because there are then
no temporal rates involved. Thus the effects of viscosity vanish.

1
In the example of this Rayleigh-Taylor instability shown in Fig. 8.9.3, polarization forces are

used to stabilize a static equilibrium with a heavy liquid on top of a lighter one. (The electro
mechanics is developed in Sec. 8.11.) When the field is removed, the unstable temporal eigenmode is
evident. Some fluid rises so that some can fall. The sinusoidal deflection predicted by the linear
theory gives way to a plume extending into the lighter liquid. It is characteristic of this purely
mechanical instability that the nonlinear "process" initiated by the instability becomes blunted in its
advanced stages. The bulbous plume can itself be unstable if the viscosity is low. This characteristic
appearance, which is cOUDllonly seen "upside down" as warm air rises into the atmosphere, is in sharp
contrast with the electromechanical forms of Rayleigh-Taylor instability considered in the following
sections.

Spatial Eigenmodes: Spatial modes are introduced in Sec. 5.17. With longitudinal boundary condi
tions, the sinusoidal steady-state response consists not only of a part having the same wave number as
the transverse drive, but an infinite set of eigenmodes having the same frequency as the drive, each
with its own wave number. These are in general complex, k = k + jki' and found by solving the disper
sion equation D(w,k) = 0 for k, given that W is the same as fo? the drive. In general this expression
is transcendental, so that it must be solved numerically. Here, an infinite set of eigenvalues can be
identified by a simple graphical solution. First, there are the two propagating modes in which k = k
and the dispersion equation becomes r

(18)

A graphical solution is obtained by finding the intersection of curves representing the right and left
sides of this expression as a function of (a~). This is shown in Fig. 8.9.4a. An infinite set of
modes are evanescent, k = jk • With k purely imaginary, the dispersion equation is again purely reali
(coth jx = -j cot x):

2
[yk - g(P - Pa)]ki b iw2 = (19)

P cot(kia) + P cot(kib)a b
so that graphical solution gives rise to an infinite set of kits, as illustrated in Fig. 8.9.4b. The
functions on the right in these last two expressions are even in the wave number, so for each positive
root there is a negative one as well. The two propagating modes have an exponential dependence on depth,
while the evanescent modes are sinusoidal in their depth dependence, with a number of zero crossings in
the x direction that increases with the mode number.

1. See J. R. Melcher and M. Hurwitz, "Gradient Stabilization of Electrohydrodynamically Oriented Liq
uids," J. Spacecraft and Rockets~, 864-881 (1967).
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(Figure 8.9.3 continued)

(a)

(b)

(c)

Fig. 8.9.3b. Side view of apparatus shown
in Fig. 8.9.3a. (a) Equilibrium
with field on. (b)-(e) Sequential
view of developing instability.
(From Complex Waves II, Reference 11,
Appendix C.)

(d)

(e)
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Fig. 8.9.4

Graphical solution for spatial
eigenmodes. (a) Equation 18
for propagating modes.
(b) Equation 19 for evanescent
modes. For case shown, Pa = 0

2and Y/pbga = 1.

(a) (b)
As an example, a gravity-capillary resonator might be constructed with rigid walls in the planes

y = 0 and y = )y and z = 0 and z = Zz. These propagating and evanescent modes would in general also be
excited by the transverse drive. In general, the evanescent modes are required to insure there being
no normal velocity on the longitudinal boundaries. With the surface tension comes still another bound-
ary condition. For example, by virtue of the surface tension, the interface can cling to a sharp edge.
Note that for Pb > Pa the lowest evanescent mode in fact exists because of the surface tension. It
represents the effect of the surface tension reaching out into the interfacial region from the longi-
tudinal boundary. The higher order modes are more closely connected with the inertia and mass conserva-
tion represented by Laplace's equation in the fluid bulk.

8.10 Self-Field Interfacial Instabilities

If a magnet is held over or under the free surface of a ferrofluid so that the field is normal to

the interface, sprouts of liquid will be seen to extend into the air. With the magnet fixed, the sprouts

are fixed. Even if stressed by an initially perfectly uniform magnetic field (so that hydrostatic pres-

sure can balance the magnetic forces to maintain a static equilibrium with the interface flat), the

sprouts represent a new static equilibrium preferred by the fluid. The electromechanical form of

Rayleigh-Taylor instability that takes place as the planar interface, stressed by a uniform magnetic

field, gives way to the new configuration, is one of the results from the model now developed. The con-

figuration, shown in Fig. 8.10.1a, consists of planar layers having different permeabilities (Ia,Pb),
mass densities (Pa,Pb) and equilibrium thicknesses (a,b). The common interface is at x = ý, while rigid

boundaries (infinitely permeable pole faces) bound the layers from above and below. The liquids are

water based or even hydrocarbon based ferrofluids. Hence, in MQS terms, the materials are essentially
insulating. Only the magnetization force density, Eq. 3.8.14 with if = 0, is responsible for the elec-

tromechanical coupling.
Av

- -ReiFe j(wt- kyy - k z )z -V-ReVeiJ(wt-kyy-kzz )
)opoo on0 ooro)nooono'

S(c)

a [LaP Pa a B 0 Sa, Do

~___~l_'M

- .. (f): :. .Eb :Pb

(a) (b)
Fig. 8.10.1. (a) Layers of magnetizable fluid are stressed by a uniform normal

magnetic flux density, Bo . Polarizable liquid layers are stressed by a
normal electric displacement, Do .
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The time and space-varying drive is taken as imposed on the upper transverse boundary by means o
a coil structure. Thus, the magnetic potential in this surface is an equilibrium value -Co(relativ
to the lower surface) representing the magnet field plus a traveling wave having the complex amplitud

The EQS system, consisting of layers of insulating polarizable fluid as shown in Fig. 8.10.1b, i
described with the same model by simply identifying 1 + e, Bo 4 Do andý /r. There is an important
physical difference between the two systems. To obtain a purely polarization coupling, it is necessar
to use an alternating electric field having a high enough frequency to guarantee that free charge does
not enter into the electromechanics. This field can be considered as being essentially static provide
the frequency is also high enough to insure that the fluid responds to its rms value. In the respecti
regions the magnetic field is taken as having the form of an equilibrium plus a perturbation:

= x  -VT (1)

The equilibrium magnetic flux density in each region is related to the equilibrium magnetic potential
difference between the pole faces by

B =1IH = 0-/o (2)
o a a =bHb A [(a/ua) + (b/jb)]

The magnetization force density is confined to the interface, where it acts on the equilibrium
interface as a normal surface force density. The equilibrium pressure difference Ha - Eb then holds
the interface in static equilibrium. In the bulk regions, the magnetic field is uncoupled from the
fluid nechanics. Thus, the perturbation mechanics of each layer is described by the inviscid pressure
velocity relations from Table 7.9.1, Eqs. 8.9.4. Similarly, the perturbation magnetic field is de-
scribed by the flux-potential transfer relations, Eqs. (a) of Table 2.16.1 (k ' k+ k2)

c
-coth(ka) 1 Ac he 1 Ae

h -coth(kb) sinh(b)
x sinh(ka) x sinh(kb)

= k =k (3)
Ad^d -1 ^f -1 ^f

h sinh(ka) T4 hx coth(ka) T
sinh(ka) x coth(kb)

sinh(kb)

The essence of the electromechanics is in the boundary conditions, which must be consistent with
the electromagnetic and mechanical laws used in the model. Proceeding from top to bottom in
Fig. 8.10.1a, the magnetic potential must be that of the drive at the upper boundary. The boundary i
rigid, so

T =• (4)

v = 0 (5)
x

At the interface, continuity requires that

^d ^e
v = v = j (6)x x

The x component of the stress balance jump condition, Eq. 7.7.3, is to linear terms equivalent to the
normal component of the stress balance. With i = x, that jump condition is evaluated using the stress
tensor with Eq. 3.8.14 in Table 3.10.1:

[-Pagx + H a d,d - [-Pbgx + Rb + Pe]x= (7)

[1i (Ha + d T 1i 22 +2+
1 dh) 14b(Hb 2 x= +Y( 2 4 a 2) 
2 a (Ha + hd) 11b (Hb + hx+ 2 x=

where, remember, all quantities are evaluated at the actual position of the interface. The normal

vector is written in terms of 5 by means of Eq. (a) from Table 7.6.1. Terms from the stress that are

nonlinear in the perturbation amplitudes have already been dropped in writing Eq. 7. To linear terms,
the perturbation quantities evaluated at x = ý are the same as if evaluated at the equilibrium inter-

facial position x = 0. Also, the equilibrium magnetic field is uniform (not a function of x like the

equilibrium pressure), so these terms are the same at x = 0 as at x = 5. The equilibrium part of

Eq. 7 expresses the condition for static equilibrium,

Ea - Hb =(aH - H = B (Ha -
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and the perturbation part becomes the required jump condition representing stress balance at the inter-
face:

(d _ e) g(0b P = 
a ) Bo x - h - k(9)

The conditions of Eqs. 6 and 9 guarantee that the mechanical laws are satisfied through the interface.
Similarly, on the magnetic side, ý is irrotational and ý is solenoidal, so * x = 0 and *. El P = 0
(Eqs. 21 and 22 of Table 2.10.1). With n again given by Eq. (a) of Table 7.6.1, either the y or z com-
ponents of the condition that tangential ý be continuous reduces to

•d- e = (Ha - Hb) (10)

while the continuity of normal flux density is to linear terms given by

^d = ^e
Iah = bh ax b (11)x

Finally, there are the mechanical and magnetic conditions at the lower rigid and infinitely permeable
boundary:

^f
v = 0 (12)

Y = 0 (13)

With the objective of finding the driven response and in the process deducing the dispersion
equation, the stress and field continuity conditions, Eqs. 9, 10 and ll,are now written with the p's
and hx's substituted from the bulk equations, Eqs. 8.9.4 and 3. These latter relations are themselves
first written using the remaining simple boundary conditions. Thus, Eqs. 9, 10 and 11 respectively
become

^ k
2

k [pacoth(ka) + Pbcoth(kb) - g(pb-P)-k2y kB coth(ka) kB coth(kb) sinh(ka)

Ad
Ha - Hb - +1 0 (14)

Ae sinh(ka)
0 a kcoth(ka) Vbkcoth(kb)

(ka)Lsinh 

Solution for Z gives

kBo(N - Pa)coth(kb)~ 1

sinh(ka)[ýbcoth(kb) + iacoth(ka)] D(w,k) (15)

where
2

D(w,k) =- [Pacoth(ka) + pbcoth(kb)] + [Yk 2 + g(b a
kBa(bb - aa)

-- (16)
allb ibtanh(ka) + Vatanh(kb)]

The many types of information that can be gleened from Eq. 15 are illustrated in Sec. 8.9. Con-

cerning the driven response, it is here simply observed that its frequency dependence is similar to

that illustrated by Fig. 8.9.2, with the frequency of the resonance occurring as the excitation phase
velocity coincides with that of a field coupled surface wave having the phase velocity

yk + g(b-Pba)/k - B(b-2a)2 /ab[ btanh(ka) + tanh(kb)] (17)

v pacoth(ka) + pbcoth(kb)

The -effect of the field is to reduce the gravity-capillary phase velocity and hence the frequency. This

phenomenon is a "self-field" effect, in the sense that a deformation of the interface distorts the mag-

netic field and this in turn creates a magnetization perturbation surface force density that tends to
1

further increase the deflection.

1. For experimental documentation of resonance frequency shift with magnetic field, see R. E. Zelazo

and J. R. Melcher, "Dynamics and Stability of Ferrofluids: Surface Interactions," J. Fluid Mech.

39, 1 (1969).
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The tendency for this self-field coupling to precipitate instability makes the temporal modes of
K particular interest. In the short-wave limit ka << 1 and kb << 1, solution of the dispersion equation

D(w,k) = 0 for w2 results in

2 gk(Pb - Pa )  2k3 k B2(b - a)
Pa + b + (Pa + (18)
P, + Pb Pa + Pb ýalb(pa + Pb)(Pa + Pb)

Even with the lighter fluid on top (say air over a ferroliquid) so Pb > Pa, the magnetic field can make
2 -+ 0 and hence one of the eigenmodes unstable. Figure 8.10.2 shows W 2 as givenby Eq. 18 as a func-

2 tion of k. As Bo is raised, there is a critical value at which the curve just kisses the w = 0 axis.
Under this condition, instability impends at the wave number k . For greater values of Bo, wave numbers

between the roots of Eq. 18 with W2 = 0, ku and kk, are unstable. These roots coalesce as the dis-
criminant of the quadratic formula vanishes. Thus, the incipient condition is

r • •7

- )
o (b a) 4g(p b a

(19)
P a 1 b ta bb)y Y

The critical wave number is what remains from the quadratic formula, which in view of Eq. 19 is

Sg(- a (20)
k = (20)

I

Fig. 8.10.2

Dependence of w (k) as given by
Eq. 18 with B2 as a parameter.

0

Note that the first perturbations to become unstable as the field reaches the level predicted by Eq. 19
have the Taylor wavelength given by Eq. 15.2

What happens if the field is raised above the value consistent with Eq. 19? The initial rate of
growth is given by the linear theory, although because a rate process is now involved, this may be
strongly influenced by the viscosity. But, the ultimate state will depend on the nature of the electro-
mechanical coupling. In the magnetization example at hand, the interface typically reaches a new state
of static equilibrium. The protrusions shown in Fig. 8.10.3 are typical. Consistent with the fact
that the interface is always free of a shearing surface force density, they are perfectly static.

As discussed in the introduction to this section, to obtain a similar instability in the EQS polari-
zation configuration of Fig. 8.10.1b, it is usually necessary to use an alternating field.3 If the fre-
quency of this field is low enough that the natural modes can interact with its pulsating component, para-
metric instabilities can also result. By contrast with the coupling described here, these instabilities

2. Conditions for instability are studied by M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30,
721 (1969).

3. E. B. Devitt and J. R. Melcher, "Surface Electrohydrodynamics with High-Frequency Fields," Phys.
Fluids 8, 1193 (1965).
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Courtesy of Ferrotec USA Corp., Bedford, NH. Used with permission.
Fig. 8.10.3. System of static fluid sprouts repre Fig. 8.10.4. Rigid plane-parallel electrodes

sents a new static equilibrium formed once bound liquids having common interface.
planar interface in perpendicular field The upper liquid is insulating relative
becomes unstable. (Courtesy of Ferrofluidics to the lower one.
Corp., Burlington, Mass.)

4are dynamic in character and can result in splattering or atomization of the interface.

1

To appreciate the perfectly static equilibrium of the polarization sprouts resulting from the in
stability of the flat interface, consider by contrast some of the possibilities resulting when the inter
face of a conducting fluid bounded by a relatively insulating one is stressed by a normal electric field
Eo' The configuration is shown in Fig. 8.10.4. For example, the upper fluid might be air and the lower
one water (or any other liquid having a charge relaxation time E/cr short compared to times of interest).5

The boundary condition at the interface is that
it sustains no tangential electric field. This is
formally equivalent to the (analogous) magnetic field
situation in the limit where the lower fluid is infini
tely permeable. That is, in the limit ~b + 00, the
interfacial tangential magnetic field just above the
interface of Fig. 8.l0.la must vanish. The magnetic
field above this infinitely permeable fluid then
satisfies the same boundary conditions as the elec
tric field does in the physically very different
situation of Fig. 8.10.4.

It follows from Eq. 19 with the substitution
~~ + E, ~b + 00 and B + Eo/E =~a that the volto
age required to just induce instability of the
interface is

4_g 4_(_Pb-'-=----'Pa;:..)-YJ 1/
~= (21)a [ 2

E

The danger in exploiting the formal equivalence of
the infinitely permeable and the "infinitely" con
ducting lower fluid is that the physics of the two
situations will be confused. In the case now con
sidered, the surface force density acting upward on
the interface is due to free surface charges. That
these are free to conduct accounts for the diverse Fig. 8.10.5. Nonlinear stages of surface
processes that can be triggered by the instability. instability caused by applying

30 kV d-c between electrode above
A typical appearance shortly after incipience is and glycerine interface below.

shown in Fig. 8.10.5. An extremely sharp spike has Insulation is mixture of air and
formed. In the neighborhood of this point, the non gaseous Freon.
linear stages of instability are generally dynamic, and
often involve dielectric breakdown in some region of the insulating fluid. Depending on properties and
breakdown strength, it is very likely that simultaneous spraying and corona discharge will be observed.

4. T. B. Jones, "Interfacial Parametric Electrohydrodynamics of Insulating Dielectric Liquids," J. Appl.
Phys. ~, 4400 (1972).

5. For experiments and a more general treatment of stability conditions, see J. R. Melcher, Field
Coupled Surface Waves, The M.I.T. Press, Cambridge, Mass., 1963, Chaps. 3 and 4.
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8.11 Surface Waves with Imposed Gradients

The electromechanical coupling exemplified in Sec. 8.10 is entirely caused by the distortion of the
initially uniform field that results from a deformation of the interface. It is this perturbation field
that creates the change in surface force density tending to destabilize the interface. The "self-field"
origin of the coupling is reflected in the dependence of the coupling on the square of the jump in elec-
trical properties [(a - Pb)2 in the last term of Eq. 8.10.16]. The perturbation self-field is propor-
tional to Pa - Pb and the surface force density is proportional to this field multiplied by (ua - Vb).
The net effect is proportional to the product of these and hence to (~, - pb)2.

The surface force density can also vary simply because the interface moves in a nonuniform equi-
librium field. Because the change in field experienced by the deforming interface is independent of the
jump in property, it can be expected that this imposed field type of coupling is linearly proportional
to the property jump.

To exemplify imposed field effects and at the same time highlight electromechanical surface waves
that propagate along field lines, the electromechanics of the configuration shown in Fig. 8.9.3 is now
considered. Both fluids can be regarded as perfectly insulating so that the relevant force density is
given by Eq. 3.7.22 of Table 3.10.1. How is it that the polarization interaction can stabilize the
initial equilibrium with the heavier liquid on top? What is the role of self-field effects when the
equilibrium electric field is tangential to the interface?

The cross section of the system is shown in Fig. 8.11.1. Di-
verging transparent electrodes (which are tin oxide coated glass in
Fig. 8.9.3a) are used to impose the field

o

on fluids with an interface essentially at r = R. Note that Eq. 1

gives the exact solution, provided that the interface approximately

has this equilibrium radius.

Because gravity does not act exactly in the radial direction,
the equilibrium geometry of the interface is in fact somewhat field

dependent. The essential physics are retained in a Cartesian model

that pictures the interface as flat, but subject to a nonuniform

imposed field. In static equilibrium the x-directed polarization

surface force density is balanced by the jump in equilibrium pressure
I HE. In terms of the coordinates defined in Fig. 8.11.1, r = R - x.

The equilibrium electric field in the neighborhood of the interface

(which is the only seat of electromechanical coupling) is therefore

approximated by

S (i+x
E = E (1 Eo o Fig. 8.11.1. -Cross section

o oR of experiment shown
in Fig. 8.9.3a with

Because of the quasi-Cartesian approximation, this equilibrium field is Cartesian coordinates
not irrotational. for planar model.

Bulk Relations: Perturbations in the electric field are both irrota-
transfer tional and solenoidal in the uniform bulk of the fluids. In applying the flux-potential rela-

tions representing Laplace's equation above and below the interface (Eqs. (a) of Table 2.16.1), perturba-

tions on the interface having wave number k EHk2 + k2 are assumed short enough that boundaries above
and below the interface can be considered as being at x = + -. Thus, with the understanding that Rek > 0,

perturbation fields evaluated at the equilibrium interfacial position are related by

ýa AA

e = k a

x

Ab ^b
e = -kx
x

region theIn the bulk regions, the pressure balances the gravitational force density. Hence, in each 

pressure takes the form

p = I - pgx + p' (x,y,z,t)

From the inviscid pressure-velocity transfer relations (Eqs. (c) of Table 7.9.1) the perturbation part

of Eq. 5 evaluated at the equilibrium interfacial position is related to the velocity there by
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^a p = jWPa ^avx (6)
p = k x

^b jp b ^b
P = - x  (7)

Jump Conditions: To assure that the laws defining the model prevail through the interface, there
are two electrical boundary conditions. First, n x i =,0 is evaluated at the interface using I ex-
pressed in terms of ý (Eq. (a) of Table 7.6.1) and y = jk 0or z = jkzO to obtain

a ID = Lv••, . .0 (8)

Second, by assumption there is no free surface charge so i. EA = 0, which to linear terms requires
that

ra 
Ee - Ebe 

Ab
+ jkyEo(Ea - E) ax x y = 0 o a b (9)(9)

In addition, two mechanical conditions are required, the first representing continuity

a = j = b (10)
x x

and the second force equilibrium. To linear terms, the normal force balance is the x component of
Eq. 7.7.6 with the surface tension contribution given by Eq. (b) of Table 7.6.1,

- 1 -[1a - agE + pa(x = 0)] b pb + pb(x = 0)]

= [Eo(1 +i) + e (x=0)]2 + b[E (1 + L 2 (11)
) + eb (x=0)] _ y + 

The balance of the equilibrium surface force density by the equilibrium pressure is represented by the
equilibrium part of Eq. 11:

a -b = -(E - EbC)E (12)

so that in terms of complex amplitudes evaluated at the equilibrium position of the interface, the per-
turbation stress balance requires that

2
,^a ^b oa ^b 2^
pa p + b  a) = (Eb  a) -p- - jk E b~ ) -yk2• (13)

Dispersion Equation: Of the possible types of information about the dynamics that can be gleaned
from this model, it is the temporal modes that are of interest here. One way that they can be identi-
fied is to find the response to a transverse drive in the form of Eq. 8.9.11 for example. Then the con-
dition is D(w,k) = 0. Here, there is no drive and the temporal modes are identified by asking for the
relation between w and k that makes it possible for surface distortions to exist, consistent with all
the laws, but with homogeneous boundary conditions. To this end, Eqs. 3 and 4, 6 and 7 and 9 are sub-
stitutgd into Eq.,13 using Eqs. 8 and 10 in the process. The resulting expression is of the form
D(w,k)E = 0. If E is to be finite, it follows that D(w,k) = 0. This relation,

2 E 2
kE (C - Cb

(2 (+Pb) = gk(b-Pa) + yk3 + (aEb) + k2E2 a  b) (14)

is an expression of the fact that the inertia of the fluid above and below the interface is equi-
librated by forces due to gravity, surface tension, imposed fields and self-fields.

Temporal Modes: In addition to the now familiar gravity and capillary contributions to the phase
velocity, w/k, there are now the polarization contributions. In the absence of an imposed gradient the
effect of the field is to stabilize perturbations with peaks and valleys running perpendicular to the
electric-field. To see why, consider the perturbation fields resulting from the deformation of the
interface shown in Fig. 8.11.2a. With Ea < %C, the equilibrium field, Eo induces polarization surface
charges. As shown, these in turn give rise to the perturbation fields. Remember that the polarization
surface force density on an interface stressed by a tangential field acts in the direction of decreasing
permitivity. Thus, at the downward peaks where the perturbation field reinforces the applied field
there is an increase in the upward directed surface force density, and this tends to restore the inter-
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E,
Fig. 8.11.2. (a) Perturbation fields for waves propagating along lines of electric field.

(b) Perturbation fields are absent for waves propagating across d lines.

face to its equilibrium position. That perturbations propagating in the z direction are not influenced
by the self-fields is evident from the fact that the equilibrium field remains unaltered by such deforma-
tions of the interface.

Note that the self-field stiffening cannot stabilize the interface with the heavy fluid on top;
modes appearing as in Fig. 8.11.2b, sometimes called exchange modes because the fluid can be displaced
without an associated change in stored electric energy, are unstable despite a uniform imposed field.

However, the imposed gradient can be used to stabilize all wavelengths. Regardless of wave
number, the interface is stable provided that

2
E

(a - --  (15)b) > g(Pa - )  Pb

So, by making the upper fluid have the greater permittivity, the equilibrium can be made stable even
with the heavier fluid on top.

In the experiment of Fig. 8.9.3, the region between the electrodes is sealed. Thus, hydrostatic
pressure maintains the equilibrium, while the electric field stabilizes it. If too much of the upper
fluid is run into the region between the electrodes, it simply breaks through the interface until enough
is lost to satisfy Eq. 15.1

Considerations of stability are essential to the design of systems for orienting liquids. An
example is the use of polarization forces for orienting liquid fuels in the zero gravity environments
of space. 2 3Magnetization interactions with ferrofluids are analogous to those described here.

8.12 Flux Conserving Dynamics of the Surface Coupled z-8 Pinch

The magnetic field levitation of a liquid metal, sketched in Fig. 8.2.1c, is based on time-average
forces caused by currents induced because the field is oscillating with a period short compared to a mag-
netic diffusion time. Transient, rather than steady-state forces, are similarly induced if the field
is abruptly switched on. The confinement of a highly ionized gas in many fusion experimentsl is based
on this tendency for the plasma to behave as a "perfect conductor" over several magnetic diffusion times.
Not only does the magnetic field "bottle up" the plasma, but it can also be the means of compressing the
gas. The stability of the pinch configuration shown in Fig. 8.12.1 is examined in this section.

An axial current on the surface of the cylindrical conductor gives an azimuthal magnetic field, Ha,

and hence a sur ace force density that compresses the conductor radially inward. An example is shown

in Fig. 8.12.2. If the conductor is an ionized gas, this pressure will evidence itself in the con-

striction of the conducting volume, thereby producing an increase in the plasma density and local con-
ductivity. In turn, because the magnetic field intensity in the neighborhood of the conducting path is
inversely proportional to the radius of the conductor, the magnetic pressure is itself increased. As

a scheme for heating of plasmas for thermonuclear experiments, the magnetic field serves the dual

purpose of compressing and confining the plasma column.

1. J. R. Melcher and M. Hurwitz, "Gradient Stabilization of Electrohydrodynamically Oriented Liquids,"

J. Spacecraft and Rockets 4, 864 (1967).

2. J. R. Melcher, D. S. Guttman and M. Hurwitz, "Dielectrophoretic Orientation," ibid., 6, 25 (1969).

3. R. E. Zelazo and J. R. Melcher, "Dynamics and stability of ferrofluids: surface interactions,"
J. Fluid Mech. 39, 1-24 (1969).

1. See, for example, D. J. Rose and M. Clarke, Jr., Plasmas and Controlled Fusion, The MIT Press and
John Wiley & Sons, New York, 1961, p. 336.

2. See F. C. Jahoda. E. M. Little, W. E. Quinn, F. L. Ribe and G. A. Sawyer,"Plasma Experiments with a
570-kJ Theta-Pinch," J. Appl. Phys. 35, 2351-2363 (1964).
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2.4 sec.

3.6 sec.

Image removed due to copyright restrictions.


Four images taken at 2.4 sec., 3.6 sec., 4.9 sec. and 6.1 sec. 
As the plasma cross-section compresses, the number of dark and light rings decreases 

4.9 sec.
Fig. 8.12.1. Plasma column showing

equilibrium radius Rand
equilibrium magnetic fields.

compression
6.1 sec.

Fig. 8.12.2

Theta-pinch experiment showingTheta-pinch experiment showing magnetic compression of plasma 
magnetic compression of plasma

cross section as viewed by means of interferometer. Peak mag-cross section as viewed by means
netic field is about 100 kgauss. (Courtesy of Los Alamos Scienof interferometer. Peak mag
-tificLaboratory.)netic field is about 100 kgauss.

(Courtesy of Los Alamos Scien
tific Laboratory.)direction of interferograms
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The axial or z pinch, with the current in the direction of the columnar axis and the induced mag-
netic field azimuthally directed, is inherently unstable: a fact that emphasized early in the fusion
effort that the stability of confinement schemes was of primary importance. The theta pinch of
Fig. 8.12.2 avoids the inherent tendency toward instability by using currents that flow azimuthally
around the column. These are induced by a magnetic field applied suddenly in the axial direction. The
applied magnetic field has the virtue of being uniform in the region around the plasma, and thus the
magnetic stress at the surface of the column is independent of the radial position of the interface. As
will be seen, it is the 1/r dependence of the equilibrium magnetic field that makes the axial pinch
naturally unstable. The imposed field gradient is destabilizing. The combined axial and theta pinch
configuration, shown in Fig. 8.12.1, is sometimes termed the "screw pinch" because of the helical shape
of the magnetic field lines.

Equilibrium: The plasma column is modeled as a perfectly conducting cylinder of incompressible and
inviscid fluid. Although the equilibrium is pictured as static, the fields are nevertheless applied and
the column motion of interest completed in times that are short compared to the time for the field to
diffuse into the column. Thus, surface currents are just those required to shield the applied fields
from the column:

S= Ht + Hi, (1)
r t az

where Ha and Ht are, respectively, the axial and theta fields at the equilibrium surface of the column.
The equilibrium surface current on the column is therefore

K=- + (
K , -Hai a+ Hti (2)

Stress equilibrium requires that the equilibrium pressure jump balance the magnetic surface force density:

I• -]I =- I (H + H (3)

Bulk Relations: With the column surface represented in the complex amplitude form ( = Regexpj(wt -
m0 - kz), perturbations in the magnetic field around the column, t = -VT, where Y satisfies Laplace's
equation. Thus, the flux potential relations, Eq. (c) of Table 2.16.2, pertain to the region between
column and wall:

[ Mb (R,a) Gm(a,R)I (4)

There is no perturbation magnetic field inside the column.

The perturbation mechanics of the column are represented by the inviscid model of Sec. 7.9. The
pressure-velocity relations, Eq. (f) of Table 7.9.1 in the limit where +- 0, show that

(5)^d (5)
p = jwpF(O,R)v 

That the region surrounding the column is essentially vacuum means that it is filled with fluid of
negligible density and hence zero perturbation pressure: ^c 2 0.

Boundary and Jump Conditions: Because the equilibrium H is nonuniform, the field evaluated at the
perturbed position of the interface is to linear terms

R R +
H = y Htie + Hi + h(r = R + E)

(6)

-Hti + H HIT + t(r = R)
t + Haiz R t6

The effect of the mechanics on the magnetic field is represented by the condition that there be
no magnetic flux linked by contours lying in the deforming perfectly conducting interface. With the
normal vector related to ý by Eq. (e) of Table 7.6.1, it follows that to linear terms
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c mH

hr = -j(-- 
t

+ kHa)t (7)
where hc is evaluated at the unperturbed position of the interface.r

The physical nature of the outer wall will be left open. For noy, it is presumed that there is some
normal magnetic field at the outer wall having the complex amplitude ':

hr (8)

To express the effect of the fields on the mechanics, continuity requires that

^d ^
v.V= jwý (9)

Then, stress equilibrium is represented by Eq. 7.7.6. As applied to plasmas, the model need not include
the surface tension. Of the three components of the stress condition, only the normal component is
appropriate. Fundamentally, this is because a perfectly conducting interface sustains no magnetic shear
stress (see Sec. 8.2). To linear terms, it is the radial component og the stress condition that repre-
sents the normal stresses. Thus, in view of Eq. 6 (ýz = jkV, f8 = jm'/R)

d 0oHt-Pd o - Ht + kHa)eC (10)

where c = 0.

Dispersion Equation: Equations 4b and 5 are evaluated using Eqs. 7, 8 and 9 and substituted into
Eq. 10 to obtain

2 A OHt m 2 A m
(0,R)i = SpF t -1 (Ht + kHa)2Fm(a,R) - jJ(Ht +kH)G(Ra) (11)

In particular, if the outer wall is perfectly conducting, Eq. 11 shows that the appropriate dis-
persion equation is

2• 2  a ) 2F m, (1
-_WpFm(0,R) = - + •(i -Ht + F (a,R) (12)

It is shown in Sec. 2.17 that Fm(O,R) = 1/fm(O,R) < 0 (see Fig. 2.16.2b for typical behavior) and
Fm(a,R) > 0.

The first term on the right in Eq. 12 arises from the imposed gradient in azimuthal magnetic field.
That it tends to make the equilibrium unstable is not surprising because the inward directed magnetic
surface force density associated with the imposed 8 field decreases as the interface moves outward. The
question of stability hinges on whether or not the self-field coupling represented by the last term in
Eq. 12 "saves the day."

Certainly, the self-fields stiffen the interface. However, for deformations having azimuthal and
axial wave numbers related by (m/R)/k = -Ha/Ht, this stiffening is absent. To appreciate the origins
of this result, observe that a vector perpendicular to crests and valleys of the surface perturbation
is $ = (m/R)T + kA, as shown in Fig. 8.12.3. Also, as a vector in the (SR,z) plane, the equilibrium

= magnetic field is given by Eq. 1. The perturbations that produce no self-field effect have p.1 0 in
the surface of the column. Thus the modes that cause no perturbation in ý propagate across the lines
of equilibrium field. If the equilibrium field circles the z axis in the clockwise direction shown in
Fig. 8.12.3, the perturbations that produce no self-fields have crests and valleys that also follow
these helical lines, as shown in Fig. 8.12.3b. Note that for the z pinch, where Ha = 0, these are the
sausage modes m = 0. These modes that have no self-fields, sometimes called exchange modes, are similar
to the polarization and magnetization modes of Sec. 8.11.

From another point of view, it is Alfvyn surface waves propagating along the lines of magnetic
field intensity that are described by Eq. 12. The flux conserving dynamics is similar to that for the
bulk interactions. However, the phase velocity of waves is now dependent on k, the surface waves are
dispersive.

The theta pinch (Ht = 0) is at worst neutrally stable. Only the self-field remains on the right
in Eq. 12. However, for "exchange" perturbations with crests running in the axial direction, this term
is zero, so that the frequency is zero, and the system is on the verge of instability. In fact, the
theta pinch has been found to be a useful approach to obtaining confinement for extremely short periods
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Fig. 8.12.3

(a) Equilibrium i and propaga-
tion vector in (RO,z) plane
at r = R. (b) Exchange modes
showing $1i = 0 and hence lines
of constant phase parallel to
equilibrium H.

(a) (b)

of time. Experiments are illustrated by Fig. 8.12.2, From the hydromagnetic viewpoint, the stability
of the theta pinch depends on effects not included here, such as the necessary curvature of the imposed
fields if the column is closed on itself. Internal modes associated with volume distributions of
current are thought to come into play in pinch devices and especially in the tokamaks. Such modes are
taken up in Secs. 8.17-8.18. In any case, there are many other forms of instability associated with a
highly ionized gas that are not described by a hydromagnetic theory.

One approach to stabilizing the equilibrium is to sense the position of the interface and feed-
back fields to a structure located on the outer wall. For example, in the limit of a continuum of
samples and feedback stations, the normal magnetic field t the wall might be made proportional to the
deflection of the interface at the same (e,z) location,V= AE. With this expression introduced into
Eq. 11, the revised dispersion equation follows. But, note that no matter what the nature of the feed-
back scheme, the last term in Eq. 11 has a factor [(m/R)Ht + kHal. No matter what the feedback, in
the framework of this linear model, it will not couple to the exchange modes. The origins of this dif-
ficulty are clear from the stress balance, Eq. 10, which shows that field perturbations perpendicular
to the imposed field result in no perturbation stress. This is true whether Tc (Eq. 4b) is the result
of the self-field (Eq. 7) or caused by the feedback at the outer wall.

8.13 Potential Conserving Stability of a Charged Drop: Rayleigh's Limit

Charged drops and droplets are exploited in devices such as ink jet printers that use electric
fields to deflect and direct the ink, charged droplet scrubbers for air pollution control and electro-
static paint sprayers. Of possible importance in these applications is the limiting amount of charge

It is this Rayleigh's limit,1that can be placed on a drop without producing mechanical rupture. 
determined as it is by considerations of stability, that is an objective in this section. The example
gives the opportunity to put to work relations derived in Chaps. 2 and 7 in spherical coordinates.

The drop, perhaps of water, is assumed to be perfectly conducting and to have the equilibrium
radius R and surface tension y. Its interface has the radial position r = R + E(8,0,t), as sketched
in Fig. 8.13.1. The drop is initially in static equilibrium with a total charge, q, evenly distributed

over its surface. Thus, an equilibrium electric field

E = E R; q = 4e R2E (1)

surrounds the drop with the radial electric surface force density EE2/2 balanced by the jump in equi-
librium pressure Hc - ld and the surface tension force density -2y/R.

Surface deformations take the form

S= Re P (cos 6)eJ(  - (2)

1. Lord Rayleigh, "On the Equilibrium of Liquid Conducting Masses Charged with Electricity," Phil.
Mag. 14, 184-186 (1882).
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with normal vector and surface tension force den-
sity summarized in Table 7.6.2.

Bulk Relations: With the perturbation in
electric field from that given by Eq. 1 repre-
sented by a = -VO, the Laplacian nature of the
fields surrounding the drop is represented by
the flux-potential transfer relation, Eq. (d) of
Table 2.16.3:

ec . (n+l) Rc
r R

Similarly, the inviscid fluid within is repre-
sented by the pressure-velocity relation,
Eq. (i) of Table 7.9.1 in the limit 8 + 0,

Ad Ad R Ad
pd= j PF (O,R)vd = -jwp - vn: r n r

Boundary Conditions: The electrical boundary
condition at the drop interface requires that there
be no tangential electric field: n x I = 0. This ,- - - -

condition prevails if frequencies of interest are
low compared to the reciprocal charge relaxation Fig. 8.13.1. Spherically symmetric equilibrium
time of the drop. With the objective of evaluating for a drop having total charge q uni-
the electric field at the perturbed position of the formly distributed over its surface.
interface, note that to linear terms Eq. 1 is evalu-
ated at the interface as

SE(1 -
S r=R+E 0o 2-)

Then, Eq. M of Table 7.6. is used to represent 'n and, to linear terms in 5 and hence e, the boundary
condition is written in terms of amplitudes evaluated at the unperturbed interfaces I-c (

c^
C = EO

Continuity requires that (Eq. 7.5.5 to linear terms)

yr =

Stress equilibrium for the interface, in general given by Eq. 7.7.3, is written with the perturba-

tion pressure outside the drop ignored because the density there is negligible compared to that of the

drop. Thus,

28 E c 
c - d - (pd 1 2 o E e + (T)
H- - (p') = Trj n j + (Ts) = •-•E 

+  r0 Ee + (T)
c d rj sr 2 oo R oor r

The equilibrium terms balance out, so that with the complex amplitude of (Ts)r given by Eq. (M)
of Table 7.6.2,

2C E
2

-d oo + E E 8c (n - 1)(n + 2)•R -- 
oor R2

R

Dispersion Relation and Rayleigh's Limit: All terms in the stress balance, Eq. 9, are written in
terms of 5 by using Eq. 6 in Eq. 3 for $, and Eq. 7 in Eq. 4 for Ad. The factor multiplying A in the
resulting homogeneous equation is the dispersion equation:

w pR2 = (n - l)n[- (n + 2) - e E• ] (10)
R oo

The surface deflections are pictured with the help of Tabld 2.16.3. Conservation of mass excludes the
n = 0 mode. From Eq. 10, the two n = 1 modes are neutrally stable. These are pure translations,
either along or transverse to the z axis.

The first modes to become unstable as Eo is increased are the three n = 2 modes. This is seen
by solving Eq. 10 for the Eo that makes the term in brackets vanish and recognizing that this is first
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true for the lowest allowed value of n, n = 2. Thus, because Eo = q/4?r% 2 , it follows that Rayleigh's
limit on the total drop charge consistent with a stable equilibrium is

q =8 (11)

From this result, slowly increasing the net charge causes the drop to burst by fissioning into two dro
In most situations, the instability is dominated by the most rapidly growing of a spectrum of unstable
modes with growth rates predicted by Eq. 10.

8.14 Charge Conserving Dynamics of Stratified Aerosols

If charge can relax instantaneously on the time scale of interest, an interface and even bulk
material of fixed identity can preserve its potential. Examples are given in Secs. 8.13 and 8.7. In
the opposite extreme are motions that conserve the charge density in the neighborhood of material of
fixed identity. A physical example is the transport of submicron charged particles entrained in air.
By virtue of applied or self-fields, these particles migrate according to the laws investigated in
Sec. 5.6. But there, the gas flow was assumed to be known. What if the force transmitted to the gas
by the charged particles results in a gas motion that dominates the migration of the particles relativ
to the gas? In fact, because of .their extremely low mobilities, fine particles of high density can
result in a sufficient force on the gas that the resulting fluid motions dominate over migration in
determining the transport of the particles. Typically, what is observed is transport of particles by
turbulent mixing with its origins in the electrohydrodynamic instability examplified in this section.

If fluid convection dominates over migration (or relaxation) in the transport of charged particl
by an incompressible fluid, then the charge density is related to the fluid flow by

Dpf
-- =0 (1)
Dt

In Sec. 7.2, this same statement was made for the mass density of an incompressible fluid. The genera
laws and relations subsequently developed in Secs. 7.8 and 7.9 bear on the motions of a mass density
stratified fluid in a gravitational field much as does this section on motions of a charged fluid in a
electric field. The discussion of gravity-capillary dynamics, Sec. 8.9, exemplifies the dynamics of
fluids stratified in mass density, and is an example of how piecewise continuous models represent sys-

tems that are inhomogeneous in mass density.

At least as discussed here, where effects of self-gravitation are ignored, 9 in the gravitationa

force density is constant, whereas the electric field t in the electric force density is a function of

the distribution of the field source, in this case pf. But, in regions where the charge density is co

stant, say pf = q, the force density transmitted to the fluid by the charged particles nevertheless
takes the form of the gradient of a pressure:

SpfE p = -pfV =-V; E q4 (2)

Note that this statement prevails only where pf is constant. It cannot be used to deduce a stre

tensor at a boundary where pf is discontinuous, for example.

That the force density in regions of uniform charge density is the gradient of a pressure effec-

tively uncouples the bulk fluid mechanics from the electromagnetics. The inviscid equations of motion

are as given in Sec. 7.8, with C as defined by Eq. 2. Thus, in the bulk, vorticity is conserved by a

surface of fixed identity, and Eqs. 7.8.10 and 7.8.11 determine the velocity and pressure of motions

initiated from a state of zero vorticity.1

Planar Layer: Suppose that a planar layer is embedded in a system in such a way that the equi-

librium fields generated by the space charge are x-directed, as shown in Fig. 8.14.1. Because the
uniformfollowing comments are general, for the moment consider the layer to have an equilibrium 

translation in the z direction with velocity U. With G defined by Eq. 2, the pressure follows from

Bernoulli's equation, .Eq. 7.9.4, as

p (x) =- pU 2 - q + -pgx

p' = p(-- + U a-),' - q'

1. The piecewise uniform approximation used here is developed in various geometries by M. Zahn,

"Space Charge Coupled Interfacial Waves," Phys. Fluids 17, 343 (1974).
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where primes indicate the time varying perturbation. A hybrid
perturbation pressure is now defined,

7r' p' + q0' (4) 1\

It follows from Eq. 3 that w is related to the velocity potential .. " " .

S= jp( - kzU)O (5)

Thus, 7r now has the same relationship to the velocity potential .----'.. -. .. -- . .

as did $ 
.- 

in Sec. 7.9 (Eq. 7.9.6). Here, as in Sec. 7.9, 0
satisfies Laplace's equation. Thus, the pressure-velocity
relations of Table 7.9.1 apply with . Fig. 8.14.1. Uniformly charged planar

Fig. 8.14.1. Uniformly charged planar

On the electrical side, Poisson's equation must be layer of charge conserving fluid.

satisfied at every point in the bulks However, because pf is
constant, the equilibrium field equilibrates the charge density in Poisson's equation and perturbations
in the potential must satisfy Laplace's equation. Thus, fields take the form

A j (t-k y-k z) dE d#0  (6)
= 0 o (x) + Re e -~ dx = ; Eo dx

0

where the flux-potential transfer relations of Table 2.16.1 apply to the perturbation, Q.

Boundary Conditions: The electromechanical coupling occurs in the regions of singularity between
layers of uniformly charged fluid. Interfacial boundary conditions representing the mechanical equa-
tions come from continuity, which requires that

= j
Ax 4 (7)

and stress equilibrium. The charge density has a step discontinuity at the interface, but there is no
surface charge. Further, there is no discontinuity in the permittivity at the interface. Thus, the
surface force density, represented by the first term on the right side of Eq. 7.9.6, is zero. For

layers of charged aerosol, it is appropriate to ignore the surface tension, so the boundary condition is

simply

a9p =0 (8)

In view of Eq. 3, this condition is represented by its x-component evaluated to linear terms on the inter-

face at x (say) to give

qEo - pgj Z + JRI - Jq4) = 0 (9)

where Eo is now the equilibrium electrical field evaluated at the unperturbed interface.

The potential must be continuous at the perturbed interface. Because there is no surface charge

and no discontinuity in permittivity, it is also true that a Eo1 = 0, so this condition requires that

A = 0 (10)

Because there is no surface charge even on the perturbed interface, a further boundary condition reflect-

ing Poisson's equations is that t~iE E = 0, so this condition requires that

E qj Z + C o0 ex = 0 , (11)

where Eq. 6 is used to replace deoEo/dx by (q). The four boundary conditions, Eqs. 7, 9, 10 and 11, are
evaluated at the unperturbed position of the interface.

Stability of Two Charge Layers: As a specific example, consider the motions of the layers shown
in Fig. 8.14.2. In the bulk, the mechanics in each layer is represented by Eqs. (c) of Table 7.9.1
with ý + ft:

Rc -coth(ka) s1nh(a) c
sinh(ka) x

=k--- (12)
d I -1 coth(ka) d

sinh(ka) x
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1 .,Re Ae
-coth (kb)

sinh(kb) x
JWP b (13) 1.k

-1Lf1 cf
coth(kb) vs inh (kb) a q5

(d),E - -7 4.,-. 7. 
9*

7 
Similarly, the fields follow from Eqs. (a) of Table. 2.16.1:

F , b :. ." b'Pb
-coth ka) (e).

sinh(ka) c)
±.LVo=k (14)

-1
e coth(ka) dj.dx sinh(ka) Fig. 8.14.2. Fluid layers of different

uniform charge and mass densities

1 have an interface, d-e, and are
e bounded-coth(kb) by rigid electrodes.

sinh(kb)'

=k (15)

^f -1
coth(kb)

sinh(kb) JL J

Boundary conditions at the top electrode are

v = 0 (16)
x

4c =0 (17)

at the interface are Eqs. 5, 7, 8 and 9:

Ad _e = jA (18)
x x

[Eo(qaqb) - g(paPb)] + (de) (qad a e 0
(19)

^d _ e = 0 (20)

(q - q b )  + E ( ed _ e ) = 0 (21)

and at the bottom electrodes are

^f
v =0 (22)

v= 0 (23)

It is a simple matter to substitute Eqs. 16-18,20,22, and 23 into the bulk relations. Substitution of
the resulting Eqs. 14b and 15a into Eq. 21 then shows that

)
Ad Ae -(qa- q b

(24)
Sk[coth(ka)+ coth(kb)]

o

The force-equilibrium boundary condition, Eq. 19, is finally evaluated using Eqs. 12b and 13a and Eq. 24
to obtain the dispersion equation

W2 (qa - qb)2

-. (25)[a coth(ka) + pb coth(kb)] = g( b-Pa)+Eo(a-b) coth(a)+ coth(kbk akcoth(ka) 
o + coth(kb)]

Remember that Eo is the equilibrium electric field evaluated at the unperturbed position of the inter-
face. The equilibrium fields imply that the voltage Vo is related to Eo and the charge densities by

Sec. 8.14 8.48

7



Vo  qbb 2 - qaa 2E + (26)
o b+" 2e (a+b)

The last "self-field" term in Eq. 25 is positive regardless of the relative charge densities, and
hence tends to stabilize all wavelengths. However, for short waveA (ka >> 1 and kb >> 1) its contribu-
tion is negligible compared to the gravitational and "imposed field" term. Thus, a necessary and suf-
ficient condition for all wavelengths to be stable is that the first two terms on the right in Eq. 25
be positive,

g(Pb - Pa) + Eo(qa qb) > 0 (27)

The static arguments used in Sec. 8.4 lead to a similar condition, Eq. 8.4.11, because instability is
incipient at zero frequency.

If the inequality of Eq. 27 is not satisfied, Eq. 25 shows that the growth rate of instabilities
increases linearly with the wave number. Actually, there is a wavelength for maximum rate of growth
that would be predicted if the model included effects of viscosity (which come into play at short
wavelengths) or recognized the finite structure of the discontinuity in charge density.

The model of a charge density that is frozen to the fluid is of course relevant only if the
processes described take place on a time scale short compared to the migration time of the charged
particles. To what physical situations might the model apply?

Suppose that the electromechanical waves are of interest and Vo is adjusted to make E0 = 0. For
a fluid of uniform mass density (Pa = Pb = p ), according to Eq. 25, short waves have the frequency

S a= (28)

(Note that this is a reciprocal electro-inertial time.) For particles having charge q, number density n
and mobility b, the self-precipitation time due to migration is Te = co/nqb) (Eq. 5.6.6). The frozen
charge model is valid if the electro-inertial frequency given by Eq. 28 is high compared to the recipro-
cal of the self-precipitation time. That is, for Iqa-qb| = nq, it is valid if

WT = >> 1 (29)
e 2 b

The summary of typical mobilities given by Table 5.2.1 makes it clear that the model does not apply to
ions in a gas. However, it could apply to charged macroscopic particles in air2 and to ions in
liquids.3,4 In fact, as a consequence of the electrohydrodynamic instability that prevails when Eq. 27
is not satisfied, the electrically induced convection can be a dominant charge transport mechanism.

The effect of the instability on transport of an aerosol is demonstrated by the experiment shown
in Fig. 8.14.3.5 Generated by dry ice immersed in water, the aerosol passes from left to right as a
layer, bounded from below by an electrode and from above by clear air. Thus, the configuration is
essentially that of Fig. 8.14.2 with the upper region uncharged. The aerosol is negatively charged
by ion impact at the left. From the picture center to the right, the layer is subjected to a vertically
applied electric field. In Fig. 8.14.3a, the applied field is upward and hence the configuration is
stable. Some migration is observed, but little convection. In Fig. 8.14.3b, the field is reversed.
Electrohydrodynamic instability is a arent in its contribution to the transport of charge out of the
gas stream. For this experiment, eo/p/2b > 10, so effects of convection are expected to be important.

2. R. S. Withers, J. R. Melcher and J. W. Richmann, "Charging, Migration and Electrohydrodynamic
Transport of Aerosols," J. Electrostatics 5, 225-239 (1978)

3. P. K. Watson, J. M. Schneider and H. R. Till, "Electrohydrodynamic Stability of Space-Charge-
Limited Currents in Dielectric Liquids," Phys. Fluids 13, 1955 (1970).

4. E. J. Hopfinger and J. P. Gosse, "Charge Transport by Self-Generated Turbulence in Insulating
Liquids Submitted to Unipolar Injection," Phys. Fluids 14, 1671 (1971).

5. R. S. Colby, "Electrohydrodynamics of Charged Aerosol Flows," B.S. Thesis, Department of Electrical
Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Mass., 1978.
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(a)

(b)

Fig. 8.14.3. Aerosol passed through ion-impact charging re.gion at left and
into region of applied electric field from the center to the right.
The aerosol is charged negativep'. (a) Staole configuration with
applied field directed upward. (b) Unstable configuration with ap-
plied field reversed.

8.15. The z Pinch with Instantaneous Magnetic Diffusion

The model exemplified in this section pertains to the MQS dynamics of electrical conduction in the
opposite extreme of that considered in Sec. 8.12. There time scales of interest were short compared to
the magnetic diffusion time, so that the magnetic flux linked by a surface of fixed identity was con
served. In the opposite extreme considered here, the diffusion of magnetic field on the time scales of
interest is instantaneous. In the magnetic diffusion equation, Eq. 6.2.2, the induction and "speed
voltagen terms are now negligible. That is, the magnetic diffusion time Tm = ~at2 is short compared to
times of interest and the magnetic Reynolds number R = ~atv is small (Eq. 6.3.9).m

In this limit of instantaneous magnetic diffusion, the effect of the material deformation on the
+ +

magnetic field comes from the heterogeneity of the conductor. The distribution of J and hence H is
determined by the geometry of the conductors. This is best emphasized by dealing with the current
density rather than the magnetic field. Because R «1, the effect of motion on the current densitym
is ignorable. Thus

+ +
J = aE (1)

It follows from the law of induction, Eq. b.2.3 with T IT « 1 and R «1, thatm m

(2)
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In the MQS approximation, the current density is also solenoidal:

V*J= 0 (3)

This is insured by Ampere's law, which represents J in terms of a "vector
potential" which happens to be the magnetic field intensity:

+ +
J = Vx H (4)

In regions where a and P are uniform, it follows from Eqs. 2 and 4 and
the solenoidal nature of A that

V = 0 (5)

which is of course the limit Tm/T << 1 and Rm << 1 of Eq. 6.2.6.

Liquid Metal z Pinch: The column of liquid metal shown in
Fig. 8.15.1 initially has a uniform circular cross section and
carries a longitudinal current density, Jo, that is uniform over this
cross section,

= Jo z  (6)

Thus, by contrast with the perfectly conducting pinch of Sec. 8.12
where the current is on the surface, the equilibrium magnetic field
has completely diffused into the conductor. It assumes the linear
distribution consistent with Amp're's law and Eq. 6: Fig. 8.15.1. Column of liquid

metal has static equi-
or librium with 5 = 0 and

{ r2 r < R uniform axial current
H = (7) density.

oR 2
r > R2r 

Static equilibrium prevails because the radial pressure distribution, p(r), just balances the associated
radial magnetic force density and surface tension surface force density. With p defined as zero in the
air surrounding the column,

p = - 1 J 2 (r 2 - R24 ) + R (8)Odo 

An experiment demonstrating the dynamics to be described (Ref. 2, Appendix C) makes use of a
liquid jet of mercury. In the model now developed, the longitudinal streaming of the jet is ignored.
Instabilities exhibiting a temporal growth here can be displayed as a spatial growth as a result of the
streaming. Such effects of streaming are taken up in Chap. 11.

Bulk Relations: With the vector potential A 4 H and B - J, the situation is formally the same as
described by Table 2.18.1. Axisymmetric perturbations from this static equilibrium now considered can
be described in terms of one component of the magnetic field, fl = 1(r,z,t)t. Here, = A A/r and in
terms of A(r,z,t), the perturbation current density is

J = 1 DA - +l 1 DA -+i r -5 r + rr ar (9)

The axisymmetric solutions of Eq. 5 in cylindrical coordinates are discussed in Sec. 2.19. Solu-
tions are of the form of Eq. 2.19.10 with 8 O0:

^ A rJ1 (Jkr)
A = H , (10)

That is, the perturbation current density in the bulk is uncoupled fgom the mechanics and determined by
the geometry of the interface, which will determine the coefficient Hf.

By contrasc, the mechanics is bulk coupled to the field distribution. The strategy in Sec. 8.14
was to represent the electromechanical bulk coupling in terms of a force density that was the gradient
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of a pressure. Essentially, this attributes the coupling to interfaces. Here, part of the force density
is rotational, so that matters are not so simple. It follows from Eqs. 6 and 7 that

2
+ + ~o Jdr o 0 Jor
F =J x H =-i + J'x ie + oiz x H' (11)

o 9 2 r 2 i o

Thus, in view of Eq. 9, the force equation for the fluid becomes

Jo A
p L- + V = r- o i ; 7T - p' + (12)

at r r 2

where the part of the force density that is the gradient of a pressure is lumped with the perturbation
p'. Effects of gravity and viscosity are not included in Eq. 12. What is on the right in the force of
Eq. 12 is the rotational part of the magnetic force density.

Because of this "one-way" coupling of the field to the fluid, it is necessary to rederive what
amounts to the transfer relations,for the fluid. The r and z components of Eq. 12, as well as the con-
tinuity condition V.v = 0, give three relations for the mechanical perturbations:

jwp + (13)
r dr r

jWp• z - jk* = 0 (14)

1 d (r r) - jk- = 0 (15)
r dr r z

Elimination of Vz Z between Eqs. 14 and 15 gives an expression that can be solved for 9,

wp 
2 

= 
d
d (re) (16)

r ur r

Substitution of this expression into Eq. 13 gives

d2,dv
r 1 dOr r 2oo 2^ jk2J A

+ k v = (17)
2 r dr 2 r wp r

dr r

In the absence of-the bulk coupling, these last two expressions could be used to derive the pressure-
velocity transfer relations of Table 7.9.1. Added to the homogeneous solutions of Eq. 17 (that comprise
these transfer relations) is now a particular solution satisfying the equation with Eq. 10 substituted
on the right. Substitution and recognition that Jo(jkr) satisfies Eq. 2.16.19 with m = 0 shows that a
particular solution is

j(jkR)rJ (jkr) (18)
o2wpJ1(jkR) 

where Eq. 2.16.26c has been used. Of the two homogeneous solutions, the one that is not singular at the
origin is Jl(jkr). The linear combination of particular and homogeneous solutions that makes r (R)=vr
is

1d , PokHa RJo (jkR)J (jkr)Jl(jkr)v r vr Jl(jkR) 2wpJl(jkR) Ji kR - rJ (jkr (19)
2mpJ 1 (jkR) JjkR) o

Thus, in view of Eqs. 12-and 16, the amplitude of the perturbation pressure is

= J (j k r ) kR
2jkJ(jkR)o jJ (jkR) -2(r 1 ( jI o (jJ k r ) - 2J (jkr) + 2jkrJ1(jkr (20)

k Jl(jkR) r 2jkJ 1(QkR) 0aLJ1 (j kR) 0 

Boundary Conditions: The effect of the boundary condition on the distribution of current density,
and hence magnetic field, is represented by the condition that at the interface, *.J = 0. To linear
terms, with A written in terms of C(z,t) (Eq. (e) of Table 7.6.2),

r + jk = 0 (21)
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The radial current density, Jr, is substituted into this expression using Eqs. 9 and 10 to show that

This condition represents the effect of the mechanics (geometry) on the field.

The return effect of the field on the fluid is taken into account in writing stress equilibrium for
the interface. Note that there is no singularity in the magnetic force density at the interface. That
is, there is no surface current and no discontinuity in magnetizability of the material. Hence, the mag-
netic surface force density, i Te J n , makes no contribution to the stress equilibrium, Eq. 7.7.6.
Because the fluid surrounding thecoldmn is of considerably lesser density than the column, the perturba-
tion pressure, ^c, is ignored. Thus, the jump in total pressure evaluated at the perturbed position of
the interface is balanced by the surface tension surface force density, Eq. (f) of Table 7.6.2:

-{-p [(R + ) 2 - R2  d =[-+ + 5] (23)
4 0 RR R 2 z

By design, the equilibrium part of this balance cancels out. In terms of complex amplitudes, the perturba-
tion part is

1 2' d (24)
(24)o/ Rý - d = [1 - (kR)2 

^d
Evaluated using Eqs. 20, 22 and the continuity condition vr = jw~, this expression becomes the dispersion
equation

2 pR3 kRI1(kR) j0 2OR 3 2(kR) 21o(kR) 22pR kR= 1  12 21- 2(kR) 1 + [(kR) - 1] (25)
Y I(kR) 1 2 kRI(kR)

Rayleigh-Plateau Instability: The normalized frequency given by Eq. 25 is shown as a function of
wave number by Fig. 8.15.2 with the magnetic pressure o (daR)2/2 normalized to the surface tension pres-
sure y/R as a parameter. Negatives of the quantities shown are also solutions. Note that even in the
absence of an axial current, perturbations kR < 1 (wavelengths longer than 27TR) are unstable. Any per-
turbation results in major radii of curvature that differ in sign. For a region that is necking off,
the curvature associated with the axial dependence tends to restore the equilibrium whereas that caused
by the circular cross section of the column tends to further neck off the column. For perturbations
having wavelength X > 2wR, the latter wins and the equilibrium is unstable. The wavelength for maximum
rate of growth, given by kR = 0.7, can be used to give a rough prediction of the size of drops formed
from a liquid jet. According to the linear theory, a drop having radius ro would have a volume equal to
that of one wavelength of the jet, 7rR2 = 4/3(rr3).

'S
t

Fig. 8.15.2

Normalized frequency
S= W/pR3/y as a

function of wave num-
ber. --- Wi, -- r.
The parameter is

3J~o2R /2y.

KI N
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z-Pinch Instability: The general nature of the pinch instability is qualitatively similar to that
found with the flux conserving pinch of Sec. 8.12. Because the current through the column must be con-
served, both the current density and the magnetic field intensity in the fluid adjacent to the inter-
face go up wherever the column tends to neck off. The result is an inward magnetic force density that
tends to further encourage the necking off. Unless wavelengths are sufficiently short to be stabilized
by surface tension, they are unstable. According to the model, it is only the inertia of the column
that limits the rate of growth of the instability.

Finally, is the instantaneous magnetic diffusion model appropriate for the description of a mercury
column having a radius of 1 cm or less? From Eq. 25 and Fig. 8.15.2 the frequency can be taken as of
the order of /y/pR3. For the approximation to be justified, the product of this frequency (or growth
rate) and the magnetic diffusion time (based here on the column radius) must be small:

22m
(26)

m P

-3
Typically, this number is less than 10- 3

The major electromechanical effect that would be experimentally observed but not accounted for by
this model is magnetic damping.

8.16 Dynamic Shear Stress Surface Coupling

It is a straightforward process to include the effects of viscosity in the piecewise homogeneous
models developed in Secs. 8.9-8.15. The fluid mechanics is represented by the viscous diffusion
transfer relations of Sec. 7.19 rather than the inviscid pressure-velocity relations of Sec. 7.11. With
the viscosity come additional boundary conditions. At an interface, not only is the normal velocity
continuous, but so also is the tangential velocity (Eq. 7.7.3). Also, the shearing stresses acting at
an interface, Eq. 7.7.6, are not automatically balanced. In Secs. 8.9-8.15, the interfacial stress
balance is for interfaces free of shearing surface force densities. Thus, any of these examples have
stress balance equations in directions tangential to the equilibrium interface that are identically
satisfied.

In this section, the example treated not only illustrates how viscosity is taken into account in

piecewise homogeneous systems, but also involves an electric shearing surface force density. Hence, the

viscous shear stresses are necessary for the formulation of a self-consistent model.

A highly insulating liquid, such as hexane, has a free surface which is bounded from above by a
gas, as shown in Fig. 8.16.1. Perhaps by means of a very small radioactive source, some ion pairs

are provided in the bulk of the liquid. By means of a potential applied between the planar electrodes,
half of this charge is swept to the interface where it forms a monolayer of surface charge that shields

the electric field from the liquid; thus, Go = EEo. Subjected to a tangential electric field, common

interfacial ions migrate relative to the liquid at a rate that is negligible compared to that due to

convection. A good model pictures the charge as frozen to the liquid interface. What are the modes
of motion characterizing the adjustment of the inter-
face to a perturbation field?

Because the fluids to either side of the inter-
face have uniform permittivities and no free charge
density, the electromechanical coupling is confined
to the interface. In the following, it is assumed 1E. +
that the depth of the liquid and the distance to the

upper electrode from the interface are large compared ------ . - -- 9-

to typical perturbation wavelengths on the interface.

Static Equilibrium: With *the interface flat and Fig. 8.16.1. Cross section of liquid-air inter-
v = 0, the electric field is face supporting surface charge density

oo . Charges are modeled as frozen to
= Eoix x; x > 0 the liquid.

=E 0o (1)
0 "; x < 0

and the pressure balances the gravitational force density in the liquid with a jump at the interface to
equilibrate the surface force density coE2/2:

00

x> 0
= 1-xx 

1 2
pgPx + - E E - ; x< 0

2 oo

Sec. 8.15 & 8.16 8.54



Bulk Perturbations: With the perturbation electric field represented by 4 = -VO, the flux-potential
relations describe the fields in the bulk regions. Application of Eqs. (a) from Table 2.16.1 in the
limit (kA) - O gives

ed = kOd; e = e-ke (3)
x x

for the regions above and below the interface respectively. Because the system is invariant to rotation
about the x axis, there is no loss in generality if perturbations are taken as independent of z; ' =
Re exp j(wt - ky).

For the half-space of liguid. the mechanical perturbation stress-velocity relations are given by
Eq. 7.19.19, where yV E kZ + jwp/n,

A YV ^e

ie Ae
Se 'e '(Yv j n ( +k) v - k) n (y + k) vxvY

Jump Conditions: Each of the laws prevailing in the bulk must be consistently represented in the
highly singular neighborhood of the interface. The charge forms a monolayer, but not a double layer,
and hence consistent with the irrotational nature of E is thg condition that its tangential component
is continuous. In writing this condition, note that x = jmC where ' is given in terms of E by Eq. (a)
of Table 7.6.2:

Ad Ae jEo e'd - =--- v (5)W x

The remaining electrical laws are charge conservation, Eq. 23 of Table 2.10.1, and Gauss' law. Together,
these require that

a•- (f) = 0; af = . (6)

To linear terms, Gauss' law and conservation of charge are then represented by

-d Ae) - k ° e = (7)

For the mechanical jump conditions, continuity of the velocity components does not enter because
the contributions of the upper fluid to the stress equilibrium is negligible. Stress equilibrium,
represented by Eq. 7.7.5, includes the normal surface force density due to surface tension, y (given
by Eq. (d) of Table 7.6.2):

Sij n + Te nj - y(V*.)ni = 0 (8)

Physically, the x component of this expression represents (to linear terms) the balance of stresses
normal to the distorted interface. Note that the total normal stress, Sxx , is the .sum of an equilibrium
part and the perturbation:

S = + EEE 2 + pgx + Re SS (x) exp j(Jt - ky) (9)xx 2 0o xx

Thus, because E = Ox/jw, the x component of Eq. 8 is

^e ^e

x ,d 2 x
-S - pg + EoEoe - k2y -= 0 (10)xx j oox

What is new is the shearing component, the y component, of Eq. 8. In linearizing this expression,
remember that S also has an equilibrium part. Above the interface, it is -TI, while below the inter-
face it is -TI + £ oE0 2 + pgx (Eq. 2). Thus, to linear terms, I Syy ny [-TI - (-TI + ½ £oE 2 ) (-'a/y)
an -hi-. oAAa -p ne nAf the +wa terms resultin from the elecri,. str•ss conntributio-n Abl. = 1

so the shearing component of the stress equilibrium reduces to Y

Se- E2 x + jEo E kd = 0 (11)
yx oo W 00
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Dispersion Equation: By using Eqs. 3, the components (e ,ex) can be eliminated from the electric
jump conditions, Eqs. 5 and 7, and these solved for ýd

-jE Eo +e ve
sd= o x o y (12)

SX= 
W(Eo + ) (12)

E

This expresses the effect of the mechanics on the fields.

The self-consistent electromechanics is now represented by the two stress conditions, Eqs. 10 and
11, written in terms of the velocity amplitudes ( ). The strs amplitudes are elimited in favor
of these variables using Eqs. 4, while eis written in terms of 4 by using Eq. 3a, and $ in turn
eliminated using Eq. 12. Thus, the two expressions are

jEkE
2

o o e
0

E
W U + )E:

w8 +
W (1 + v

0v- 0-
l1 (13)

0jn (y V - k) -(V j + k) + l~e
L(l + -)(1 + 7-- )

- 1 0- 0-

Physical insights are more easily obtained by adding j times Eq. 13b to Eq. 13a, and writing both equa-
tions (each multiplied by w) in terms of the variables ex and (-_x + jz). Use is made of the defini-
tions ao = EEn and y; E k2~' v v

+ jwp/n:

e
+ 4akw - j(pg + k2y) + je kE2 [-2rikW] 0

x
(14)

kE E2
-e _e

[2jnkw] jn (YV + k)w + - -vx 0+jvySy1+ 6-
F_

0

The dispersion equation is obtained by setting either the determinant of the coefficients from Eq. 13

or from Eq. 14 equal to zero. But, written in the second form, it is clear that as the viscosity

approaches zero, two modes can be distinguished. These have limiting dispersion equations given by

setting the diagonal terms to zero. The frequencies resulting from the upper left and lower right

terms, respectively, are then

(= 2nk 2 ± w aJ k (pg + k2y ke E2  - 2nk2 2 (15)W =J + ) 0 ; o+ k (- 1 )

.r. 12/3
U c +  (16)

The modes can be distinguished in this way only if the frequencies given by Eqs. 15 and 16 are dis-

parate. In general, the higher order dispersion equation must be solved.

^e ^e
When Eq. 15 is satisfied, Eq. 14 shows that v jv , and similarly, if Eq. 16 holds, then the

vertical motions are dominated by the horizontal ones, Ox  0. Thus, the dispersion equation (Eq. 15)

is identified with gravity-capillary like waves coupled to an electric field in much the same way as

discussed in the latter part of Sec. 8.10.

The main effect of viscosity on the gravity-capillary modes is damping, represented by the imagi-

nary term in Eq. 15. Perhaps a surprising feature of these modes in this low-viscosity limit is that

the electric field has the same destabilizing effect as if the interface were perfectly conducting. For

example, the condition for incipient instability is the same as given by Eq. 8.10.21, even though that

result was derived for an equipotential interface. In this low-viscosity limit, the surface charge on

the insulating interface is convected sufficiently rapidly to maintain the interfacial potential con-

stant.

The electromechanical oscillations or shear waves, represented by Eq. 16, involve interfacial

dilatations. If an interfacial region is horizontally compressed, self-fields give rise to horizontal
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electric repulsion forces, much as if there were an elastic film on the interface. Because this elec-
trical "film" is coupled to the inertia of the liquid below through the viscous shear stress, an initial
horizontal dilatation of the interface results in oscillations. The oscillations are highly damped
because the electrical "spring" is coupled to the "mass" only through the viscous "damper." The fre-
quency Wc typifies how rapidly nonuniformities in a charged interface can adjust, so that the interface
is free of electrical shear stress. The motion stops when the interface is an equipotential.

SMOOTHLY INHOMOGENEOUS SYSTEMS AND THEIR INTERNAL MODES

8.17 Frozen Mass and Charge Density Transfer Relations

A static EQS equilibrium with mass density Po(x) and charge density qo(x) continuously varying with
vertical position is shown in Fig. 8.17.1. The equilibrium vertical gravitational and electrical force
densities are balanced by a vertical gradient in pressure. It is the objective in this section to
describe small amplitude perturbations from this equilibrium.

The mass density and charge density are conserved by a fluid element of fixed identity,

Dp
D Dt 0; Dt = 0D

The fluid has uniform permittivity e and it is inviscid.

'''; ·.. :::.:.; : · : .
Fig. 8.17.1

Planar layer of fluid with vertical

q(x) E (x) x) inhomogeneities in mass and charge
. densities.

q---/100).0..... ..

~-~3C(

It will be recognized that this system is a generalization of the piecewise homogeneous systems

considered in Secs. 8.9 and 8.14. In principle, any distribution of po(x) and go(x) could be approxi-

mated by "stair-steps" representing stratified layers, with uniform densities, as illustrated in

layers might then be used to represent the
the homogeneous 

Fig. 8.17.2. The transfer relations for 

approximated system. With each interface goes a pair of modes, so

that the piecewise homogeneous approximation represents the dynam-

ics in terms of twice as many modes as interfaces. In the limit
of a smooth distribution, an infinite number of modes are brought
into play. Hence, it should come as no surprise that associated
with the smoothly distributed inhomogeneities are an infinite
number of "internal" modes. The objective in this and the next
sections is to explore an approach that is an alternative to the
piecewise homogeneous models.

In manipulations ......-----------
that follow, remember that Po, qo and Eo

are functions of x. By Gauss' law, DEO = qo/e, Where d( )/dx E
D( ). Thus, in terms of complex amplitudes and E Qx/jw, Eqs. 1 Fig. 8.17.2. Stair-step approxi-
relate perturbations in mass and charge density to the deformation mation to smooth inhomo-

geneity in po(x) or q0 (x).
S-(Dp o ) ; A = -(q

The additional statements represent force balance, mass conservation, that the electric field is irrota-
tionalAand Gauss' law. These are unraveled so as to obtain four first-order differential equations in

The z-component of the force equation can be solved for Oz to obtain

a ~k
z wp0

where the perturbation electric field A = -VO and # E p + qo0. Thus, the continuity equation, V.- = 0,

7
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requires that

kgk 2

W z 2po

In view of Eqs. 2, the x component of the force equation requires that

Dl= (w2 po - EoDq 0 + gDpo)t + (Dq 0) (5)

where x is replaced by -DO and p represented in terms of ft. That 1 is irrotational is also explicitly
stated,

DO =- I (6)

Finally, Gauss' law, together with Eq. 2b, gives

D(EAxx ) = + jkee z =-Dqog - k 2EO (7)

Given the amplitudes ( •,p ,B,e) at the lower extremity of the layer (say x = 0), these last four
equations can be numerically integrated and the amplitudes evaluated at the upper extremity. Thus the
relations

*ce = Bij I (8)

xe XIx

are obtained. For example, to compute the Bij's, the equations are integrated with ( ,p ,' ,e•) =
(1,0,0,0). Then, (B11 ,B1 2 ,B1 3 ,B14) are the computed values of (Xfa, O,Eea), respectively. x

Transfer relations in the form

~ftc

= Icij I (9)
ActCe C$a
x

Ce
xX

follow by manipulating Eqs. 8. With the 4x4 matrix Cij divided into four 2x2 submatrices, transduction
between electrical and mechanical surface variables is represented by the upper right and lower left
submatrices. In the absence of coupling (say, with qo = 0), these entries should vanish. In this same
limit, the upper left submatrix relates the pressure to the velocity amplitudes and these relations play
the role of those derived in Sec. 7.9. Of course, here the layer has a nonuniform equilibrium mass den-
sity. Also in this limit, the lower right matrix relates the electric perturbation flux to the poten-
tials. Because the layer has uniform electrical properties, these should become the same as the 2x2
entries in relations given by Eq. (a) of Table 2.16.1.

An alternative way of expressing Eqs. 4-7 results from combining the first three of these ex-
pressions to obtain

A 2 N kDqo
D(poD0) + k2 - Po2 2 0 (10)

where N/ EoDqo - gDpo and the last two to obtain

2 2 Dqo&
(D - k )= E (11)

This pair of second-order expressions can be used to determine (E,O) and the remaining pair of vari-
ables (9,eFx) then evaluated using Eqs. 4 and 6. The first of these expressions represents force equi-
librium between the inertial force density and the gravitational and electric force densities. The
"imposed-field" electric force density is on the right. The second expression is Poisson's equation.
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On the right is the perturbation space charge generated by the convection of the nonuniform equilibrium
charge density.

The driven response, spatial modes and temporal modes are illustrated in Sec. 8.18.

Weak-Gradient Imposed Field Model: Two approximations make it possible to obtain analytical ex-
pressions for the Cij. First, the mass and charge densities are taken as being linear functions of x.
Hence,

Po = m + (Dpm)x; qo = qe + (Dqe)x (12)

where pm,Dp ,qe and Dq, are constants and neither po nor qo departs greatly from a mean value. Then,
Eqs. 10 and 11 are approximated by

D2+ 2 2- 2 2 
A =; - ( - 1)k2 (13)

0 m m W
2 2 Dq e

(D ) (14)

Secondly, the field E0 is regarded as largely imposed by means of external sources. Then, not
only is E0 approximated by a constant, but the coupling between fluid and field, represented by the
terms on the right in Eqs. 13 and 14, is relatively weak. This breaks the electromechanical feedback
loop.

First, to determine the mechanical response, the effect of the motion on the charge distribution
is ignored in determining the potential distribution. With the term on the right in Eq. 14 set to
zero,

S• sinh(kx) _ ~ sinh k(x-6) (15)
sinh(kA) sinh(kA)

This potential is used as a "drive" to evaluate the right-hand side of Eq. 13. By inspection, the
solution satisfying the boundary conditions that C is Co and V at the respective planes is

a 2 ^"a F 2  1

[ 
k2qa D e sin(yx) + k Dq• sin y(x-A)

2Pm(k2+y )J sin(A) +  + 2 2 sin(yA)

(16)
k2Dqe a sinh(kx) _ $B sinh k(x - tA)

S2 +(k2 2 sinh(kA) sinh(kA)

To find the approximate electrical response, the procedure is reversed. Given that ( is ( and 5
at the respective planes, solution of Eq. 13 with the term on the right ignored gives

=a sin(yx) _ - sin y(x - ) (17)
sin(yA) sin(yA)

In turn, the solution of Eq. 14 is

a Dqe sinh(kx) Dqe 1 sin k(x - A)
+ S y k2 - L-+kkj+s sin(yA)sinh(kA) 2+ + k2 + 

Dqe a sin(yx) _ sin y(x - (18)

2 + k2  
(18)

sin(yA) sin(yA) 

where coefficients are determined by inspection so that the boundary conditions on 0 are satisfied at
the respective planes. The covariables (*,Eg ) follow from Eqs. 4 and 6 and are evaluated at the
respective boundaries to give the transfer refations, Eqs. 9, with
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C1 = -C22 2  cot(yA)

m2Pm

C = -C =
21 12 2

k sin(yA)

Dq
C e
1 3 = -C24 = -C31 42 2 2 [k coth(kA) - y cot(yA)]

k +y
Dq [ yk ] (19)

14 23 32 41 k2  2  sin(yA) sinh(kA)

C33 = -C = -sk coth(kA)'

Ek
C = - = k
34 43 sinh(kA)

Although the weak coupling approximation is sufficient to give the mechanical response to an elec-
trical drive or the electrical response to a mechanical drive, the electrical-to-electrical response,
represented by C3 3 , C3 4 , C4 3 and C4 4 is devoid of any of the electromechanics. Electromechanical
effects on the transfer between electrical signals depend on there being a "two-way" interaction.

Reciprocity and Energy Conservation: That some coefficients, Cj, in the transfer matrix have
equal magnitudes suggests that basic relations exist between off-diagonal coefficients even with arbi-
trary gradients and fields. The frozen charge model is free of dissipation and allows for energy

storage in electrical, kinetic and gravitational forms. With variables as defined in Eq. 9, this re-
quires that the submatrix representing the hybrid pressure responses to electrical excitations is the

negative of that representing the electrical flux responses to mechanical deformations. It also re-
quires that mutual electrical and mutual mechanical coefficients are respectively negatives. The proof
is a generalization of that developed in Sec. 2.17 for a region storing only electric energy.

Incremental changes in the total electrical, kinetic and gravitational energy stored by a system

having volume V enclosed by a surface S are respectively

w = p dV - 6Dnda (20)
e S

6sk = IfVf.6tdV - fsp6-*.da + fvpg.6ýdV (21)

6w = f (---)6pdV (22)

The electrical contribution is familiar from Sec. 2.13 (Eq. 2.13.4). The kinetic statement exploits

Newton's law and the incompressibility condition to state that all work done by the electrical, mechan-

ical and gravitational subsystems goes into the creation of kinetic energy (Eq. 7.17.3). The gravita-

tional energy storage is familiar as a specialized analogue of the electric one. The scale is small

enough that gravitational self-fields are neglected and g is constant. Thus, by contrast with the

potential 4 for the electrical system, the gravitational potential is "imposed" and is simply -g.r.

Charge migration is negligible, so the charge carried by fluid of fixed identity is conserved.

Because V.6r = 0, it follows (from Eq. 3.7.5 with ci - q) that

6q = -Vq.-6 (23)

Similarly, the mass density of fluid of fixed identity is conserved,

6p = -Vp.~ (24)

These expressions are now used in writing the sum of Eqs. 20-22 as

6 (we + wk + wg) = - f da - p6*da - J(Vq + qVb), 6dV

S S (25)

-S JV[pV(-.) + (-e..)Vp].6dV
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The where use has also been made of the relations E = -VD and = V(J-2). volume integrals are con-

verted to surface integrals by first using a vector identity to contract the integrands [OV+YV4=•=V(TYb)]

and then exploiting the fact that V.6 = 0 to make the integrands take the form of perfect divergences

(VT.- = V.A - A.lY). From Gauss' theorem, it follows that

6 (we +wk +wg) = - 6 da - [p + cq + (-j.?)p]6 .Ada (26)

S S

The desired reciprocity relations are between perturbation quantities, now designated by primes to
distinguish them from the zero-subscripted equilibrium variables. Thus, incremental changes 6M*$ and
6V*A on S lead to changes in the total energy given by Eq. 26 expressed up to quadratic terms in the
perturbations as

6 (we +wk + wg) = - 0 6 0  da - (0 6•' + V'60 + V'D')*.da

(27)

S[p + + o + (- p o]6t'da - o (- )p']6'da- [po + 

The surface S is now made one enclosing a section of the planar layer shown in Fig. 8.17.1 that
has the wavelengths 2r/ky and 2T/kz in the y and z-directions, respectively. Because ýo is x-directed,
the first term makes contributions only on the a and B surfaces. Perturbations are assumed to take the
complex-amplitude form E = Reý exp(-jky - jkzz), where ky and kz are real. The spatial periodicity in

the y and z dir&ctions insures that contributions to the surface integrations from the second and third

terms only come from the a and 8 surfaces. Moreover, because the integrands of these terms are linear
in the perturbation quantities, they "average out" and make no contribution. The quadratic perturbation
terms from the last intergral, which are also periodic and hence make contributions only on tfe a and 8
surfaces, can be represented using the space-average theorem, Eq. 2.15.14:

6(w + wk + w ) = -(O6DO - - 1 Re(c 6(D)- 6(D ) ]
e k g o xo o xo 2 x x

- -a- - Re q 1 B*] (28)

_ _ -, _~B,," 1 Re(--.)[ p(* - 6 (
- Re[q 6(i )* q- • B( *] - *Re(- r)[ ( -6 

With the understanding that the incremental variations are made with the equilibrium potentials o0
held fixed on the transverse boundaries, the first terms on the right become perfect differentials,

60o0Dxo + (4oDxo), so these equilibrium terms are moved to the left side of the equation.

In the remaining terms, it is now assumed that all complex amplitudes are real. It is entirely

possible to ~rogeed w thout making this assumption by treating the real and imaginary parts of the

variables (ý P, j,,P ) as independent. However, there is little to be learned from this generalization
2 because it is obvious from Eqs. 4-7 (which, provided w is real, have real coefficients) that the co-

efficients Cii are real. Hence, given that the amplitudes ( O,,VJcOi,) are real, the amplitudes of the

conjugate variables are clearly real.

In the forth and sixth terms of Eq. 28, Eqs. 2 are used to substitute

5  = -0 Sj6Dq 6 2 )  z 6( o•Dqo (29)

2(-_=-)i 6 -_(-_ )Dpo - 16(-_.1))Dp Z ] (30)

respectively. The second equalities are based on recognition that if variations in the Z's and Dx's

result in variations of Dqo or DPo, the latter can be neglected, because the terms in which they appear

are already quadratic in the perturbations. With the substitution of Eqs. 29 and 30, the fourth and

sixth terms also become perfect differentials and are therefgre moved to the left side of Eq. 28.
Finally, in the second term on the right the 06Dx = 6(Dx) - Dxf 6transformation is made and the perfect
differential moved to the left-hand side. Thus, the energy statement becomes

8.61 Sec. 8.17



6w' -l I= (-a ) + I.(B6ai_ B061B) (31)

where

e k g 2 x X 4 0 0 0w' ~ we k g e ( a g - - q ( )2

1- (- [Dp a2 - Dp B()2] + -a )
4 o xo o xo

and

Now, with the assumption that w' is a state function w'I(X,c,',aa8), the incremental change 6w'
can also be written as

6w' = w. 6 + -w' 6 + w. ia + w' 60 (32)

Because the variables (Z ,Z ,a,8) are independent, it follows from Eqs. 31 and 32 that corresponding
coefficients must be equal:

T = -2 --- ; IT = 2 a(33)

b = 2 ; = -2Ž (34)x ail x 810

The reciprocity relations follow by taking cross-derivatives of these relations. For example, in view
of Eqs. 33a and 34b together with Eq. 9,

3ia aDb
- C14 = C41 (35)

Thus, if Cij is broken into four 2x2 matrices K, L, M and N such that

C =[K M L] N(36)

where K and N are each antisymmetric and L is the negative of M.

The next section exemplifies the implications of the transfer relations, both found by numerical
integration and approximated by the weak-gradient imposed-field model.

8.18 Internal Waves and Instabilities

The frozen charge and mass density transfer relations derived in Sec. 8.17 are now applied to the
study of space-charge gravity waves excited in the sinusoidal steady state from transverse boundaries.
Also discussed are the temporal and spatial modes. Instability conditions are exemplified and a general
proof given that the principle of exchange of stabilities is satisfied. With the objective of both
gaining physical insight for this type of dynamics and for ways in which it can be represented, two
models are developed and compared. First, the weak-gradient imposed-field approximation of Sec. 8.17
is used to obtain an analytical representation of the response. Then, as a recourse that is applicable
for an arbitrary distribution of charge and mass density, numerical integration is used to determine
the response. Because one of these representations depends on numerical procedures, it is convenient
to normalize variables "at the outset.

Configuration: The stratified layer shown in Fig. 8.18.1 is bounded from above by fixed excita-

tion electrodes upon which a spatially and temporally periodic potential is imposed. From below, it
is bounded by a conducting rigid electrode, essentially constrained in potential to the constant equi-
librium value Vo .

Normalization: To be specific about the distributions in charge and mass density, they are taken
as linear and written in terms of the constants defined in Fig. 8.18.1:
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In terms of these quantities, variables are normalized such that

x = xd

k = k/d = ;IDqell 0vld
S= (dIV

2 2 VolDqel
pdm

ii - lo d = •x = d lDqId
x x -x e

For other equilibrium distributions, the same normalization could be used with the quantities Pm and

IDqel defined as mean values.

From the one-dimensional form of Gauss' law and the equilibrium potential boundary conditions, the
equilibrium distribution of electric field is written in terms of the normalized variables as

Vo Vo e 1 1 Dqe 2 1
0o d TV0o 2j7 - 3

where SE .qel d2/ElVo represents the influence of the space charge on the imposed field.

Driven Response: Boundary conditions reflect electrode constraints on the normal motion of the

fluid and on the potential:

a ,b ,a ,b = [0,0,V,0]

Given the electrical excitation at the upper boundary, what is the mechanical and electrical
response of the fluid, and in particular, what perturbation pressure and normal electric field would
be expected on instruments embedded in the lower electrode? These follow from Eq. 8.17.9 as

^b
fb dx
^ C23; ^ 43

V V

In the weak-gradient imposed-field approximation, it is possible to evaluate the C 's by using
Eqs. 8.17.19. Thus normalized, Eq. 3 becomes

^b C- 2 3  -1 k
C

S 23 dDq k2 + y2 sin y sinh kV

^b
d C4 3 1Vo_ -1 kC43- Dqe d2 sinh k
9
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Tvd

Fig. 8.18.2. Driven response of charged layer showing prediction of weak-gradient
imposed-field model (broken line) for comparison with numerically determined
response (solid line). The response below w = 0.08 is not shown because it dis-
plays an infinite number of resonances crowded toward the origin. In both cases,
k = 1 and Yo and kqe are both positive or both negative so that equilibrium is
stable. The solid numerically predicted curves are for Dqe/qe = 1 and S = 1.
(a) Hybrid pressure response at lower electrode as a function of frequency for
electrical excitation at upper electrode. (b) Electric flux at lower electrode.
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where

YE k +-] 1-1 -d (8)

The upper sign applies if Vo and Dqe are both positive or both negative. The lower sign is to be
used if Vo and Dqe have opposite signs.

The weak-gradient imposed-field driven responses are illustrated as a function of frequency in
Fig. 8.18.2. Because of approximations inherent to this model, the electrical-to-electrical response
is no more than that of the layer without the charged fluid. This result will be refined to include
the electromechanical effects shortly. The resonances in the hybred pressure response that dominate
the picture reflect the electromechanical coupling. In this loss-free system, they serve notice that
the natural frequencies of the stable temporal modes are real and that there are an infinite number
of spatial modes having real wave numbers. The conditions for the resonances follow from Eq. 6:

sin y = 0 = y = nrr,n = 1,2,..* (9)

Thus, the resonance frequencies are found by evaluating y in Eq. 8 and solving for w,

V

2 k 2 /V Dq - gDPm
W 2 ; N= Voe m (10)

k + (nr) IDq
d Dqe

The associated distributions, E(x), in the neighborhood of a resonance follow from Eq. 8.17.17 as
being sin(nrx). These are pictured by the broken curves of Fig. 8.18.3. Implicit to the discussion
thus far is the presumption that N> a.

Fig. 8.18.3

Ix Vertical displacement of fluid as
a function of vertical position.
Response is shown in the neighbor-
hood of first and second resonances,
and hence represents first and sec-
ond temporal eigenmodes. Solid
curves are predicted numerically
using parameters of Fig. 8.18.2,
while broken curves are weak-
gradient imposed-field approxi-
mation.

Consider now the more general approach of numerically integrating Eqs. 8.17.4-7 to find the
transfer relations. Normalized, these equations are

k2
DC = k2 (11)W P0

2  = (w Dqo
D = (p -N) +_ 

o }EDq (12)(2
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nD = -. d
x (13)

Dqo 1 2
Dd = - Dq - 1 (14)Jx DqeI e 5

These expressions are applicable with arbitrary charge and mass distributions. For the specific line
distributions, po is given by Eq. 2, Dqo = Dqe and

o 
f 

Dqe Sre 1 1 2 11 Dqe gdDpm
+ IDq S l (x-2) + (x -3) q - o (15)

The coefficients required to evaluate the responses, Eqs. 3, follow by converting the transfer
relations of Eq. 8.17.8 to those of Eq. 8.17.9. The coefficients needed here are

C23 = -B14 /D; C43 = B12/D; 2 D B12B34  B1 4B32 (16)

Coefficients in the transfer relations have been normalized so that Sij and Bij relate normalized ver
ables. The Bi 's are determined by numerical integration of Eqs. 11-1i following the procedure indic
following Eq. A.17.8. (Numerical integration of systems of first-order differential equations writte
in the form of Eqs. 11-14 is conveniently carried out using standard library subroutines. Used here 
the IMSLIB Routine DVERK.)

For purposes of comparison, the numerically determined frequency responses are shown with those
predicted by the weak-gradient imposed-field model in Fig. 8.18.2. For the numerical case shown,
Dqe/qe = 1 and S = 1, so both the weak-gradient and the imposed-field approximations are somewhat in-
valid. Note that the electrical-to-electrical response now displays the characteristic resonances of
the internal waves. The numerically determined mechanical displacement and potential distributions w
the frequency in the neighborhood of the first and of the second resonances are shown in Fig. 8.18.3.

Spatial Modes: Still in the sinusoidal steady state, these modes satisfy homogeneous transverse
boundary conditions and are needed to make the total solution obey longitudinal boundary conditions.
(Spatial modes are introduced in Sec. 5.17.) For example, what is the response to a drive at some
z plane with the duct walls free of excitations?

From the weak-gradient imposed-field driven response of Eq. 6, the dispersion equation is
D(w,k) = sin Y = 0. This has roots that are the same as for the resonance conditions, Eq. 10. Here,
however, interest is in complex k for a real driving frequency w,

naw
k =+ nrw (17)

Under the assumption once again that N/V > 0, the dispersion equation is typified by Fig. 8.18.4. Note
that all modes have the same cut-off frequency . = 1. With ) < 1, all modes are propagating, whereas
with w > 1, all modes are evanescent.

The resonances below w = 1 in the driven frequency response, Fig. 8.18.2, result from a coinci-
dence of the imposed wave number and the purely real wave number of the propagating spatial modes.

Temporal Modes: When t = 0, initial conditions are spatially periodic in the z direction, with
wave number k. What modes are to be superimposed in representing the ensuing transient? (Temporal
modes are introduced in Sec. 5.15.)

A mode En(x) has the eigenfrequency jin E sn. Without being specific as to the charge and den-
sity distributions, it can be deduced from Eqs. 8.17.10 and 8.17.11 together with the boundary con-
ditions that these eigenfKequencies are either purely real or purely imaginary so sn is real. Equati
8.17.10 is multiplied by En and integrated over the cross section. The first term is then integrated
by parts to obtain

*^ d d ^
* d2 N /  I

* d Dqon
2  

po nDn o poD nD ndx - k (p + -) n dx = -k 2 dx (18)
0 n n ] o o n o0 o f o s 2n n

Similarly, the complex conjugate of Eq. 8.17.11 is multiplied by k2E0n and integrated over the cross
section. Again, the first term is integrated by parts to obtain

2 ADA* d 2 .d •A )d 4. fd A * 2 
k 

A*^

n Do ] -k28 Dn (DO ) dx - k o dx = k Dq 0 4 dx (19)n no o n o n n 0 o o n n
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n=2

I Fig. 8.18.4
f

Complex normalized frequency as

W function of real longitudinal

n=3 wave number for spatial modes in
weak-gradient imposed-field ap-
proximation. Wr - , wi ....
All modes have common asymptotic
frequency at w = 1, above which
they are evanescent.

O 2 4 6 8
k-----

The point of these manipulations is to obtain positive definite integrands anq to make the right-hand
sides of these expressions negatives. Because of the boundary conditions on En and On, the terms
evaluated on the boundaries vanish. Thus, the last two expressions give

dd 22 d(IPDn2 + pk 2 2 2 2  2
n p- In 2) dx = - a 2 0 / fNjn + Fc(IID• + k )]dx (20)

n
2

This expression can be solved for the square of the eigenfrequency, Sn,

-k2[ d n 2 (D•* " *
A+ - k2 ) ]dx

s2 o (21)Jd[po(IDn I + k n I)dx

2
Terms on the right are real, and it thereforR follows that sn is real. Moreover, because terms in the
denominator are positive definite, as is k21n,12 in the numerator, it is clear that if /N is everywhere
positive, the eigenmodes are all stable:

N- EDq0 - gDp > 0 (22)

Similarly, if /V is everywhere negative, the eigenmodes have an exponential dependence, half of them
decaying and half of them growing in time.

Using the weak inhomogeneity imposed-field approximations, the eigenfrequencies follow from
Eq. 10 where this time k is a given real number. These are shown as a function of k in Fig. 8.18.5.
ccording to this model, in the unstable configuration ( A/< 0) the n = 1 mode is the most rapidly
growing.

It is worthwhile to make a comparative study of the discretely and smoothly stratified charge
layers. The condition of Eq. 22 plays a role relative to the smoothly inhomogeneous system that is
played by Eq. 8.14.25 for the piecewise homogeneous system of Sec. 8.14.
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Fig. 8.18.5

±wn(N>0) Weak-gradient imposed-field eigenfre-
quencies of temporal modes as a func-

± s(N< 0)1 tion of wave number. For N> 0, all
modes are stable and purely oscilla-
tory. For N< 0, they are either
exponentially growing or decaying
with time.

0 2 4. 6
k -
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Problems for Chapter 8

For Section 8.3:

Prob. 8.3.1 A pair of electrodes is constructed from thin sheets separated by a thin sheet of insula-
tor. This dielectric "sandwich" is dipped into an insulating liquid having the polarization constitu-
tive law

4.
E

+ ED = 2 + E

where a and a are constant parameters. The objective here is to describe the rise of the dielectric
liquid around the outside edges of the electrodes, where there is a strong surrounding fringing field.
Assume that the applied voltage is alternating at a sufficiently high frequency so that free charge
effects are absent and effects of the time-varying part of the electric stress are "ironed out" by
the fluid viscosity and inertia. view
(a( Determine the electric field in the Top Side view

neighborhood of one of the edges under
the assumption that the dielectric rises
in an axisymmetric fashion (E = a(r), with
r as defined in Fig. P8.3.1). The right
and left edges of the electrodes (see
the side view in the figure) are suffi-
ciently far apart so that they can be
considered not to influence each other.

b(~ ) ind ((r)_
Fig. P8.3.1

Prob. 8.3.2 An insulating liquid is represented by the
constitutive law

DI = coNEI + al tanh a2IEI

where D and E are collinear and a1 and a, are properties of the fluid. The liquid is placed in a dish
as shown in Fig. P8.3.2. Shaped electrodes are dipped into the liquid and held at a potential differ-
ence Vo . The variable spacing s(z) between the electrodes is small compared to the electrode dimensions
in the x and z directions, so the electric field can be taken as essentially in the y direction. With
the application of the field, the liquid reaches a static
-. e 41i Ut&f 4 Irfile ((4 ) Fnd& - fan ressin fnr ((z) -

For Section 8.4:

Prob. 8.4.1 The configuration of Fig. 8.4.4 is altered
by replacing the magnet with a periodic distribution of
magnets. These constrain the normal magnetic flux density
in the plane x = d to be Bo cos ky. As in the example
treated, ignore effects of the self fields and of surface
tension. Assume that E = 1 at y = 0.

(a) Show that an implicit expression for E(y) is

JB
k(EC0) e-k(E-o) = ek(d-

)  oJ sin kyg(pbasinky
0,,~ ~~ g-(-,=~~-~ 

(b) Make sketches of the left side of this expression (as
a function of (E=Eo) and the right side of the expression
(as a function of ky) and describe in graphical terms how you would find (5-5o) as a function of y.
What is the significance of there being two solutions for E-Co or none at all? For what value of
JoBo-would you expect the static equilibrium to be unstable?

Prob. 8.4.2 In the configuration of Fig. 8.4.1, the lower fluid is a perfectly conducting liquid
<< while the upper one is an insulating gas (P P ). Surface deformations have a very long character-

istic length in the y direction compared toad-E, so that the electric field normal to the interface in
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Prob. 8.4.2 (continued)

the gas can be approximated as the voltage divided by the spacing d-E.

(a) Show that for a given V(y) static deformations of the interface are described by

dy dy T + 0 (d_-)2 - pg((-b) = 0

where E = b at a location where V=0.

(b) Now consider the application of this equation to the special case shown in Fig. P8.4.2.
The plane horizontal electrode is of
uniform potential V. An infinite
pool of liquid to the left communi-
cates liquid to the region below the
electrode. In the fringing region,
the interface is covered by a flat
electrode. At y=0 the sharp edge
of the electrode constrains the
interface to have depth E=b. The
field elevates the interface to the
height Eo as y-+. For small ampli- :b': :.. . . . - .-
tudes g-b, determine t(y).

(c) Show that for arbitrary deformations,
the interfacial position is given Fig. P8.4.2
implicitly by the integral

e V 2

d( ; P(5) E ½ •Y- 9 (-b) 2

)]2_lo)_p(o /[1+P(a 

b

.For Section 8.6:

Prob. 8.6.1 In Prob. 7.9.2, the transfer relations are found for an annular region of fluid that is
perturbed from an equilibrium in which it suffers a rigid-body rotation of angular velocity 0 about the
z axis. Based upon those results, consider now the dynamics of fluid completely filling a container
having radius R (there is no inner cylindrical region).

(a) Find the eigenfrequencies of the temporal modes having wavenumber k but m = 0.

(b) Rigid walls cap the cylinder at z = 0 and z = k. What are the natural frequencies of the temporal
modes m = 0 for this enclosed system?

For Section 8.7:

Prob. 8.7.1 Show that in the limit where times of interest are long compared to the relaxation time
e/a, Eq. 8.7.6 reduces to the linearized form of DO/Dt = 0.

Prob. 8.7.2 A magnetoquasistatic continuum conserves the free current linking any surface of fixed
identity

J * = nda 0

Show that the appropriate equations for an incompressible fluid are

V v = 0

8J
af -+
t Vx(v x Jf) = 0
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Prob. 8.7.2 (continued)

P + Vp = Jx - + nV v

V x H = Jf ; V Jf = 0

where Faraday's law is used only if the electric field is required.

Prob. 8.7.3 As a particular example of the current-conserving continua from Prob. 8.7.2, the config-
uration shown in Fig. P8.7.3 consists of a layer of fluid having essentially zero conductivity in the
y and z directions compared to that in the x direction.
The walls are composed of segments, each constrained to

t. h L L iU.U illb 40
s

curren cons ant 

a uniform current density J ix throughout and an imposed

magnetic fi~d is Bo

fluid 
induced 

moves, 
by Jf 

the 

inegligible x . Assume compared that the to magnetic Bo. As field
current through any given open 

the
surface

of fixed identity remains constant.

The fluid has the electrical nature of conducting
"wires" insulated from each other and stretched in the
x direction. The "wires" deform with the fluid, and

_.LLL.JJJ LLIr J JJJ.L
might actually consist of conducting fluid columns in
an insulating fluid having the same mechanical properties.

1

Fig. P8.7.3
(a) Assume that motions and field depend only on (x,t) and

show that the equations formed in Prob. 8.7.2 are satisfied by solutions of the form

v = (,t)i + v (x,t)i and J = J i + Jy (x,t)i + J (x,t)iy y v ti J Jiox ztia 

where

aJ av
y j = 0

at o x

aJ 3v
z J- z = 0

at o ax

v a 2
P = B J + n y

t z ax2

2vv zz  
t o y ax2

(b) Describe how you would establish transfer relations for the layer, given that the surface variables
are the velocities and the shear stresses. Show that in the limit where there is no electromechan-
ical coupling, Bo = 0, there is no coupling between the y directed motions and the z directed
motions.

(c) As a specific example, rigid boundaries are imposed at x = 0 and x = Z. Find the eigenfrequencies
of the resulting temporal modes.

Prob. 8.7.4 A spherical particle is impact-charged to saturation so that its mobility is given by
Eq. (a) of Table 5.2.1. It is pulled through a fluid by the same electric field used to achieve this
saturation charging. Show that the electroviscous time based on this field and the fluid viscosity
is the time required for the particle to move a distance equal to its own diameter.

1. For discussion of the related dynamics of a current conserving "string" in a similar configuration,
see H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part II, John Wiley & Sons, New
York, 1968, p. 627.
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For Section 8.10:

Prob. 8.10.1 A planar layer of insulating liquid having a mass density ps has the equilibrium thick-
ness d. The layer separates infinite half-spaces of perfectly conducting liquid, each half-space having
the same mass density p. The interfaces between insulating and conducting liquids each have a surface
tension y, but ps is sufficiently close to p so that gravity effects can be ignored. Voltage applied
between the conducting fluids results in an electric field in the insulating layer. In static equilib-
rium, this field is E0 . Determine the dispersion equations for kinking and sausage modes on the inter-
faces. Show that in the long-wave limit kd << 1, the effect of the field on the kinking motions is
described by a voltage-dependent surface tension. In this long-wave limit, what is the condition for
incipient instability?

For Section 8.11:

Prob. 8.11.1 A vertical wire carries a current I so that there is a surrounding magnetic field

H = i Ho(R/r), Ho 0  I/2?R

(a) In the absence of gravity, a static equilibrium exists in which a ferrofluid having permeability 1
forms a column of radius R coaxial with the wire. (The equilibrium shown in Fig. 8.3.2b approaches
this circular cylindrical geometry.) Show that conditions for a static equilibrium are satisfied.

(b) Assume that the wire is so thin that its presence has a negligible effect on the fluid mechanics
and on the magnetic field. The ferrofluid has a surface tension Y and a mass density much greater
than that of the surrounding medium. Find the dispersion equation for perturbations from this equi-
librium.

(c) Show that the equilibrium is stable provided the magnetic field is large enough to prevent capillary
instability. How large must Ho be made for the equilibrium to be stable?

(d) To generate a significant magnetic field using an isolated wire requires a substantial current. A
configuration that makes it easy to demonstrate the electromechanics takes advantage of the magnet
from a conventional loudspeaker. A cross section
of such a magnet is shown in Fig. P8.11.1. In
the region above the magnet, the fringing field
has the form HoR/r. Ferrofluid placed over the
gap will form an equilibrium figure that is
roughly hemispherical with radius R. Viewed
from the top, each half-cylindrical segment of
the hemisphere closes on itself with a total
length R. For present purposes, the curvature
introduced by this closure is ignored so that
the axial distance is approximated by z with
the understanding that z = 0 and z = k are
the same position. Effects of surface ten-
sion and gravity are ignored. Argue that Fig. P8.11.1
the m = 0 mode represented by the dispersion
equation from (b) is mechanically and magnetically consistent with this revised configuration.

(e) Show that, in the long-wave limit kR << 1, the m = 0 waves that propagate in the z direction
(around the closed loop of ferrofluid) do so without dispersion. What is the dispersion
equation?

(f) One way to observe these waves exploits the fact that the fluid is closed in the z direction, and
therefore displays resonances. Again using the long-wave approximations, what are the resonant
frequencies? How would you excite these modes?

For Section 8.12:

Prob. 8.12.1 The planar analog of the axial pinch is the
sheet pinch shown in Fig. P8.12.1. A layer of perfectly
conducting fluid (which models a plasma as an incompress-
ible inviscid fluid), is in equilibrium with planar
interfaces at x = + d/2. At distances a to the left and
right of the interfaces are perfectly conducting electrodes
that provide a return path for surface currents which pass
vertically through the fluid interfaces. The equilibrium
magnetic field intensity to right and left is Ho, directed I
as shown. Regions a and b are occupied by fluids having
negligible density.

Fig. P8.12.
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Prob. 8.12.1 (continued)

(a) Determine the equilibrium difference in pressure between the regions a and b and the fluid o.

(b) Show that deflections of the interfaces can be divided into kink modes [ a(y,z,t) = bb(y,z,t)],
and sausage modes [ga(y,z,t) = -_b(y,z,t)].

(c) Show that the dispersion equation for the kink modes is ,with k E k + k2
y z

2
2 k
tanh(d oH2 coth(ka)

k tanh) 0 k

while the dispersion equation for the sausage modes is

2
2 k
- coth( ) = oH2 coth(ka)

(d) Is the equilibrium, as modeled, stable? The same conclusion should follow from both the analytical
results and intuitive arguments.

Prob. 8.12.2 At equilibrium, a perfectly conducting fluid (plasma) occupies the annular region
R < r < a (Fig. P8.12.2.) It is bounded on the outside by a rigid wall at r = a and on the inside by
free space. Coaxial with the annulus is a "perfectly" conducting rod of radius b. Current passing
in the z direction on this inner rod is returned on the plasma interface in the -z direction. Hence,

so long as the interface is in equilibrium, the magnetic field in the free-space annulus b < r < R is

+4 R
H = H -i

or

(a) Define the pressure in the region occupied by the magnetic fielc
as zero. What is the equilibrium pressure II in the plasma?

(b) Find the dispersion equation for small-amplitude perturbations

of the fluid interface. (Write the equation in terms of the

functions F(a, ) and G(a,O).)

(c) Show that the equilibrium is stable.

Prob. 8.12.3 A "perfectly" conducting incompressible inviscid

liquid layer rests on a rigid support at x = -b and has a free
surface at x = E. At a distance a above the equilibrium inter-
f ace ý, =0% I s a t hi n con d uc "s i s ee 4 hd. av 

i1.1 4 ngý u 
f co-nductI-vit

" y
as . This sheet is backed by "infinitely" permeable material.
The sheet and backing move in the y direction with the imposed Fig. P8.12.2
velocity U. With the liquid in static equilibrium, there is a
surface current Kz = -Ho in the conducting sheet that is returned on the interface of the liquid. Thus,

= there is an equilibrium magnetic field intensity I Hot in the gap between liquid and sheet. Include
in the model gravity acting in the -x direction and surface tension. Determine the dispersion equation
for temporal or spatial modes.

Prob. 8.12.4 In the pinch configuration of Fig. 8.12.1, the wall at r=a consists of a thin conducting
shell of surface conductivity os (as described in Sec. 6.3) surrounded by free space.

(a) Find the dispersion equation for the plasma column coupled to this lossy wall.

(b) Suppose that the frequencies of modes have been found under the assumption that the wall is
perfectly conducting. Under what condition would these frequencies be valid for the wall of
finite conductivity?

(c) Now suppose that the wall is very lossy. Show that the dispersion equation reduces to a quadratic
expression in (jw) and show that the wall tends to induce damping.

For Section 8.13:

uni-Prob. 8.13.1 A cylindrical column of liquid, perhaps water, of equilibrium radius R, moves with 

form equilibrium velocity U in the z direction, as shown in.Fig. P8.13.1. A coaxial cylindrical elec-

trode is used to impose a radially symmetric electric field intensity

coth kd - sinh kd tanh ( (7 ) ; coth kd + sinh kd E coth (sinh kd sinh kd - coh 7

8.73 Problems for Chap. 8



Prob. 8.13.1 (contlnued)

+ R
E=E - i

or r

in the region between the electrode and liquid.

Assume that the density of the liquid is large compared to that of
the surrounding gas. Moreover, consider the liquid to have a relaxation
time short compared to any other times of interest, and assume that the
cylindrical electrode is well removed from the surface of the liquid.

(a) Determine the equilibrium pressure jump at the interface.

(b) Show that the dispersion equation is

s E2R

(-kU) 3 [-Rfm (0,R) ] m2 -1+(kR) 2 + E [1-Rf(-,R) ]
pR3  r

by using the transfer relations of Tables 2.16.2 and 7.9.1.

Prob. 8.13.2 A spherical drop of insulating liquid is of radius R and
permittivity S. At its center is a metallic, spherical particle of
radius b < R supporting the charge q. Hence, in equilibrium, the
drop is stressed by a radial electric field.

(a) What is the equilibrium E in the drop (b < r < R) and in the surrounding gas, where the mass
density is considered negligible and E = ?7

(b) Determine the dispersion equation for perturbations from the equilibrium.

(c) What is the maximum q consistent with stability for b << R?

For Section 8.14:

Prob. 8.14.1 For a conducting drop, such as iwater in air, the model of Sec. 8.13, where the drop is
pictured as perfectly condhcting, is appropriate. Here, the drop is pictured as perfectly insulating
with charge distributed uniformly over its volume. The goal is to find the limit on the net drop
charge consistent with stability; i.e., the analogue of Rayleigh's limit. This model is of histor-
ical interest because it was used as a starting point in the formulation of the liquid drop model of
the nucleus.2 In fact, the term in that model from nuclear physics that accounts for fission is moti-
vated by the effect of a uniform charge density. Assume that the drop is uniformly charged, has a net
charge Q but has permittivity equal to that of free space. Find the maximum charge consistent with
stability.

Prob. 8.14.2 Consider the same configuration as developed in this section with the following general
8ization. The fluids in the upper and lower regions have permittivities ea and b respectively.

(a) Write the equilibrium and perturbation bulk and boundary conditions.

(b) Find the dispersion equation and discuss the implications of the terms.

For Section 8.15:

Prob. 8.15.1 This problem is similar to that treated in the section. However, the magnetic field is
imposed and the motions are two-dimensional, so that it is possible to represent the magnetic force
density as the gradient of a scalar. This makes the analysis much simpler. A column of liquid-metal
carries the uniform current density Jo in the z direction but suffers deformations that are independen
of z. A wire at the center of the column also carries a net current I along the z axis. The field
associated with this current is presumed much greater than that due to Jo. Thus, self fields due to

Jo are ignored. Assume that the wire provides a negligible mechanical constraint on the motion and
that the mass density of the gas surrounding the column is much less than that of the column.

(a) Show that the magnetic force density is of the form -VC, where

2. I. Kaplan, Nuclear (Publishing Physics, Addison-esley Company, Reading, Mass., 1955, p. 425.

2. 1. Kaplan, Nuclear Physics, Addison-Wesley Publishing Company, Reading, Mass., 1955, p. 425.
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Prob. 8.15.1 (continued)

(b) The column has an equilibrium radius R and surface tension Y. Find the dispersion equation for
perturbations ý = ý(8,t).

(c) Show that the column is unstable in the m = 1 mode if JoI < 0, and is stable in all modes if
JoI > 0. Use physical arguments to explain this result.

For Section 8.16:

Prob. 8.16.1 The fluid of Fig. 8.16.1 is perfectly conducting rather than perfectly insulating. Show
that the dispersion equation is

[k(v-k)2 - yv(v+k) 2
2 2

Spg + Yk - kE
k(yv + k) 00o

Show that in the limit of low viscosity the dispersion equation is Eq. 8.16.15, and that in the opposite
extreme, where Yv t k + jwp/2nk, the dispersion equation is

32p 3 = 2j(nk + pg + Yk 2 -_ kE2
2 k o o

Discuss effects of viscosity on incipience and rates of growth of instability in these two limits.

Prob. 8.16.2 The magnetohydrodynamic counterpart of the interaction studied in this section might be
taken as that shown in Fig. P8.16.2. The interface between a perfectly
insulating liquid in the lower half space and the air above is covered HO
by a layer of perfectly conducting liquid. In static equilibrium, a 7 7, 0--CO
uniform magnetic field H is imposed in the x direction. Instead of
space-charge electroviscous oscillations caused by conservation of
charge and stress equilibrium, there are now magnetoviscous oscilla- (7 7 ).: ..K . I
tions within the plane of the interface caused by conservation of flux . .. . ..... ...
for any loop of fixed identity in the conducting layer. Assume that
the layer has the same mechanical properties as the fluid below. Fig. P8.16.2

Show that the thin perfectly conducting layer can be represented by the boundary condition

aH avy
x

= -H y at x =
at o ay

Determine the dispersion equation for perturbations of the irterface. Show that in the low-viscosity
limit there are shearing modes of oscillation similar to those described by Eq. 8.16.16, except that

[2u H2k 2/3

W 00 0

and that there are transverse modes of oscillation. Discuss the effect of viscosity on the latter in

the limit where the transverse modes have a frequency that is high and that is low compared to Wo"

Prob. 8.16.3 In the configuration of Fig. 8.16.1, the liquid layer has equilibrium thickness b, and
uniform viscosity rn, mass density p, permittivity E and electrical conductivity a. The upper electrode,
at a distance a from the interface, has a potential -V relative to the rigid electrode at x = -b.

Because the region between electrode and interface is highly insulating relative to the liquid, the

equilibrium electric field is V/a = Eo between the interface and the electrode and zero in the liquid
layer. Effects due to the depth b and of the width a of the air gap are to be included.

(a) Write the perturbation boundary conditions and bulk conditions in terms of complex amplitudes.

(b) Show that the normalized dispersion equation is

= 0M1lM22 - M12M21

where in terms of normalized variables

P k 2  kURS(jwr+l)-P jw - p - k2 + kURS(jwr+l)
11 jerC + R
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Prob. 8.16.3 (continued)

oM rUkS
12 -P1 1 3 + J jwrC + R

M - w=- j .kU(Jwr+1)R
21 -P 3 1 j-U jwrC + R

kU-- r
M =-P -
22 33 jtrC + R

The normalizations are

= = cbn/y, p pgb2/y, k = kb, a = a/b, U= bE2 /y, r =.(y/b)(s/o), P.. = bPij (defined by
S0-1ij

Eq. 7.19.13 or 7.33.6), C = ( o/E) coth ka + coth k, S = coth ka

(c) Interpret the characteristic time used to normalize W and form the dimensionless numbers p, r and U.

(d) In the limit of complete viscous diffusion (Wpb2/l<<l) and instantaneous charge relaxation
(ws/a<<l), show that this expression reduces to simply

j = (kUS-p-k2)p3 3/(P1 1 3 +P 2

(e) Again, viscous diffusion is complete but the liquid is sufficiently insulating that charge
relaxation is negligible (r>>l). Show that the dispersion equation becomes

a(jw) 2 + b(jw) + c = 0

where

P 11o kUP S
aE PlP33+P3 ; b = [(p+k 33+Uk( E CC ) -- 3 3 2j C3 ] c kU o (p+k2-UkS)

Prob. 8.16.4 In the configuration of Fig. 8.16.1, the liquid is replaced by a perfectly elastic
incompressible solid that can be regarded as perfectly conducting (perhaps Jello). The interface,
like that in the case of the viscous fluid, must be described by a balance of both normal and shear
stresses. Directly applicable transfer relations are deduced in Prob. 7.19, and in the limit 0 + 0
in Prob. 7.20. The solid layer, which has a thickness b, is rigidly attached to the lower solid plate.
The mass density and viscosity of the gas make negligible contributions to the dynamics.

(a) Determine the dispersion equation for deformations of the solid.

(b) Under the assumption that the principle of exchange of stabilities holds (that instability is
incipient with w=0) and that perturbation wavelengths are very short compared to b, determine
the voltage threshold for instability.

For Section 8.18:

Prob. 8.18.1 An important connection between smoothly inhomo-
geneous systems and the piece-wise uniform ones considered in
Sec. 8.14 is made by considering the temporal modes from another
point of view. As shown in Fig. P8.18.1, the distribution of
charge and mass density is approximated by two layers, each
uniform in its properties.

(a) Show that for layers of equal thickness,
V d'Dq3 1 o  e

q =q +-Dq d qb =
: E

a e 4 e qe +4 Dqed o d 16E
o

Fig. P8.18.1
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Prob. 8.18.1 (continued)

where, consistent with the usage in Section 8.14, Eo is the equilibrium electric field evaluated
at the interface between layers.

(b) Show that the dispersion equation for the layer model, based on the results of Section 8.14,
takes the normalized form

1 1
8k 15

(c) Using k = 1, Dpm = 0, VoJVoJ = i1, Dq /jDqel = 1 and S = 1, compare the prediction of the first
eigenfrequency to the first resonance frequency predicted in the weak-gradient approximation and
to the "exact" result shown in Fig. 8.18.2a. Compare the analytical expression to that for the
weak-gradient imposed field approximation in the long-wave limit. Should it be expected that
the layer approximation would agree with numerical results for very short wavelengths?

(d) How should the model be refined to include the second mode in the prediction?

Prob. 8.18.2 A layer of magnetizable liquid is in static equilibrium, with mass density and perme-
ability having vertical distributions ps(x) and Is(x) (Fig. P18.8.2). The equilibrium magnetic field
Hs(x) is assumed to also have a weak gradient in the x direction, even though such a field is not irro-
tational. (For example, this gradient represents fields in the cylindrical annulus between concentric
pole faces, where the poles have radii large compared to the annulus depth k. The gradient in H is a
quasi-one-dimensional model for the circular geometry.) Assume that the fluid is perfectly insulating
and inviscid.

(a) Show that the perturbation equations can be reduced to

k2

D(PCDhR) -
s s z W s sx)

k2H DM
2 N k ( )v + j sH sD1

D(p Dv ) - h = 0
s x zs2x 

2 2 4+ = + kz , H = Hsi z + and N 1 2
where k2 h = -g Dps + - DsDH

(b) As an example, assume that the profiles are Ps = exp~x, Pm exp8x, ]s = Pm Hs = constant. Show
that solutions are a linear combination of expyx, where

k2k 2 H212 1/22 
-8 ; 2mab + b1 2 PM

YT c+= [ )2+k2+ai k= 

rlvfW,7
a = gSk2/2 2

(c) Assume that boundary conditions are v ( ) = 0, h ( ), and show that the eigenvalue equation is
x 0z

V- 2b 1L-~ioo sinh 
- _ _

cE sinh c i = 0 --- M M--

are
and that eigenfrequencies 

and that eigenfrequencies are

2
k2k2H2 gSk2 2  2

2 z asm n2
Wn 2 ,- ( )

= Kn = 2
4 2 n R 2

H, Ps(x)x)
K +(--8) + kn m n

(d) Discuss the stabilizing effect of the magnetic field on -p ---- ----- ---- ----
----

the bulk Rayleigh-Taylor instability.
P8.18.2Fig. 

Fig. P8.18.2
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Fig. 8.18.2 (continued)

(e) Discuss the analogous electric coupling with ps s and H - E and describe the analogous physical
configuration. s s

Prob. 8.18.3 As a continuation of Problem 8.18.2, prove that the principle of exchange of stabilities
holds, and specifically that the eigenfrequencies are given by

3
~"J~,~41

2 k 2 2 z 1141 2+ 2 I1iZ
e = 11i2

where

91

I1 = 2 (IDh + k2  h )dx ; I2 (ps ID + k 2Pv1 )dx

0 0

£
A* ^2 213 =f k Niv x dx ; 14= H D vx h dx

0 0
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