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10

Electromechanics with Thermal
and Molecular Diffusion
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10.1 Introduction

The general three-way coupling between electromagnetic, mechanical and thermal or molecular sub-
systems might be pictured as in Fig. 10.1.1. Thermal interactions are the subject of the first half
of this chapter while the second is concerned with the molecular subsystem.

Diffusion dynamics is familiar from the mag-
netic diffusion of Chap. 6 and the viscous diffusion
of Chap. 7. For both thermal and neutral molecular
diffusion processes, Sec. 10.2 builds on this back-
ground by identifying the characteristic times,
lengths and dimensionless numbers with analogous
parameters from these previous dynamical studies.
Much of the sinusoidal steady-state and transient
dynamics, boundary layer models and transfer rela-
tions are equally applicable here.

Electrical heating and the need for conduc-
tion and transport of that heat is often crucial
in engineering problems. Section 10.3 is there-
f- ore d4 evoLte d4 to t U 

al one-way acoup 
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Uihheat
generated electrically in a volume is removed by
thermal diffusion, (a) in Fig. 10.1.1. The three- Fig. 10.1.1. Three-way coupling.
way coupling illustrated in Sec. 10.4 involves an
electrical conductivity that is a function of temperature, (b) in Fig. 10.1.1, an electric force created
by the resulting property inhomogeneity, (f), and a convection that contributes to the heat transfer,
(d).

The rotor model introduced in Sec. 10.5 should incite an awareness of analogies with dynamical
phenomena encountered in Chaps. 5 and 6 on circulating fluids, but it should not be forgotten that the
diffusion phenomena discussed in many of these sections also occur in solids. The magnetic-field-
stabilized Bsnard type of instability discussed in Sec. 10.6 is an example of a continuum phenomena
that might be modeled by the rotor. This study gives an opportunity to illustrate how the Rayleigh-
Taylor types of instability from Chap. 8 are modified if property gradients have their origins in
thermal or molecular diffusion.

Because the effect of molecular diffusion of neutral species is similar to that of thermal con-
vection, the sections on molecular diffusion are confined to the diffusion of charged species. Dif-
fusional charging of small macroscopic particles subjected to unipolar ions is the subject of Sec. 10.7.
Section 10.8 is aimed at picturing the standoff between diffusion and migration that makes a double
layer possible. Based on this simple model, shear-flow electromechanics are modeled in Sec. 10.9 and
used to introduce electro-osmosis and streaming potential as electrokinetic phenomena. Another electro-
kinetic phenomenon, electrophoresis of particles, is taken up in Sec. 10.10. Sections 10.11 and 10.12
introduce electrocapillary phenomena, where the double-layer surface force density from Sec. 3.11 comes
into play. Sections 10.7 and 10.8 involve links (a) and (b) in Fig. 10.1.1, while Secs. 10.9, 10.10
and 10.12 involve all links. The sections on molecular diffusion suggest the scale and nature of elec-
tromechanical processes found in electrochemical, biological and physiological systems.

10.2 Laws, Relations and Parameters of Convective Diffusion

Thermal Diffusion: The most common thermal conduction constitutive relation between heat flux and
temperature is Laplace's law:

= -k VT (1)

where kT is the coefficient of thermal conductivity. Not only in a perfect gas, but also for many
purposes in a liquid, the internal energy is usefully taken as proportional to the temperature. Thus,
the energy equation, E'q. 7.23.4, becomes

BT + 2 d (
a- + v.VT ~= T+ ý • d d; ' f +T - pV~v (2)

PCv
where the thermal diffusivity is defined as KT kT/pc,. From left to right, terms in this expression
represent the thermal capacity, convection and conduction. The last term is due to electrical and
viscous dissipation and power entering the thermal system because of dilatations. Although cv and kT
are in general functions of temperature, thermally induced variations of other parameters are usually
more important and so cv and kT have been taken as constant in writing Eq. 2.
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Table 10.2.1. Thermal diffusion parameters for representative materials.

Temp. Mass Specific Thermal Thermal Prandtl
Material (OC) density heat conductivity diffusivity number

P (kg/m3) (J/kgoC) kT (watts/moK) KT (m2/s) PT PT

Liquid c
Water 10 1.000x10 3  4.19x103  0.58 1.38x10 7  9.5

" 30 0.996x103 4.12x103 0.61 1.46x10 7  5.5

70 0.978x10 3  3.96x10 3  0.66 1.61x10 -7  2.6

" 100 0.958x103 3.82x10 3  0.67 1.66x10- 7  1.8
7  

Glycerine 10-70 1.26x103 2.5x103 0.28 0.89x10 - 1.3x10

Carbon tetra- 3 3 0.832xi0- 7  7.3
15 1.59x10 0.83x10 0.11 0.832x10 7.3

chloride

3  3  4.2x10-6  2.7x10- 2hercury 20 13.6x10 0.14x10 8.0 

CErelow-117 50 8.8x103  0.15x10 3  16.5 1.25x10- 5  ,-5xlO- 3

Gases c
v

Air 20 1.20 0.72x103  2.54x10- 2  2.1x10- 5  0.72

100 0.95 0.72x103  3.17x10- 2  3.3x10- 5  0.70

Solids CP

Aluminum 25 2.7x10 0.90x103  240 9.4x1 -

Copper 25 8.9x103 0.38x103  400 llx10 7

Vitreous quartz 50 2.2x10 3  0.77x10 3  1.6 9.4x1 -7

1o

With electrical and viscous heating given, and work done by dilatations negligible (as is
usually the case in liquids), Eq. 2 becomes a convective diffusion equation analogous to magnetic
diffusion equations in Chap. 6 and viscous diffusion equations in Secs. 7.18-7.20. Instead of the
magnetic or viscous diffusion times, the thermal diffusion time

TT = a 2/K

characterizes transients having A as a typical length. For processes determined by convection, it is
the ratio of this thermal diffusion time to the transport time, k/u, that is relevant. With u a
typical fluid velocity, this dimensionless number is defined as the thermal Peclet number,

RT = u/KT
The response to sinusoidal steady-state thermal excitations with angular frequency w is likely to have
a spatial scale that is much shorter than other lengths of interest, in which case the thermal diffusion
skin depth

_2K;
6, =1 w

is the length over which the thermal inertia of the bulk equilibrates the oscillatory conduction of heat.
It is this length that makes wTT = 2.

Typical thermal parameters are given in Table 10.2.1. In liquids, cp and cv are essentially
equal. Even at relatively low frequencies the thermal skin depth is perhaps shorter than might be
intuitively expected, as illustrated by Fig. 10.2.1.

Molecular Diffusion of Neutral Particles: The analogy between thermal and molecular diffusion
evident from a comparison of the equation for conservation of neutral particles (Eq. 5.2.9 with-b =
G - R = 0 and pi - n),

ant -V2
+ v*Vn = KDV n

at 
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to Eq. 2. Transient molecular diffusion, steady diffusion
in a steady flow and periodic diffusion are respectively
characterized by

time TD = £2/KD molecular diffusion (7)

RD = RU/KD molecular Peclet number (8)

6 = 2-2KD/; molecular diffusion (9)D 2skin depth

Typical parameters are given in Table 10.2.2. The mole-
cular diffusion skin depth is presented as a function of
frequency in Fig. 10.2.1, where it can be compared to the
thermal skin depth for representative fluids and solids.
Simple kinetic models support the observation that, in
gases, molecular and thermal diffusion processes have
comparable characteristic numbers.1 Relatively long
molecular diffusion times, high molecular Peclet numbers
and short skin depths typify liquids on ordinary length
scales. In liquids, the molecular diffusion processes
occur much more slowly than for thermal diffusion.

Convection of Properties in the Face of Diffusion:

One of the most common ways in which coupling arises &W/?r (HZj--
between the diffusion subsystem and either the electro-
magnetic or mechanical subsystem is through the dependence
of properties on temperature or concentration. The elec- Fig. 10.2.1. Skin depth for sinusoidal
trical conductivity is an example. In liquids, it can be steady-state diffusion of heat
a strong function of temperature. If a = o(T), it follows (solid lines) and molecular dif-
from Eq. 2 that fusion (broken lines) at fre-

quency f = w/2rr.
Do T DT a 2[ T + -] (10)
Dt T Dt at

so that, in the absence of diffusion and heat generation, the conductivity is a property carried by the
material. That is, the right-hand side of Eq. 10 is zero. Subsequent to the transport of material
having an enhanced conductivity into a region of lesser a, the diffusion tends to return the temper-
ature, and hence the conductivity, to the local value.

In a liquid, the electrical conductivity is linked to the molecular diffusion in a more complicated
way. Suppose that an ionizable material is added to a fluid, which in the absence of the added material
does not have an appreciable conductivity. Ionization is into bipolar species having charge densities
p+ with the unionized material having the number density, n.

The conservation equations for such a system were written in terms of the net charge density and
conductivity in Sec. 5.9, Eqs. 9-11. Written in normalized form, the terms in these equations can be
sorted out by establishing an ordering of the intrinsic times relative to times of interest, T. Typical
of relatively conducting, certainly aqueous electrolytes, is the ordering shown in Fig. 10.2.2. Because
T/Tth >> 1, generation and recombination terms dominate all others in the conservation of neutrals
expression, Eq. 5.9.11. It follows that

2 (b+ - b) Tn = b + b_ T e  
bb / 2 2pf 2 f  (11)

+mig ( + b + ) \*mig f

In the net charge density equation, Eq. 5.9,9, T/T e >> 1, so that the convective derivative on the left
and the last term on the right are negligible compared to the other terms. Hence, that expression
becomes

I.Va + ap f M K% K bK + K b V a (K+ - -_)0,+ + b_) (12)
D K+b+ Kb+

In Eq. 5.9.10, the first term on the right, multiplying T/T M, is expressed using Eq. 12, the second
is negligible because Te/Tmig << 1, the third through the sixKh cancel by virtue of Eq. 11, while

1. J. 0. Hirschfelder, C. F. Curtiss and R. B. Bird,.Molecular Theory of Gases and Liquids, John
Wiley & Sons, New York, London, 1954, pp. 9-16.
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'^^^
Table IO.Z.Z. Typical molecular diftusion parameters.

(Prandtl number PD n/PKD)

Diffusion Molecular
Material in Liquid Temperature coefficient Prandtl number

(oC) 1 (m2 /s) PD=TD /v=fl/P

-9
NaC1 H20 18 1.3 x 10-9  770

-9
5 0.9 x 10 9  1700

-9KNO 3  H20 18 1.5 x 10 - 9  670
-9

HC1 H20 19 2.5 x 10- 9  400
-9

KC1 H20 18 1.5 x 10-9  670
--912 Ethyl alcohol 18 1.1 x 10

Material in Gas K* PD

-502 Air K° = 1.78 x 10 - 5  0.8
-5

H2  N2  K = 6.74 x 10 5  0.2
-5

H20 5  Air K = 2.20 x 10 0.7

For these gases, KD = Ko(T/273)2/p; T in OK, p in atms.

tEvaluated at 0oC.

Fig. 10.2.2

I I I I Hierarchy of characteristic times for
ambipolar diffusion of conductivity.

th e Tmig TD

because te << Tmig, the last term is negligible compared to the next-to-last term. Hence, in dimen-
sional form, the expression becomes

Kb +Kb
D o K V 2 ; + - - + (13)Dt a a b+ + b

Thus, the conductivity is subject to convective diffusion, but with the amhbipolar diffusion coefficient,
Ka. Although oppositely charged ions may have different mobilities and diffusion coefficients, the
electric field generated by separation of species tends to make the species diffuse together. According
to Eq. 12, the net charge can relax essentially instantaneously. Given the distribution of a from
Eq. 13, coupled through 4 to the mechanical subsystem, Eq. 12 can be used to find the distribution of
net charge density and hence the force density.

2. For further data and indication of accuracy see E. W. Washburn, International Critical Tables,

Vol. 5, McGraw-Hill Book Company, New York, 1929, p. 63.
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THERMAL DIFFUSION

10.3 Thermal Transfer Relations and an Imposed Dissipation Response

Fully developed flows responding to imposed force densities (Secs. 9.3-9.5) are similar in their
description to the sinusoidal steady-state thermal diffusion exemplified in this section. Dissipation
densities and material deformation are known, and therefore not influenced by the resulting distribu-
tion of temperature and heat flux.

A typical example, shown in Fig. 10.3.1, is an MQS induction system in which a conducting layer
having thickness A is subject to currents induced by tangential magnetic fields at the upper and
lower surfaces:

HQ = Reiaej (Wt-ky); H' = Ree' ej(wt-ky)
y y y y

The layer,which might be a developed model for
the conductor in a rotating machine, translates T~o~i"Wrk1ý
in the y direction with the velocity U. Given
the electrical dissipation density ýd='~. ', what
is the distribution of temperature in the layer?
This density has a time-average part that depends
only on x and a second harmonic traveling-wave
part that depends on (x,y,t). Fortunately, for
a given motion, the conduction equation, Eq. 10.2,
is linear,

T aT 2 d
T + U T V T = d

at 
Y

By T Pcv

so that' a transfer relation approach can be taken
that combines ideas familiar from Secs. 2.16,
4.5 and 9.3. The system is in the temporal and Fig. 10.3.1. Electrical dissipation due
spatial sinusoidal steady state. to currents induced in moving

layer result in steady and second-
Electrical Dissipation Density: The harmonic temperature response.

traveling-wave magnetic excitations at the
(a,8) surfaces are in general determined by the
structure outside the layer. If the layer is B
bounded by current sheets backed by infinitely permeable material, the amplitudes (Hy,H) are simply
(-a, K(). Regardless of the specific system, magnetic diffusion in the layer is described by the
transfer relations (b) of Table 6.5.1. In terms of the resulting amplitudes (OAB)', the distribution
of the vector potential follows from Eq. 6.5.6:

sa inh YmX x sinh ym(x-A)
AA =- -A si Ym = + jpa(W - kv)sinhU. sinh yA

The electrical dissipation follows by evaluating

Sf f 1 ^ * 2 E j(2wt-2ky)= E'-[J J + ReJ e]d f d i a z z

with the current density related to I by Eq. 6.7.5,

1 d2A
Jz = - 2 - k 2  = -jo(w - kU)A(x)

z \dx2

Thus, the dissipation density is determined, with a steady x-dependent part and a second-harmonic
traveling-wave component,

=d o(x ) + Rej(x)eJ(2wt-2ky)

where

o = _2 o( - kU)2  *; = - 2 2o(w - kU) A

The temperature response is now the superposition of parts that are respectively due to the steady and
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to the second-harmonic drives,

j( 2t-k2y )
T = T (x) + ReT(x)e

0

where w2 = 2m and k2 - 2k.

Steady Response: Because th9 steady dissipation depends only on x and the system extends to in-
finity in the y directions, Eq. 7reduces to

/ d2To &
1"-=

dx' T

This expression is integrated twice, using as boundary conditions that the steady part of the temper-
atures at x = A and x = 0 are respectively TP and TO:

STo a + I 0  (x") dx"dx' x - 1 f T 0o(x")dx"dx' (9)

Associated with this steady part of the response is the heat flux

dT kT a 8 (x')d x

ro(x) = -kT (T o o o(x')dx' - (10)
o

The system external to the layer provides constraints on (To, T) and (ro',) which, together with
Eq. 10 evaluated at the respective surfaces, specialize these general relations.

Traveling-Wave Response: The response to the traveling wave of dissipation can itself be divided
into a homogeneous and particular part. Each takes the complex-amplitude form ReT exp j(w2t - k2)'
and so Eq. 2 requires that

d2 2 H 2 2 2 - k2U)

dx2 T T k + (11)

The homogeneous expression takes the same form, Eq. 2.16.13 with y + YT, as for the flux-potential
relations from Table 2.16.1, so the heat-flux temperature transfer relations can be written by analogy:

1
-coth yTA sinh yTA

= kTYT (12)
-1

coth yTAsinh yT

The total solution is T = TH + Tp and it follows that TH = T - Tp. Substitution of this and the
associated heat flux PH  r - rp on the left and right in Eq. 12 results in transfer relations ex-
pressing the combined response of the layer to internal and external dissipations:

-coth yA sinh yT
T sinh YTA

= k TYT (13)
-1

coth yTAsinh yTA P

Any particular solution can be used to evaluate these expressions; but, following the approach
used in Sec. 4.5, suppose that both the dissipation density apd the particular solution are expressed
as a summation of the same modes Hi(x):

S= Tp 
A

i(x); = .E T ii(x) (14)
i=0 i=0
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Then, Eq. Ilb shows that these modes satisfy the equation

d2 2) 2 i 2 J(W2 - k2U )

i  0; vi  --- - k2  (15)
dx kTTi KT

Boundary conditions to he satisfied by these modes are a matter of convenience in writing Eq. 13 or
expressing Hi. Here, Tp, and hence Hi, is taken as zero at the boundaries,

Hi = (16)sin vix; i = 

and it follows from the definition of vi, Eq. 15, that

i[ j (2 - k2U)
Tii /kT (-i) 2+ k2+ 2kT (17)

The amplitudes, ;i, are in this case simply Fourier amplitudes evaluated exploiting the orthogonality
of the modes, li,

1= $(x)sin v.xdx (18)
A 10

Thus, because T = 0 on the a and 8 surfaces, the total temperature response to the traveling-wave part
of the dissipation is

= Ssinh YTX sinh YT(xA)1 i e J (wRe 2t-k2y)T [ T h A + E• T sin X) e (19)sinh yTA sinh yTA i=1

In terms of the same temperature amplitudes, (Ta,TB), the heat flux at the boundaries follows by
evaluating Eq. 13:

,

-coth -coth yT TA sinh 1 yT Ta A (-1)i
(T0)0

^8 = kTYT
- soi= in 2 2 + (w2 -k2U)

7
sinh yTA coth YTA k 2 KT

These transfer relations between temperatures and heat fluxes at the (ac,) surfaces of the layer,
are applicable to the description of different thermal conduction systems in which the layer might be
embedded.

In practice, the thermal diffusion skin depth 6T '2kT/(w2 - k2U), based on the Doppler fre-
quency (w2 - k2U), is likely to be short compared either to the thickness of the layer or to half the
wavelength of the magnetic field, 2w/k2. For example, from the curve for copper in Fig. 10.21,

6T ' .06 mm at m/2w = 100 Hz. Thus for the lowest values of i in either Eq. 17 or Eq. 20, it is likely
that

2 2 1w2 - k2UI 2
() + k 2 << 2 (21)

T

The Fourier coefficients Ti are therefore proportional to 0i for the lowest terms in the series, and
the driven response has essentially the same profile over the layer cross section as does the dissipa-
tion density. In this case, the thermal capacity absorbs the heat with a 900 time delay of the temper-
ature relative to the dissipation density. There is insufficient time for the heat to diffuse ap-
preciably. Also note that in this short thermal skin-depth limit these lowest order terms are propor-
tional to 6'2, and so the thermal inertia represented by the heat capacity tends to suppress the oscil-
latory part of the temperature response.

10.7 Sec. 10.3



10.4 Thermally Induced Pumping and Electrical Augmentation of Heat Transfer

By means of a simple one-dimensional flow, illustrated in this section is the three-way inter-
action between electric, kinetic and thermal suhaystems, The flow is essentially incompressible.
Shown in Fig. 10.4,1 is a section from a duct for fluid flowing in the y direction. Grids in the plane
y m 0 and y = k constrain the fluid temperatures in these planes to be Ta and Tb, respectively. Typica
of many semi-insulators (such as doped hydrocarbons,plasticizers and even chocolate), this liquid has
an electrical conductivity that is a function of temperature. For this example,

a = all + aT(T - Ta)]

where a and aT are constant material properties.

With .the application of a potential difference,V,
between the grids, there is a current density Jo that

I V --i
flows in the y direction between the grids. Continuity r.. .... . .. .'.. .' .'. '. .. .. . ... ..."
requires that Jo be independent of y, and hence that ... ... '... . -- .' '.' ....... .. .'. . '.'..
the electric field between the grids be nonuniform. .. -. -' .
The charge density attending this nonuniformity con- ... .. -: a a .-.: -: • . -.::.
spires with the electric field itself to give an elec-
tric force density tending to pump the liquid. How- Fig. .. 4.1. ·•:.•.- ::: C -'. :" .- *-t f . .: -....". r--'.
ever, fluid motion implies the convection of heat and
a field induced contribution to the temperature dis-
tribution and hence to the heat transferred between the " --.X*..: a · .

:
grids.

S. . . .* . :
The width of the channel is large compared to £.

Hence, the velocity profile is uniform with respect to
the transverse direction. Viscous effects are confined
to the flow through the grids and reflected in a pres-
sure drop through each of the grids. Because the flow

Ta Tb
is one-dimensional and essentially incompressible,
V = U y. In terms of this velocity and the locations

Fig. 10.4.1. Configuration for electro-indicated in Fig. 10.4.1, the pressure drops through
thermally induced pumping andthe grids are taken as
electrically augmented heat
transfer.cnU cnU

Pa - Pal =d' Pb' - Pb -d

where the dimensionless coefficient c is determined by the geometry of the grids. The dependence of th
grid pressure drops on the viscosity and velocity is consistent with flow through the grids at a low
Reynolds number based on a characteristic dimension, d, of the grid.

Elecýical Relations: Consistent with the geometry is an electric field having the form = E(y)t.
It is assumed that in this EQS system, the charge relaxation time, Te, is short compared to the thermal
diffusion time, T , and that the transport time, k/U, is long compared to Te but arbitrary relative to
TT . That Te << JU means that the convection current density, PfU, can be ignored compared to the elec
trical conduction current density, GE. Thus, even with the fluid motion, Ohm's law is simply I = at
with a given by Eq. 1. Because Jf = Jo y is independent of y, this makes it possible to specify E(y)
in terms of the yet to be determined temperature distribution, T(y):

E = Jo{a [1 + a T(T - T a)]}

With the terminal current, i, taken as the cross-sectional area, A, times J , the electrical terminal
relation is then given by

V = Ed = a I4T
o a o [1 + a - T)A

Mechanical Relations: Only the longitudinal component of the Navier-Stokes equation is relevant,
and because the flow is one-dimensional, neither inertial nor viscous force densities make a contribu-
tion between the grids,. With the electrical force density written as the divergence of the Maxwell
stress (pfE m d(g cE2)/dy), the force equation then becomes simply

(p -. EE_ 2 ) = 0

s
l

.

e

-
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The quantity in brackets is independent of y and can be evaluated by letting p(O) = Pa' and E(0) =
E(T = Ta). Thus, evaluation of p at y = I where p = pb' gives

a 'b' E(Ea - Eb) (6)Pal - Pb' = 2 a N

By means of Eqs. 2, this expression is expressed in terms of the pressures just outside the grids:

J2
2cnU + 1 o - T -(T 2  (7)

Pb - a d 2(T - {[i + b  a ) ] 2- 
a

a

As with the electrical relations, Eqs. 3 and 4, the temperature distribution is required to evaluate
this mechanical terminal relation,

Thermal Relations: With the electrical and viscous dissipations taken as negligible compared to
thermal inputs from the grids, the energy equation, Eq. 10.2.2, reduces to

dT d2T
pC U kT d2 (8)

dy2

With one integration, this expression simply states that the heat flux, rT, is independent of y:

dTr = - k dy + pcvUT (9)T T dy v

The temperature distribution is then determined by solving Eq. 9 subject to the condition that T(O)=T :

T (= - e ) + Te (10)kTRT a

Here, RT 2 pcv U/kT is the thermal Peclet number.

What might be termed the thermal terminal relation is found by evaluating Eq. 10 at y = k where
T = T and solving for the heat flux, now determined by Ta and Tb and the velocity U (represented
by RT;:

Tb -. Tae kTRT (11)
rT  (11)

l- e

By way of emphasizing the degree to which convection contributes to the heat flux, the Nusselt
number, Nu, is defined as the ratio of rT to what the flux would be at the same temperature difference
if only thermal conduction were present:

TbNu 

Nu kT(Ta T)/ RT Tb 
(12)

a J

Given terminal constraints on the external pressure difference, Pb - Pa, electrical current,
i = JoA and temperatures Ta and Tb, the remaining variables are now known. The distribution of elec-
tric field intensity and the voltage are given by Eqs. 3 and 4. The flow velocity, U, follows from
Eq. 7. and hence RT is determined. Finally, the temperature distribution and heat flux (or Nusselt
number) are given by Eqs. 10-12.

Illustrated in Fig. 10.4.2 is Nu as a function of RT for the case where Ta > T From Eq. 7,
note that if the flow were re-entrant so that Pa = Pb, the fluid velocity and hence would be pro-
portional to Jo. Typical distributions of the temperature are shown in the insets to Fig. 10.4.2.
Illustrated is the tendency of the convection to skew the temperature profile in the streamwise direc-
tion from the linear profile for conduction alone.

10.9 Sec. 10.4
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Nut

T

2 Fig. 10.4.2

Nusselt number as a function
of thermal Peclet number for
Tb/Ta = 0.5. Inserts show

-2 0 temperature distributions
typical of positive (RT = 4)
and negative (RT = -4) flows.

TO 2-2-
O IYA.

10.5. Rotor Model for Natural Convection in a Magnetic Field

When heated, most fluids decrease in mass density. In a gravitational field, the result is a
tendency for hot fluid to rise and be replaced by falling cold fluid. Heating and cooling systems
exploit the transport of heat through the agent of this "natural" convection.

The electrothermal pumping illustrated in Sec. 10.4 is an electromechanical analogue of this
process. Gravity is replaced by the electric field and the role of the temperature-dependent mass
density taken by the electrical conductivity.

The model developed in this section can be applied to understanding such aspects of thermally
induced convection as the instability that starts the convection with the thermally stratified system
satisfying conditions for a static equilibrium.

Thermally induced circulations are often undesirable. An example is in the growth of crystals,
where convection is a source of imperfections in the product. Especially in liquid metals, it is
possible to damp these circulations by applying a magnetic field. Such damping is included in the
model.

In Sec. 10.6, the incipience of the instability and its magnetic stabilization are considered
again in terms of the more general fluid mechanics, but for small-amplitude circulations. The model
developed here retains nonlinear dynamical effects and is similar to models that have proved useful
in gaining insights into magnetohydrodynamic circulations of the earth's core.1

The cylindrical rotor, shown in Fig. 10.5.1, is both a thermal and an electrical conductor, such
as a metal. It is free to rotate with angular velocity 0. Surrounding the rotor is a jacket, the
exterior of which is constrained in temperature to Text(e). Specifically, representing heating from
below and cooling from above would be the exterior temperature distribution

T ext = TE - Te sin 8

•if TE were positive.

Heat transferred across the thickness, d, of the layer to the shell has alternative mechanisms
for reaching the top of the cylinder and being transferred back across the layer to the exterior.
Along the shell periphery, the heat can be thermally conducted, or if the shell turns out to be moving,

1. W. V. R. Malkus, "Non-periodic Convection at High and Low Prandtl Number," Mem. Soc. Roy. Sci.
Liege 4 [6], 125-128 (1972).
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it can be convected. For conduction alone, the heat flux is
symmetric and so also is the temperature distribution. Thus,
if there is no motion, thermally induced changes in mass den-
sity on the right are the same as to the left, and the effect
of gravity gives rise to no net torque. But, if there is
motion, conduction of heat is augmented on one side but in-
hibited on the other, and there is a skewing of the temper-
ature distribution. The result is an expansion of the mate-
rial on one side that exceeds that on the other, and a net gravi-
tional torque that tends to further encourage the motion. This
tendency toward instability that depends on the rate of rotation
is countered by two other rate processes. One results in viscous
drag from the fluid surrounding the cylinder, modeled here by the
thin layer of fluid. As an additional damping mechanism, a mag-
netic field ý =Holy is imposed. Thus, in response to the motion,
z-directed currents are induced in the cylinder in the neighbor-
hoods of the north and the south poles, and these conspire with
Ho to produce a rate-dependent damping torque on the rotor.

Heat Balance for a Thin Rotating Shell: An incremental sec-
4t- n- fk th - Il Uh in LV Fi 1 5 2 de U Ube 4b h

equation in integral form, Eq. 7.23.3. Consistent with the mate-
rials being only weakly compressible is the neglect of pV-v. The

Fig. 10.5.1. Cross section of
objective here is a quasi-one-dimensional model playing a heat-

rotor used to model ther-
transfer role that is analogous to that of the shell models intro-

mally induced convection.
duced in Sec. 6.3 for magnetic diffusion.

The rate of increase of the thermal energy stored in the section of shell is accounted for by the

net convection and conduction of heat into the section plus the volume dissipation,

8T
pc [R(AO)A] --_= -PCv AR[T(O + AG) - T(0)]

+ kA[ T (6 + Ae) - ()- ) R(AO) T r + dR(AO)A
T R a 6 Od~dB

Divided by AO and in the limit AO - 0, Eq. 2 becomes

a aT kT 2T 1 r d 
+-)+T=t PvR 2 2 Ape +P

v v

In the following, it is assumed that the volume dissipation, Od, associ-
ated for example with ohmic heating, is negligible compared to heating
from the exterior.

In Eq. 3, the angular velocity (like the temperature) is a depend-
ent variable. The expression is nonlinear. Because the shell can only
suffer rigid-body rotation, it is appropriate to reduce the thermal
aspects of the problem to "lumped-parameter" terms as well. If the
thermal excitation were more complicated than Eq. 1, it would be neces-
sary to represent the temperature distribution in terms of a Fourier
series. But for the given single harmonic external temperature distri-
bution, only the first harmonic in the series is required:

T m To(t) + T cos 6 + T sin 0
0 x y

Fig. 10.5.2. Incremental
The components (Tx,Ty) represent the components of a "thermal axis" section of thermally
for the cylinder.

conducting moving

the jacket is represented in terms of a surface shell.Heat flux through 

coefficient of heat transfer, h, so that rr = h(T - TA For pure conduc-

tion through a fluid layer having thermal conductivityt kTf, and thickness d, h = kTf/d.

Substitution of Eq. 4 into Eq. 3 results in terms that are independent of 0 and that multiply

cos 6 and sin 6, respectively. The equation is satisfied by making each of these groups vanish. Hence

the three expressions
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dTo hdt cv (T - TE ) (5)

dTx kT h
d -GT T - T (6)
dt y pc 2 x Apcv xpcvR

dT kT h hT
S ___ nT T= T h T e(7)
dt x pcR2 y A y Apc v

Because To only appears in Eq. 5, that expression serves to determine the mean temperature distribution.
In the remaining equations, the dependent variables are (Tx, Ty, .). Thus, a mechanical (torque) equa-
tion for the rotor will complete the description.

Magnetic Torque: Within the electrically conducting shell, Ohm's law (Eq. 6.2.2) requires that
the z-directed current density be

J = a(E - poHo R sin 8) (8)

Here, the magnetic field intensity due to the current in the rotor is ignored. The ends of the cylindri-
cal shell are pictured as being shorted electrically by perfect conductors. Because the electric field
in this imposed field approximation is irrotational, and there is no magnetization contribution to
Faraday's law, the shorts require that Ez = 0 in Eq. 8. Thus, the magnetic torque per unit length in
the z direction is

2 3 2 27

zm 0 oo

Consistent with the low magnetic Reynolds number approximation used is a torque proportional to speed
that tends to retard the rotation.

Buoyancy Torque: Typically, an increase in temperature results in a decrease in density, although
there are exceptions. For small excursions in temperature the surface mass density (kg/m2) is taken
as

(10)am = aM[l - a(T - TE)] 

where a is typically positive. Of course, associated with an increase in surface mass density is a
local extension of the shell. The resulting effect on the radius tends to be cancelled by contrac-
tions elsewhere, but in any case will be neglected, Thus, the net gravitational torque per unit length
on the shell is

Tzg = -g --M[1 c(T - TE)]R cos 6 RdO (11)

With the use of Eq. 4, this integral reduces to

Tzg = wrgaaR2Tx  (12)

A positive Tx means the shell is hotter on the right than on the left, and for positive a, material
should tend to rise on the right and fall on the left. As expressed, this buoyancy torque is indeed
positive under such circumstances.

Viscous Torque: The fluid in the jacket surrounding the shell is presumed thin enough that its
inertia is negligible compared to that of the shell. Also,viscous diffusion is complete in times of
interest. Then, the flow can be pictured as plane Couette with a shear stress -DnR/d. Thus, the vis-
cous torque is

3
T 2 nR3 (13)zv d

Torque Equation: The shell has essentially a moment of inertia per unit length 2wR3 aM. (Small
changes due to the expansion are ignored.) Thus, the torques from Eqs. 9, 12 and 13 are set equal to
the inertial torque:
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3 = -AR3 ap2H2 + g 4 R2 2R (14)
2iR3 -AR o o d n (14)

Along with Eqs. 6 and 7, this expression provides a relationship between Tx, Ty , and Q.

Dimensionless Numbers and Characteristic Times: Normalization of the three equations of motion
so that

T = T /T, T = T /T , t = tT , 2 = Q/T (15)

x -x e -ye T T

identifies characteristic times:

pc R Apcv 2 R M daM 2 RaM
T T TRa; T- T
T kT  ' t h' g g(oMaTe) ' m v TMI= pH2

00

and dimensionless numbers

2

_ Rdga~MTepCv =vT T  RgaMRTePcv TMI T
R " R= 
av 2nkT 2T ' am 22 2

g ooT mg

and leaves Eqs. 6,7 and 14 in the form

dT

(16)dt = T - Tx(l + f) 

dT

= Tx - T (1 + f) - f (17)

1 d_
- - + R T (18)

xPT dt 

where TT/Tt E f. Thus, only three dimensionless numbers specify the physical situation, f,

-l -1-1 T 
T 1 

T
m

R E[R + R and p p ( + 1 ) (19)
a av am T 1 2 2 T

V T I

The thermal diffusion and relaxation times TT and Tt, respectively, represent the dynamics of
heat conduction in the azimuthal direction and radially through the jacket, in the face of the shell's
thermal inertia. The period of a gravitational pendulum having differential surface mass density
GMaTe and total surface mass density oM is familiar from the gravity waves described in Sec. 8.9. The
thin-shell magnetic diffusion time, Tm, is the time for circulating currents to decay (Sec. 6.10),
while TV is a viscous diffusion time based on the fluid viscosity but the mass density of the shell
(Sec. 7.18).

The Rayleigh number, Ra, is large if the time for gravitational acceleration is short (Tg is
small) compared to the geometric mean of the time for viscous slowing of the shell, Tr, and the time
for the shell temperature to return to a uniform distribution, rT . Put another way, T2/Tv is a
gravity-viscous time representing the competition of gravitational and viscous forces. The Rayleigh
number is then the ratio of the thermal diffusion time to this gravity-viscous time.

The magnetic Rayleigh number, Ram , is large if 
Tg is short compared to the geometric mean of TT

and TMI/¶m, where the latter is the time required for the magnetic damping to slow the shell despite
its inertia.

In the absence of the magnetic field, PT plays the role of a thermal Prandtl number, the ratio
of the thermal to the viscous diffusion time. With negligible viscosity but a magnetic field, the
number becomes what might be termed a thermal-magnetic Prandtl number, where the viscous diffusion time
is replaced by the time T /tm.
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Nu

Ra-
Fig. 10.5.3. Graphical solution of Eq. 21. Fig. 10.5.4. Vertical heat flux normalized

to flux in absence of rotation as a
function of Ra.

Onset and Steady Convection: The similarity between the thermal rotor model and the model for
electroconvection developed in Sec. 5.14 (see Prob. 5.14.2) suggests looking for a stationary state.
In Eqs. 16-18, the time derivatives are taken as zero and from the first two equations it follows that

-RT
T =  Y =  f (20)
x (1 + f) (l + f)2 + 2

Hence, the torque equation is expressed in terms of the angular velocity:

R fn
= a (21)

(1 + f) + n

The graphical solution of this expression, pictured in Fig. 10.5.3, is familiar from the elec-
tric rotor of Sec. 5.14. If Ra is small, the only intersection of the two curves is at the origin
and the rotor is stationary. A negative or positive velocity obtains if Ra exceeds Ra, where

Rc = (1 + f)2/f (22)
a

so that the slope of the thermal torque curve at the origin exceeds that of the viscous-magnetic
torque curve (which in normalized form is unity). Solution of Eq. 21 gives this velocity and Eqs. 20
give the associated components of the temperature:

0 = v(R - Re)f; Tx = /R ; T = -(1 + f)/R (23)aa x a y a

These steady conditions are interpreted as the result of an instability having its threshold at

Ra = Ra and resulting in steady rotation in either direction. As Ra becomes large compared to its

critical value, Rc, the reciprocal angular velocity is approximated by the product of the gravitation-
al time and the square root of the ratio of the fluid thermal diffusion time to a time representing
the combined damping effects of viscosity and magnetic diffusion.

The rotation is reflected in the vertical heat flux. Heat passing into the jacket over the lower
half and leaving over the top half is augmented by the motion. From Eq. 5 for the steady motion, it
follows that To = TE. Using Eqs. 1 and 4, the heat flux is computed from

QT =  r Rde =  h(T- T ext)RdO = 2hR(T + Te) (24)

The Nusselt number, Nu, is now defined as the ratio of this heat flux to what it would be in the
absence of rotation (convection),
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QT () = 1 + T y()

Nu T(=0) 1 + Ty (0)

Through Eq. 23, it follows that

(+ f)[l (1+ f) c
R a(1 + f ) [1 - R ] ; > Ra Ra
a R Rc  (26)

1 ; R < R<a a

The Nusselt number is shown as a function of Ra in Fig. 10.5.4. This type of dependence is typical of
fluid layers heated from below. At most, the effect of the steady convection is to render the rotor
isothermal, but even then conduction through the jacket limits the flux. Hence, the asymptote (l+f)
for Nu as Ra,-*. Raising the magnetic field reduces Ra and hence suppresses the heat flux. Of course,
if the magnetic field is large enough to prevent the convection altogether by making Ra < Ra, then
heat transfer is solely due to conduction and Nu -+ 1.

The dynamical model can be used to study transient behavior. A hint that the predicted phenomena
are of great variety is given by considering the stability of the steady rotation just described.
Perturbation of the steady rotation shows that oscillatory instability (overstability) can result at
high Ra (see Prob. 10.5.1). Because the rotor inertia now comes into play, PT is therefore a critical
parameter.

If heated from the side, the rotor is not in a state of static indeterminancy. It can execute
steady rotation in one direction without a threshold. This configuration is also useful for modeling
practical natural convection systems. These observations are developed in the problems.

10.6 Hydromagnetic B4nard Type Instability

What is conventionally termed Bgnard instability is commonly seen when a layer of cooking oil in
the bottom of a pan is heated from below.1 If heat were applied with perfect uniformity over the
horizontal plane, density stratification would result because the lighter fluid is on the bottom. What
is seen is cellular convection, as illustrated in Fig. 10.6.1, and it results because, in the gravita-
tional field, the configuration of mass density is unstable, as might be expected from Sec. 8.18.
Because material of fixed identity tends to lose its heat to its surroundings, and hence to take on the
same mass density, thermal diffusion requires a finite vertical heat flux before the convection is ob-
served.

The rotor of Sec. 10.5 is a finite-amplitude model for this cellular convection. Recognized now
are the infinite number of degrees of freedom of the actual fluid, but the continuum model is re-
stricted to perturbations from the static equilibrium.

The layer, shown in Fig. 10.6.2, is horizontal. Driven by a temperature difference Tb-Ta, the
static layer sustains a uniform vertical heat flux ro. The heat conduction through this static layer
is in the steady state, so the temperature distribution is linear and the heat flux independent of x.
With DTs the stationary gradient in temperature, this flux is 0o = -kTDTs.

There is no equilibrium magnetic force density, so gravity alone is responsible for the vertical
pressure gradient. Conditions for the magnetic Hartmann-type of approximation prevail, in that the
magnetic diffusion time, Tm, is much less than the magneto-inertial time TMI , while TMI is much less

than the viscous diffusion time, Tv (see Sec. 9.9). In fact, in this section, viscous effects will be
ignored altogether.

The gravitational acceleration of the fluid has its origins in the dependence of the mass density
on the temperature. For the relatively small changes in mass density typical of liquids,

p = p [l + a (T TE)] (1)

where po and a are constants and TE is the average equilibrium temperature. The coefficient of thermal
expansion, ap, is typified in Table 10.6.1.

1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961, pp.9-75.
For effect of magnetic field see pp. 177-186.
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Fig. 10.6.1

Cellular convection subsequent to incipience
of thermally induced Benard instability.
A layer of silicone oil is heated from below
in a frying pan. (Reference 4, Appendix C).

Courtesy of Education Development Center, Inc. Used with permission.

x

Fig. 10.6.2

Layer of conducting fluid such as liquid
metal supporting uniform vertically di
rected heat flux and magnetic field in
tensity.

Table 10.6.1. Coefficient of thermal expansion a p - -(3p/3T)/p
for representative fluids at 2000 C

Coefficient of thermal
Liquid expansion

l(OC- )up

4
Water -2.1 x 10-

4Glycerol -4.7 x 10-
4Mercury -1.8 x 10-
4n-Xylene -9.9 x 10-

Gas (at constant pressure)

-3Dry air -3.4 x 10

For small temperature excursions, mass conservation becomes

+ DT
V'v -u  (2)

p Dt

so the flow is not exactly solenoidal. It is straightforward to include dilatational terms in the force
and energy equations, but the additional analytical effort is not justified in the class of flows of
interest here. Because up is small, V·v ~ O. However, it does not follow that the mass density of a
given element of fluid remains constant.

The perturbation part of the thermal equation, Eq. 10.2.2 with ~d ~ 0, makes evident why the
temperature (and hence the mass density) of fluid of fixed identity varies:

aT' 2- + (3)
at (DT )v = LV T'

s x -L

On the left is the time rate of change of T' for a given element of fluid, and on the right the thermal
diffusion that accounts for this rate of change.
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The force equation is written neglecting the viscous force density:

p +p1-a (T - T )]g + gT'1 + I x Hi

Consistent with the Hartmann type approximation considered in Sec. 9.9, Ho is imposed both in the force
equation and in the constitutive law

needed in Eq. 4. Also, because the imposed H is constant,

Vx E 0

With Eq. 5 substituted into Eq. 4, the pressure is eliminated from the latter by taking the curl. In
fact the desired equation for vx, devoid of 1, is obtained by taking the curl again and exploiting the
identity V x V x v V(V.)) -V 2$. Then the x component is simply

2
2( T' a2 T'\ 2 x

.) V- 2v=2R.1 at x= -p 0oy 2
2 / S(oH o  2

ax

Here, the mass density has been approximated as uniform in the inertial term and V.v - 0. This last
approximation is valid provided ap£ DTs << 1, where I is a typical length, perhaps the thickness A of
the layer. •For a layer of mercury, 1 cm thick, subject to a 1000C temperature difference, this number
is 1.8 x 10- .) The electric field appears in the other components of the force equation operated on
in this fashion, but not in the x component.

In normalized form, Eqs. 3 and 7 become

[I (D 2 - k 2 ) + D2]v - R k2T = 0
p x am

v + [j, - (D - k2)]T = 0

where

W = /(A2 ) = TADTs; r = rxkTDT L-
L ; T 'L

- s x -xT s

2 2
x = xA; vx KT/A; p = Ko.,p /A

. b - 'ý
The variables that complement (T,vx) are the thermal flux,

r = -DT (10)x

and the pressure, found from the x component of the force equation, Eq. 4, in terms of (T,v x):

Dp = RamPTMT (11)- jvx

The magnetic Rayleigh number and thermal-magnetic Prandtl number are familiar from Sec. 10.5,
where they are written as ratios of characteristic times.

Because Eqs. 8 and 9 have constant coefficients, solutions take the form

T= E T exp(ymx) (12)

x = Y2  - 2k ) ] T- E  J. - ( m exp(Ymx) (13)
m=l

where the latter follows from Eq. 9. The characteristic equation gotten by substituting into Eqs. 8
2and 9 is quadratic in y . Thus, roots take the form y = +y and y = +Yb. With a 7-[jw - (y2 - k2 )]

and b -[jo - (yb - k2 )], the conditions that Eqs. 12 and 13 assume the correct values at the a and B
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surfaces are

a
Ya -Y, Yb Yb

e e e e T
IT4

1 1 1 1

I~
(14)

ae ae be be T

a a b b --

The procedure for deducing transfer relations between T ,T xx] and [rx' x,p ] is now similar to
that given in Sec. 7.19. Here attention is confined to the temporal modes and the critical conditions
for instability.

Suppose that the boundaries are actually rigid walls, so that (vx,vx) = 0, and are constrained
to be isothermal, so that (ia,T) = 0. Then the determinant of the coefficients in Eq. 14 must vanish.
The determinant is easily reduced by subtracting the second and fourth columns from the first and third,
respectively. Thus

4(b - a)2 sinh Ya sinh Yb = 0 (15)

Nontrivial roots to Eq. 15 are either ya = jnir or Yb = jnw, n = 1,2,..-. To determine the associ-
ated eigenfrequencies jw E sn of the temporal modes, the characteristic equation, found by substituting
exp(yx) into Eqs. 8 and 9,

2 2)) 2 2

[s(Ln n - k ) + py Y ][n- (yn - kL )] + pTRazmkL = 0 (16)

is evaluated with I = jnw. This expression can be solved for sn to give

+ B2(n S-B + k2 ] - R k}[(n)[1 2 + k2 

s -B = 2-2 (1.7)
2[(n) 2 + k ]

where B E nw)2 + (nw)2 + k2 2. Provided that the quantity in {} under the radical is greater
than zero, Mll roots are negative, because then the radical has a magnitude less than B. However, if
that term is negative, half of the roots represent growing exponentials. Thus, the critical condition
for the onset of cellular convection of each mode, n, at a wavelength 2w/k is

2
Rm (n) [(nr) + k 2  

(18)
k

Note that Ram is indeed'positive for the typical fluid heated from below, because ap is typically negativ
and DT, is also negative. In addition to the transverse modal structure represented by n, there is the
longitudinal dependence represented by k. According to the model, the n = 1 mode with infinitely short
wavelength (infinite k) is the most critical with incipience at

Rc 2 (19)am

To have a better approximation as to the critical longitudinal wavelength of the most critical mode, it
would be necessary to add further physical processes, such as viscous diffusion, to the model. The way
in which viscosity plays the damping role of the magnetic field is illustrated in Sec. 10.5 and
Prob. 10.6.3.

In the rotor model, there are two thermal time constants, with a ratio TT/Tt E f. In the fluid
layer, there is no such dimensionless ratio, because azimuthal and radial conditions involve the same
spatial scale and the same fluid properties. Hence, the critical Rayleigh number that is equivalent to
Eq. 19 is given by Eq. 10.5.22. The steady convection and overstability of that convection predicted
using the rotor model give some hint as to the nonlinear phenomena that ensue as Ram is raised beyond
Ra. At first, due to cellular convection, there is an augmentation of the heat transfer, as typified
by a Nusselt number that increases with Ra. The steady cellular motion is itself potentially unstable
with an ultimate turbulent (nonsteady) state the result. The transition to turbulence should be ex-
pected to be a function not only of Ra but also of pT"
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MOLECULAR DIFFUSION

10.7 Unipolar-Ion Diffusion Charging of Macroscopic Particles

Ions encountering the surface of a macroscopic particle tend to become attached. This is espe-
cially true in gases, where macroscopic particles are commonly charged in passage through an ion filled
region. This is illustrated in Sec. 5.5, where an imposed electric field is responsible for the migra-
tion of ions to the surface of the particle. The result is "impact" or "field" charging. The model in
Sec. 5.5 neglects the fact that, on a sufficiently small scale, there is also a diffusional contribu-
tion to the ion flux. Through diffusion, ions also reach the surface and hence charge the particle.
This contribution can exceed that due to impact for sufficiently small particles.

As diffusion charging proceeds, it does so at a decreasing rate because the electric field gener-
ated by the chaiging tends to produce an ion migration that counters the ion diffusion. The determina-
tion of this charging rate and hence of the particle charge gives the opportunity to discuss some general
features of the diffusion of a single charged species while obtaining a useful result.

The continuum conservation laws from Sec. 5.2 include contributions from molecular diffusion.
What is now described is a continuum in which almost all particles are neutral and uniform. A relatively
small fraction of the particles are charged. For a single charged species, taken for purposes of il-
illustration as positive, the conservation of mass equation is Eq. 5.2.9, with G = 0 and R = 0. Com-
bined with Gauss' law, it gives

+ (v + bE)-Vp = K V2  pb (1)at + E

With a characteristic length A and time T, fluid velocity U and electric field E, the respective terms
in Eq. 1 are of the order

1 U 1 bE 1 + 1 pb 1 (2)

trans mig I D o e

where the expression has been divided by a characteristic amplitude of p. For the charging of a
particle having radius a, Z might be taken as a. The competition between diffusion and migration is

Trepresented by the terms in Trmi and D . These terms are equal if Tmig = TD; and, because of the
Einstein relation, Eq. 5.2.8, tHis is equivalent to

kE = kT/q (3)

Thus, thermal diffusion and migration are of equal importance if the thermal voltage is equal to the
voltage drop over a characteristic length. For E = 105 V/m (typical of fields in an electrostatic
precipitator) the length that makes diffusion and migration equal is 2.5 x 10- 7 m. The radius, a,
of the macroscopic particle is taken as being of this order.

-4
The diffusion time is estimated by taking as a typical ion mobility from Table 5.2.1, b = 10-4

which (for an ion df one electronic chargel gives as a typical diffusion coefficient K+ = 2.5 x 10-6.
Thus, the diffusion time is only 2.5 x 10- sec.

By comparison, the self-precipitation time Te is long. Whether ions are present in a given
volume by virtue of convection or migration, Te & 10-3 sec or longer is typical. After all, the ions
are self-precipitating with this time and some other mechanism having an equally short characteristic
time must be available to secure the required density.

The transport time is estimated by taking as typical the velocity of a charged submicron particle
in a field of 105 V/m, say 10-2 m/sec. Thus trans = 2.5 x 10-5 sec, which is still 100 times longer
than TD and Tmig.

Consistent with ignoring the self-precipitation term is the neglect of contributions to t from the
diffusing ions. Thus, I in Eq. 1 is taken as imposed, in general by the charge, Q, on the macroscopic

particle and charges on external electrodes. With this understanding, and one more observation, Eq. 1
then reduces to

V.(bip - K Vp) = 0 (4)

The first term in Eq. 1 has been neglected because the time scale for the charging process is
very long compared to the diffusion and migration times. Looking ahead, it will be found that the
charging time is of the order of Te . The charging process is quasi-stationary in the volume with the
transient resulting only because of the field's dependence on the charge, Q, of the macroscopic
particle.
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In general, the solution of Eq. 4 with an externally applied electric field is difficult. Here,
it will now be assumed that any ambient electric field is small compared to (kT/q)/£. Thus, in Eq. 4
the electric field is now taken as

= 2r (5)
A 2 r4TE r
O

With this field there is a radial symmetry, so Eq. 4 can be integrated once to obtain

247r K+ d- p (6)(ý 
+ dr E

o

Here, i(t) is the electrical current to the particle.

Superposition of particular and homogeneous solutions to Eq. 6 results in

is i1
o ) bg i•°o 

P = (Po + bQ exp 4 Q (7)

where the coefficient in front of the second term, the homogeneous solution, has been adjusted to make

p pO far from the particle.

The diffusion model pictures ions in the neighborhood of a given point as having a random distribu-
tion of velocities. At the surface of the particle, those moving inward are absorbed and this forces
the ion density there to zero. Thus, a second boundary condition is p(a) = 0 and Eq. 7 then becomes a
relation between the particle charge and the rate of charging, i(t):

dQ = i = bp° o(8)Qe-fQ (8)
dt Eo - fQl 

where in view of the Einstein relation, Eq. 5.2.8, f - q/4E oakT.

Rewritten so as to be integrable, this Fuchs-Pluvinage equation1 becomes

Q efQ -t b p
dQ - dt (9)

o Q o 0

Integration then gives

Qm

m-- m t (10)
m=l

where Q = Q/QD ( =  /f = 47eoakT/q is the charge needed to terminate the thermal "field", (kT/q)/a,
on the surface of the particle) and where t = t/Te (Te = Eo/Pob, the self-precipitation time for the
ions based on the ion density far from the particle). This charging characteristic is shown in
Fig. 10.7.1.

Diffusion charging is expected to dominate over impact charging if the particle is sufficiently
small that aE < kT/q, where E is the imposed or ambient electric field. Thus, in a field of 105 V/m,
particles must be smaller than about 0.2 um for diffusion charging to prevail. In fact, for the model
to be valid, there is also a lower limit on size. The continuum picture of diffusion depends on the
particle having a radius that is large compared to the mean free path of the ions and neutrals. In air
at atmospheric pressure, this distance is 0.09 um. For particles somewhat smaller than this, the con-
tinuum diffusion model is called into question. Models based on having a mean free path much greater
than the particle radius give a charging law that .is surprisingly similar to Eq. 10,2 so the result is
actually useful for particles smaller than the mean free path. Effects of the ambient field (impact
charging) in combination with diffusion have been considered. 3

1. N. A. Fuchs, Izv. Akad. Nauk USSR, Ser. Geogr. Geophys. 11, 341 (1947); P. Pluvinage, Ann. Geo-
phys. 3, 2 (1947).

2. H. J. White, Industrial Electrostatic Precipitation, Addison-Wesley, Reading, Mass., 1963,
pp. 137-141.

3. B. Y. H. Liu and H. C. Yeh, J. Appl. Phys. 39, 1396 (1968).
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Fig. 10.7.1

Normalized charge on a macroscopic par-
ticle having radius a, as a function of
normalized time, where charging is by
diffusion alone, QD E 47eoakT/q and
Te E o/b.

U eU C'+U bU tU
t/, -

10.8 Charge Double Layer

Considered in this section is the competition between migration and diffusion that creates a
double layer at an interface between a bipolar conductor and an insulating boundary. The fluid is
some form of electrolyte in which dissociation has created ion species having densities p+ with a
background of molecules having density n. The conservation laws for the charged and neutral species
are Eqs. 5.8.9 and 5.8.10 and the system is EQS.

At the outset, the electrolyte is presumed to be highly ionized. As discussed in Sec. 5.9,
this means that generation largely depletes the neutral density. In the neutral conservation equa-
tion, Eq. 5.8.10, terms on the left are essentially zero while recombination and generation on the
right almost exactly balance. As a result, G-R is negligible in the charged particle equations,
Eqs. 5.8.9, as well.

Consider the quasi-stationary distribution of ions in the vicinity of an insulating boundary.
For now, there is no fluid convection, so v = 0. The steady one-dimensional particle conservation
statements then reduce to

ddp

-x [b+ExP' - K+ d ] (1)=0 

d dp
d- [-bExp - K_ ] = 0 (2)

with Gauss' law linking the electric field to the charge densities

dcE

dx =p+ - (3)

The polarizability of the fluid is assumed uniform, so E is a constant.

The wall, at x = 0, is taken as insulating or "polarized," in that there is no current due to
either species through its surface. Hence, the current densities in brackets in Eqs. 1 and 2 are each
zero. These expressions are then solved for Ex. Because p-ldp/dx = d(tnp)/dx and Ex = -de/dx, it
follows that

+ P+ kT +
= IK+ 1in n (4)

b+ PO q Po

= ln ln - (5)
b Po q Po

- 0 0

Here, as an integration constant, the charge densities have been taken as reaching the same uni-
form density, po, far from the boundary. Also, the Einstein relation, Eq. 5.2.8, has been used to ex-
press the ratio of diffusion coefficient to mobility in terms of the thermal voltage kT/q. Consistent
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with the positive and negative charges being generated by an ionization is the assumption that the q is
the same for each ionized species.

The charge densities required to express Gauss' law can now be found by solving Eqs. 4 and 5 for

p±. Thus, Eq. 3 becomes the classic Debye-HUckell expression from which the double-layer potential is
determined:

d 2  sinh [D/(kT/q)] 
(6)

dx

Normalization of the potential and length makes clear the key role of the Debye length, 6D:

x =x6D, = kT/q, D EkT (7)

because then Eq. 6 becomes simply

d2
2 = sinh 0 (8)

dx

The Debye length is that distance over which the potential developed by separating a charge density po
from the background charge of the opposite polarity is equal to the thermal voltage kT/q. By sub-
stituting for kT/q = K6b, 6D can also alternatively be considered the distance over which the mole-
cular diffusion time 6/K is equal to the self-precipitation time c/pb. Thus, 6D varies from about
100 X in aqueous electrolytes to microns in semi-insulating liquids.

To integrate Eq. 8, multiply by DN and form the perfect differential

d •2 - cosh (9)

Far from the layer, the potential is defined as zero. Because there is no current flow there and the
charge densities neutralize each other in this region, the electric field -D4 also goes to zero far
from the boundary. Thus, the x-independent quantity in brackets in Eq. 9 is unity, and the expression
can be solved for DM. The x- and 4-dependence of that expression can be separated so that it can be
integrated:

dx = + d0 (10)
o - 2(cosh - 1)

As a function of the normalized zeta potential _, this result is illustrated in Fig. 10.8.1.

The exponential character of the potential distribution is best seen directly from Eq. 6 by recog-
nizing that if 4 << 1, sinh can be approximated by its argument. It follows that the solution is
simply 4 = -I exp (-x). For ý > 1, the rate of decay is faster than would be expected from low C limit.

On the interface is a surface charge given by

F2p FkTA

-f dx' .f = q

and this has image charge distributed throughout the diffuse half of the double layer. Found from the
potential by inverting Eqs. 4 and 5, the charge densities p+ and net charge density pf are illustrated
in Fig. 10.8.2.

Double layers can exist not only at interfaces between an insulating material and an electrolyte,

but even at the interface between a liquid metal such as mercury and an electrolyte. What is required
is an interface that, for lack of chemical reaction, largely prevents the transfer of charge. For
potential differences under about a volt or so, even a mercury-electrolyte interface can prevent the
passage of current. Double layers at such interfaces are taken up in Sec. 10.11. In the next two
sections, the double layer abuts a material that is itself a rigid electrical insulator.

1. P. Delahay, Double Layer and Electrode Kinetics, Interscience Publishers, New York, 1966,
pp. 33-52.
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Fig. 10.8.1. Potential distribution in Fig. 10.8.2. Charge density distributions
diffuse part of double layer with for 5 = kT/q.
zeta potential as parameter.

10.9 Electrokinetic Shear Flow Model
--r

A double layer in an electrolyte abuting an insulating solid is sketched in Fig. 10.9.1. Even/

though this layer tends to be extremely thin, the application of an electric field tangential to the
boundary can result in a significant relative motion between the solid and fluid. From the boundary
frame of reference, the field Ey exerts a force density PfEy on the fluid, and shear flow results.
Because pressure forces prevent motion in the x direction, flow is essentially orthogonal to the double-
layer diffusion and migration currents. Thus it can be superimposed on the static double-layer dis-
tribution discussed in Sec. 10.8. In layers that are "wrapped around" a particle, as taken up in
Sec. 10.10, a component of the applied field tends to compete with the fields internal to the layer.
The model now developed can only be applied to such situations if the x component of the applied field
is small compared to the double-layer internal field.

The relative flow is inhibited by the viscous stresses associated with strain rates developed with-
in the layer itself. These strain rates are inversely proportional to the layer thickness (of the order
of the Debye length) so the relative velocity tends to be small. Nevertheless, such electrokinetic
flows are important in fine capillaries and in the interstices of membranes. Electrophoretic motions
of both macroscopic and microscopic particles in electrolytes also have their origins in this streaming.

The simple model developed now is used in this section to describe electro-osmosis through pores.
It will be used to describe electrophoresis of particles in Sec. 10.10.

Fig. 10.9.1

Schematic view of double layer
subject to imposed field in
y direction resulting in shear

+1t14
+ *+

iii""""" 
flow.

4t "4
f 

t- 1 t
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Zeta Potential Boundary Slip Condition: For flows that have a scale that is large compared to the
Debye thickness, the electromechanical coupling can be reduced to a quasi-one-dimensional model that
amounts to a boundary condition for the flow.

On the scale of the double layer, the imposed electric field can be considered to be uniform. The
velocity is fully developed in its distribution in the sense of Sec. 9.3. Also, because the double-
layer region is so thin, the viscous force density far outweighs the pressure gradient in the y direc-
tion. Thus, the force equation, Eq. 9.3.4, takes the one-dimensional form

d2v dT
= T = EE (1)

dx2  dx ' yx y x

where the derivative of the shear component of the stress tensor simply represents the force density
pfEy. To prescribe the flow outside the layer, it is assumed that at the diitance d from the slip
plane, there is a fictitious plane at which fluid moves with the velocity v"i and sustains a viscous
shear stress Sa.

The constant from integration of Eq. 1 is evaluated by recognizing that the electric shear stress
falls to zero at x = d, where the external viscous stress equilibrates the internal stress:

dv

-- = = -T + Sa  (2)
dx yx yx

A second integration is possible because E is constant and Ex = -d4/dx. Also, Syx is a constant,
so that yx

fx dx cv.
nv = EE dx + S dx

y o y dx J o yx
(3)

= eE [D(x) - D(0)] + xSa
y yx

In terms of the conventions used in Sec. 10.9, the potential of the slip plane is taken as -t, while
that at x = d is zero, so Eq. 3 becomes

EE v = - d+ S (4)

y rn n yx

If the external stress, Syx, comes from shear rates determined by flow on a scale large compared
to 6D, the last term in Eq. 4 can be ignored. The mechanical boundary condition representing the
double layer is then simply

v = .-- (5)
y n

In refining the simple model, a distinction is sometimes made between the potential evaluated in the
slip plane and evaluated on the other side of a compact zone of charge that forms part of the double
layer but is not in the fluid and hence cannot move.

Electro-Osmosis: Flow through a planar duct, such as shown in Table 9.3.1, illustrates the applica-
tion of Eq. 4. Suppose that the duct width, A, is much greater than a Debye length. In the volume of
the flow, there are no electrical stresses, so Eq. (a) of Table 9.3.1 gives the velocity as

-E C 2

v (x) = + 
y n 2n By [(x2 (6)

A(6

The volume rate of flow per unit z follows as

3 EE 5
A d + E A (7)

= 12n dy n

This relation gives the trade-off between flow rate and pressure drop of an electrokinetic pump. The
pressure rise developed in a length k of the pore is at most that for zero flow rate,

Ap =!IEyc9/A 2 (8)
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In situations where A is small (but, to validate the model, still larger than a Debye length), this
pressure can be appreciable. For example, with 4 = 0.1 V (about four times the thermal voltage kT/q),
A = 1 Um, EB = 104 V/m, t = 0.1 m and c - 5co, the pressure rise is about 5 x 10n/m2 , which would
raise water to a height of about ei~m.

In membranes composed of a matrix of materials, perhaps of a biological origin, surrounded by double
layers, flow of fluid through the interstices is modeled as flow through a system of pores, each described
by a relation such as Eq. 7.1 The velocity profile for 6D arbitrary relative to A is found in
Prob. 10.9.1.

Electrical Relations; Streaming Potential: Associated with the electric field and flow in the
y direction, there is a current density

Jy = (p+b+ pb_)Ey + (p+ - p )vy (9)

The charge densities in this expression are as found in Sec. 10.8 and illustrated by Fig. 10.8.2. The
conductivity, p+b+ + pb_, tends to remain uniform through the double layer, but, if C > 1, tends to be
increased somewhat over the bulk value. The convection term is concentrated in the region of net charge,
and hence (on the scale of an external flow having characteristic lengths large compared to 8D) comprises
a surface current. Because it results from motion of the fluid, it might be termed a convection cur-
rent. However, it results from fluid motion within a Debye length or so of the boundary, and this mo-
tion is caused by the externally applied pressure difference and the field itself. For a small zeta
potential sinh i = 0 and 0 -C exp (-x/6D), and so it follows from Eqs. 10.8.4 and 10.8.5 that

2po'y 2Po

P+ - P = (kT/q) kT/q exp(-x/6D) (10)

and that the velocity of Eq. 3 is

EE
v = - y[1 1 - exp(-x/6 )] + X SO (11)
y n D n yx

The current density of Eq. 9 can be divided into a volume density represented by the' first term evalu-
ated with p+ = po and a surface current density represented by the second term

S2p o -x/6 EE C -x/6D) xSa
S (p - p)v = e (I - e ) + ydxSokT/q ono 

(12)2p 

n(kT/q) 2 y + yx) (12)

Both terms in this surface current density are due to convection, but the first reflects motion caused
by the field itself. This contribution therefore appears much as if the material had a surface con-
ductivity po 2

0 c6D/N(kT/q). Its origins are more apparent if it is recognized as the product of the sur-
face charge po6DC/(kT/q) and the slip velocity EBE y/.

The total current, i (per unit length in the z direction), flowing through a channel having
width A is then the sum of the surface currents at each of the walls and the bulk current

i = oAE + 2K (13)
y y

where K is given by Eq. 12. For the case at hand where A >> 6,D the wall stress, Syx, can be approxi-
mated using Eq. 5 as a boundary condition, and so is determined by the pressure gradient.
(See Prob. 10.9.2.)

10.10 Particle Electrophoresis and Sedimentation Potential

Electrophoretic motions account for the "migration" of a wide variety of particles in an applied
electric field intensity. Particles may be as small as large molecules or as large as macroscopic
particles (in the micron-diameter range). If these motions persist over times much longer than the
charge relaxation time, it is clear that the particle and its immediate surroundings carry no net
charge. The particle is not pulled through the fluid by the electric field, but rather by dint of the
field "swims" through the fluid.

1. A. J. Grodzinsky and J. R. Melcher, "Elecromechanical Transduction with Charged Polyelectrolyte
Membranes," IEEE Trans. on Bibmedical Eng., BME-23, No. 6, 421-33 (1976).
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Electrophoresis is used by chemists as a means of
classifying particles. For example, protein molecules
can be distinguised by electrophoretic techniques, and
the electrophoretic motion of particles through a liquid
absorbed in paper or comprising the main constituent of
a gel is used for routine clinical tests (paper and gel
electrophoresis). Electrophoretic motions are also used E 
to control particles of pigment in liquids, for example

Til ot I
in large-scale painting of metal surfaces.

Electrophoretic motions are now modeled under the
assumption that the particle is much larger in its ex-
treme dimensions than the thickness of the double layer.
The particles are insulating, and approximated as
spherical with a radius R, as shown in Fig. 10.10.1.
The particle is taken as fixed, with the fluid having a
uniform relative flow at z + 4-, as illustrated. Ex-
ternal electrodes are used to apply the electric field
intensity Eo, which is also uniform in the z direction.
As z - +-,

4 + -E r cos 6
o

Fig. 10.10.1. Solid insulating particle

Electric Field Distribution: For a control volume
erla 

double 
ortin su 

which cuts through the double layer, as shown in Fig. 10.10.2,
conservation of charge requires that the conduction current from the bulk of the liquid be balanced by
the divergence of convection surface current along the interface:

+ 4
n.J + V.•f = 0

Here, Kf is the integral of the tangential current density Pfv over the mobile part of the double layer
and takes the form of Eq. 10.9.11. It is assumed that, because the external viscous stress results
from strain rates on the scale of R, and relative motions of the liquid are due to the field itself,
the stress term in Eq. 10.9.12 is negligible compared to the first term. In terms of the spherical
coordinates, Eq. 2 therefore requires that at r = R,

-aor + R sin (a E sin 6) = 0 r Er

where o Ep es /n(kT/q). To satisfy tite condition on $ at in-
finity,SEq. 1, 4 Ks taken as having the fc)rm Particle

cos 8
S= -E o r cos 8 + A 2 (4)2r

Fig. 10.10.2. Control volume
It follows from Eq. 3 that

enclosing double layer.
2o

ER [o - R-S]
o

A= (5)2 as
[a + ]R

and hence that at r = R,

3E a
E 2- o0 sin 8

2(a + -- )R

What has been solved has the appearance of being an electrical conduction problem. But, remember that
the surface conductivity reflects the convection of net charge by the slip velocity of the fluid
relative to the particle.
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Fluid Flow and Stress Balance: The slip velocity follows from Eq. 10.9.3 evaluated using Eq. 6:

E
v e E = sin 6; 3 (7)

T1 6 0 2 0 s
1+ aR

In addition to this boundary condition, the radial velocity is essentially zero at r = R and the
velocity approaches the uniform one of Eq. 1 far from the particle. Because of the small particle
size and relatively low velocities, the conditions for low Reynolds number are likely to prevail.

The boundary conditions fit the exterior, n=l, high Reynolds number flows of Table 7.20.1. Thus,
the stress components follow directly from Eq. 7.20.24 evaluated using Eq. 7 and vr = 0:

(8)

Here the complex amplitudes represent the 6 dependence summarized in Table 7.20.1.

The net force on the particle in the z direction can be computed from these stresses by inte-
grating the appropriate components over the spherical surface, as in Eq. 7.21.1:

fz =  R2 rr- Sor) =*A 'Rn(6U + 4v )  (9)

There are no external forces acting on the particle, so fz = 0. It therefore follows from Eq. 9 that
the particle "swims" at a velocity

2 - e oiE (10)U = - Ve = 

1+--
oR

2
where a ps 2 E6 /n(kT/q). This velocity is now interpreted as the velocity of the particle due to an
appliedsfiela witR the fluid stationary. Note that it is in a direction opposite to that.of the applied
field (assuming that the zeta potential is positive, or that the charge in the liquid is positive, as
indicated in Fig. 10.10.1). The charges in the fluid surrounding the particle carry the fluid in the
direction of the field. The resulting force on the particle is in an opposite direction. The particle
moves as if it were subject to the net force QE, where Q is proportional to the net charge on the
particle side of the double layer.

As would be expected, for small zeta potentials, the particle velocity increases with ý. How-
ever, as ý becomes "large," this velocity peaks and finally becomes inversely proportional to r. This
finding might at first seem surprising, but relates to the fact that for large ý, the motion is im-
peded by fields generated by the build-up of charge carried forward by convection. According to the
model, convected charge must be carried back again by conduction through the surrounding liquid. Thus
it is that the tendency of an increasing ý to decrease the particle mobility is avoided by increasing
the conductivity of the surrounding fluid.1

With external forces such as those due to.gravity or centrifugal acceleration forcing a particle
through the liquid, reciprocal coupling occurs. Convection of charge in the double layer results in a
dipole of electrid field intensity and current density around the particle.. If many particles are
present, these generated fields add, to induce a "macroscopic" field measurable by electrodes immersed
in the liquid through which the ion of particle move. This sedimentation potential (or "Dorn
effect") is the subject of b. 10.10.3

10.11 Electrocapillarity

A simple experiment that would prove baffling without an appreciation for the action of double
layers at interfaces between liquids is sketched in Fig. 10.11.1. Mercury drops fall from a pipette

1. For extensive discussion see V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Engle-
wood Cliffs, N.J., 1963, pp. 472-93.
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Fig. 10.11.1

Falling mercury drops surrounded by
NaCI electrolyte are deflected as
they pass through imposed field Eo.
Typical for a drop having radius
R = 1 mm passing through field
of E0 = 100 V/m would be a hori-
zontal velocity of 5 cm/sec.

through an electrolyte between electrodes to which a potential difference of a few volts has been ap-
plied. The drops are strongly deflected to one of the electrodes.

It is natural to simply attribute a net charge to each drop. However, the electrolyte is rela-
tively conducting and this means that any net charge would leak away in a few relaxation times
(Prob. 5.10.3). For the experiment of Fig. 10.11.1 this time is about 10-8 sec! Clearly, the drop
and its immediate surroundings can carry no net charge on the time scale of the experiment. The drops
must be "swimming," much as for the electrophoresing particles of Sec. 10.10. However, there are two
important ways in which the drops do not fit the electrophoresis model. First, the drop is much more
conducting than its surroundings. More important, it moves much too fast to be accounted for by the
electrophoresis model and reasonable zeta potentials.

Up to potential differences on the order of a volt or so, the mercury-electrolyte interface can
be polarized, in the sense that there are no chemical reactions to sustain a current flow so that the
interface acts as an insulator. The result is an electric field within the double layer that is far
larger than that in the electrolyte, on the order of 108 V/m compared to 102 V/m. The conditions are
established for having a double-layer surface force density, as discussed in Sec. 3.11.

If the drops were rigid, the surface force density would have no effect. On a closed surface,
there is no net force resulting from a surface force density (Prob. 3.11.2). However, the liquid
surface can be set into motion. The shear rate is determined by the scale of the drop and not the
scale of the double layer. This is why the drops move with such surprising speed relative to par-
ticles subject to electrophoresis.

The double layer also provides a mechanism for mechanical-to-electrical transduction. In the
mercury drop experiment, electrical signals are generated in the electrolyte by the passing drops.
Here again is cause for surprise, because generation of an appreciable electric field by the motion
implies a significant electric Reynolds number. Based on the bulk properties of the electrolyte
and the time for a drop to migrate one radius, this number is typically 10- 7 . The lesson here is
that the relevant relaxation time should reflect the heterogeneity of the system. The electric energy
storage is in the double layer but the electrical loss is in the surrounding medium. Hence, the cor-
rect electric Reynolds number is modified by the ratio of the drop radius to the double layer thick-
ness, a number that is of the order of 10-3/10-8 = 105. Drop motions are taken up in Sec. 10.12.

That the double layer electric surface force density of Sec. 3.11 takes a form similar to that
found in Sec. 7.6 for surface tension, is a warning that in dealing with naturally occurring double
layers it is not possible to make a clear distinction between electrical and mechanical surface force
densities. The microstructure of the fields within the layer is in general not known. For example,
through the electrochemical interaction of mercury and electrolyte, interior fields are generated
which can be altered by an externally applied potential difference, but are not solely determined by
external constraints.
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Developments in this section make no distinction between electrical and mechanical surface
forces. Rather, a surface tension Ye is used to represent both electrical contributions and those
ordinarily associated with the surface tension. The starting point is a statement of conservation
of energy for an element of the interface. Such a statement defines the energy in terms of the local
geometry and potential of the interface. If the exterior field contribution to the energy of the
system is significant, then the energy stored in the electric field is a function of the geometry of
the interface and of neighboring conductors and dielectrics. This contribution of the exterior fields
is represented by the first term in Eq. 3.11.8. In what follows, it is assumed that exterior energy
storage is negligible.

The surface tension Ye is to the interface what the stress is to the volume. With the under-
standing that YE - Ye, the control volume of Fig. 3.11.1 is used, where Ye is visualized as a force per
unit length acting normal to the edges. Because the interface can be expected to have properties in-
dependent of rotations about the normal vector n, it is assumed at the outset that the surface tension
acting in the p direction is the same as that acting in the ý direction. Also, the edges are pictured
as free of interfacial shear stresses. (A monomolecular interfacial film, residing on the interface as
a distinguishable phase, can behave as two-dimensional fluid or solid. For the former, Ye is replaced
by a two-dimensional tensor yij, with components departing from the diagonal form Yij = Ye6ij used here
because of relative motion (because of surface viscosity). The role played by the pressure in the
mechanical three-dimensional force density is taken by Ye on the surface. The scalar surface tension
can be regarded as an inviscid model for the interface that is particularly appropriate if the inter-
face is clean.2

Force equilibrium for the control volume requires that Eq. 3.11.8 relate the surface force density

and the surface tension:

- ÷ + 1 1
T = -ny [- + (1)eR 1  R2 + V

where external stress contributions are dropped.

With the objective of relating ye to the double-layer charge, consider conservation of energy for

a uniform section of the interface. An incremental increase in the energy Ws stored in the section of

interface having area A can either be caused by doing work by means of the surface stress along the

edges, or by increasing the total double layer charge qd placed on the electrolyte side of the inter-

face in the face of the potential difference vd:

6Ws = ye6A + vd6qd (2)

The mechanical and electrical work in this expression make it analogous to the conservation of energy

statement for a lumped parameter electroquasistatic coupling system, for example Eq. 3.5.1. One dif-

ference is that in Chap. 3 the force is assumed to be of purely electrical origin.

A second useful connection is between Eq. 2 and similar thermodynamic relations used in Sec. 7.22

for compressible fluids. In the volumetric deformations of a gas, p6V plays a role analogous to that

of the term ye6A in Eq. 2.

With the objective of using the double layer potential difference vd as an independent variable,
recognize that vd6qd = 6(vdqd) - qd6vd so that Eq. 2 becomes

6W -e6A + qd6vd; W q dvd - Ws  (3)

where W1 is an electrocapillary coenergy function. In a manner familiar from Sec. 3.5, the assumption
that WL is a state function of A and vd makes it possible to write

aw' DW'

6W's =A 6A + v 6Vd (4)

and to conclude by comparing Eqs. 3 and 4 that

awl awla' y aq
s s e d (5)

v = --- q
e BA ' d vA

DD d avd d A

2. For discussion, see for example G. L. Gaines, Jr., The Physical Chemistry of Surface Films,
Reinhold Publishing Corp., New York, 1952.
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Fig. 10.11.2a. Incremental capacitance and Fig. 10.11.2b. Surface tension as
charge per unit area as function of function of voltage for
voltage for mercury-KNO3. Here the data of (a). y has been
electrolyte is 0.2 M KNO3 in gel. defined as value for
This solid-liquid interface exhibits H20-Hg interface.
properties typical of liquid-liquid
interfaces. 3

The third of these expressions follows by taking cross-derivatives of the previous two expressions.

An example of a constitutive law expressing the dependence of the charge on A is

qd = Aad(vd)

This expression pertains to a "clean" interface because it stipulates that provided the potential dif-
ference is held fixed, increasing the area of exposure between mercury and electrolyte proportionately
increases the total charge. Such a law would not apply if, for example, the layer were a thin region
of insulating liquid that conserved its mass and therefore thinned out as the area increased.

With the use of Eq. 6, Eq. 5c becomes the Lippmann equation:

aye
-A ,

v I 

The graphical significance of Eq. 6 for an electrocapillary curve is depicted by Fig. 10.11.2.3
double-layer charge/unit area determined from Ye by Eq. 7 does not depend on a specific model.

That an alternative view has been taken of the same type of surface force density treated in
Sec. 3.11 is illustrated by taking the coenergy stored in the area A as being proportional to that
area and the integral of a coenergy density over the cross section of the layer,

+
W' = A W'(v)dv

s
0

3. A. J. Grodzinsky, "Elastic Electrocapillary Transduction," M.S. Thesis, Department of Electrical
Engineering, Massachusetts Institute of Technology, Cambridge, Mass., 1971.
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Then, with the use of Eq. 5a, an expression is obtained for Ye comparable
to that for YE given with Eq. 3.11.8. Of course, here W' can include
contributions of a mechanical origin, whereas in Sec. 3.11 it does not.
To preserve the generality inherent to Eq. 3, it is integrated along the
state space contour of Fig. 10.11.3:

W' = - Yo6A + AV o(d) v
I

SJA 0 d d)vd

where an electrical "clean-interface" constitutive law, Eq. 6, is assumed. S V
The surface tension is defined as Yo with the potential equal to d." Thus,
measurement of ad and integration is one procedure for determining Ye, Fig. 10.11.3. Line integra-
which by virtue of Eqs. 5a and 9 is tion in state space

(A,vd) to determine
co-energy function,

(10)Ye = Eq. 9.Yo- d ad(vd) vd
d

Conventionally, ad is determined by electrical measurements. With the area held fixed, a section
of the interface is driven by a voltage composed of a constant part Vd and a small perturbation va. The
measured current is then to linear terms

dvd aod
d

(11)
id = ACd dt-;

so that the incremental capacitance Cd(vd) can be deduced. The surface charge then follows from the in-
tegration:

vd

(12)ad = d Cd(Vd)dVd
Dd

The constant of integration must be independently determined, say by measuring the voltage at which
there is no mechanical linear response to a tangential perturbation field. Thus, the electrocapillary
curve can be determined by two successive integrations, the first Eq. 12 and the second Eq. 10. An
independent measurement of the surface tension, say at the voltage for zero charge, 4)d, is required for
the second integration constant. The three curves for the differential capacitance, Cd, double layer
charge density ad, and surface tension Ye are illustrated in Fig. 10.11.2.

Finally, note that for a clean interface the double-layer shear force density can still be thought
of as the product of ad and the tangential electric field on the electrolyte side. This is seen by
combining the potential and tangential field boundary conditions of Eqs. 2.10.10 and 2.10.11 (with
Et = 0 and 0 = constant on the metal side of the interface) to write

Et =-VEvd (13)

Then, if Ye varies only by virtue of vd,

(14)EVYe =av VE d = odEtd

This expression for the shear component of T applies if the layer is homogeneous in the sense that
any section of the interface is characterized by the same constitutive law, Eq. 8.

Electrocapillary phenomena illustrate how double layers can impart a net electric surface force den-
sity to an interface. Although most studied and best understood for Hg-electrolyte interfaces, elec-
trocapillarity serves as a thought provoking example in developing models involving other more complex
combinations of materials.

4. P. Delahay, Double Layer and Electrode Kinetics, Interscience Publishers, New York, 1966.
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10.12 Motion of a Liquid Drop Driven by Internal Currents

Although incapable of causing a net electric force on a closed surface, the double-layer con-
tributions to the surface force density can nevertheless induce net motion. The specific example
used to illustrate how is depicted by Fig. 10.12.1, and intended as a primitive model for the trans-
duction of an electrochemically generated current into net mechanical migration. Perhaps it might
pertain to the locomotion of a biological entity. With the driving current outside rather than in-
side, it is the configuration of the dropping mercury electrode. (See Prob. 10.12.1.)

The spherical double-layer interface separates an electrolytic fluid inside from a relatively
highly conducting fluid outside. At the center, there is a current source having the nature of a
battery, modeled here as a dipole current source. A source of I amps is separated along the z axis
by a distance d << R from a sink of I amps (the positive and negative terminals of the battery).
The objective is to determine the velocity of the drop relative to the surrounding fluid, which is
stationary at infinity. So that the flow is steady, use is made of a frame of reference fixed to the
center of the drop. The surrounding fluid then appears to have a uniform velocity Utz far from the
drop.

/I\I

Fig. 10.12.1. (a) Liquid drop separated from surrounding liquid by ideally polarized
double layer. Dipole current source is located at drop center. (b) Stream
lines for fluid motion as viewed from frame fixed to drop.

With the double layer positive on the inside and I positive, U will be found to be negative,
meaning that the drop is propelled in the z direction or in the direction of the dipole. Thus the
magnitude and direction of migration is determined by the dipole. The physical mechanism is the double-
layer shear surface force density tending to propel the interface from north to south. This density is
largest at the equator. The consequent bulk flow is sketched in Fig. 10.12.1b. Inside, a doughnut-
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shaped cellular motion results, while outside fluid is pumped
V .i J C

in the -z direct.L onL. scous s 
U ear stressesLl at lthe nter aceL

are typically determined by the interfacial velocity and a
characteristic distance on the order of the drop radius R. The
double-layer thickness is many times smaller than R, and hence
the viscous shear stresses within the double layer (which are
based on the thickness of the double layer) make the layer
move essentially as a whole. Thus, for the present purposes,
the fluid velocity is continuous through the double layer, and
it is the net surface force density discussed in Sec. 3.11 that
is the drive.

The physical explanation for the drop motions applies
(turned inside out) to the drop motions discussed in
Prob. 10.12.1. It is because the interface can flow that -1 -
the drops sustain a net electrically driven motion. Propul-
sion of a boat is in a way analogous. The double layer simply
"rows" the drop through the surrounding fluid. pole current source in

terms of a source and sink

A self-consistent model for radial and tangential stress of current disposed along

equilibrium, as well as conservation of double-layer charge, could the z axis a distance d
in general be complicated. The remarkable fact is that a relatively apart.

simple model can be formulated combining electrical and mechanical
distributions that have the 6 dependence cos 6 or sin e. The drop is assumed to remain spherical.
The assumption is subsequently shown to be valid.

First, the electrical current-dipole is represented. In the electrolyte, the current density is
given by If = -ObVn and hence there is an electric potential associated with the point current source
and sink, c0+=±I/4nobr±. The distances r± are sketched in Fig. 10.12.2. By taking the limit d << r of
the superimposed source and sink potential, it is seen that in the neighborhood of the origin, the po-
tential must be

Id cos e
4ia 2 (1)
47rb r2

c On a spherical surface radius c << R, the potential takes the form ReO cos 0, which is the n = 1
and m = 0 case from Table 2.16.3. The complex amplitude on the 8 + c surface surrounding the dipole at
r = c is

ic Id (2)
2

4rab c

The electric transfer relation, Eq. (a) from Table 2.16.3, again in the limit c << R, then gives the
radial field at r = R in terms of the current drive and the potential at the interface:

$b 2 c b-b = 3c 3Id (3)
E +-- 

r 3 (3)R R 4aR 3

The 0 dependence is recovered by multiplying by cos 0.

The region r > R is highly conducting, so for now the potential there is taken as uniform. The
coupling at the interface is a two-way one.

Charge Conservation: Because the interface moves in a nonuniform fashion, charge carried by con-
vection must be supplied by conduction at one pole and similarly removed at the other. The interface
is presumed to be ideally polarized, so that charge conservation requires an equilibrium between the
convection of the double-layer charge associated with the interior region and conduction normal to the
interface from the interior:

E (a dv R sn e a0 Ld sin = fj bE ( 

A similar relation applies to the exterior side. In the absence of the electrical drive, the interface
has a uniform charge ao consistent with a potential difference Vd. The surface potential variation
caused by I is reflected in a charge variation. In the following it is assumed that the total departure
of the potential from Vd is relatively small so that the double layer charge, ad, in Eq. 4 can be
approximated by 0o.
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The transfer relations for the viscous flow, as developed in Sec. 7.20, suggest that ve = ve sin 6,
so that Eq. 4, with cos 8 factored out, becomes

2aov6  _b 3Id

2a ab b= = ab  R + (5)

Here, Eq. 3 establishes the second equality.

The combination of electric double-layer boundary conditions, Eqs. 2.10.10 and 2.10.11, reduces
here to

E b (6)
e R ae

serving as a reminder that just inside the interface there is a tangential electric field.

Stress Balance: The radial and tangential balance of mechanical stresses, with the surface force
density given by Eq. 10.11.1 and with the shear term expressed a& Eq. 10.11.14, are represented by

--Ha + Sa + b S 2Ye = 0 (7)
rr rr R

a  b

Sr - Sr + odE0 = 0 (8)

With the outside potential defined as zero, it is appropriate to let 4 be the departure from potential
Vd in the interior. Then

Ye - de; ad y- d(9)
Vd

where yc is the surface tension at the equator and ad is in accordance with the Lippman Eq. 10.11.7.
The 0-independent part of the surface tension radial force is balanced by a uniform pressure jump
Ha - Hb at the interface. With the assu ption that ad - 0o , Eq. 7 is satisfied for each value of 0 if

2ob b
2S - 2 + 2 0 (10)

rr rr R

where cos 6 has been factored out and amplitudes are introduced consistent with Table 7.20.1.

Similarly, according to Eqs. 8 and 6, tangential force equilibrium results at each value of 6 if

Sa b b =0 (11)
Or Or R

where sin 6 is factored out.

That the double layer moves as a whole at a given interfacial location implies a tangential
velocity at the interface that is continuous, while the assumption that spherical geometry is retained
requires that the interior and exterior radial velocities vanish:

~a -b -a -b (12)
v = v 0 ; v r = 0; v = 0 (12)

With velocity amplitudes so related, viscous stresses are given for the outside region by Eq. 7.20.24
with the radius -- R and for the interior by Eq. 7.20.23 with radius a + R. These are now sub-
stituted into Eqs. 10 and 11. Three conditions on the amplitudes, physically representing conservation
of charge, Eq. 5, and these radial and tangential interfacial stress balances are
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o b 0 S~b 31d
vR R

4rR

3 2 0  3na
- 3(na+2nb )  o a = 0 (13)

3 a 3R
3 (n +n )r o aR a b U 0

R 2R

The velocity of the drop relative to an exterior fluid at infinity is the negative of U, where
from Eq. 13

H o
U -Id e H E 0 (14)

3 " ( +HZ)' 2 e j - 3 - "
4R b bn a  b ) (' +e ob(Ta + b )

The associated interfacial velocity follows by subtracting twice Eq. 13c from Eq. 13b,

e- 3U
v (15)

With I and ao positive, the signs are consistent with Fig. 10.12.1 and the introductory discussion.

The ormalized double layer charge density, He, also takes the form of an electric Hartmann
number, YvTe/TEV. This is seen by recognizing that ao -* e where ois typical of the electric field
inside the layer. The dependence of U on He sketched in Fig. 10.12.3 makes it clear that an optimum
charge density exists. With He small, the motion is mainly limited by viscosity and so increases in
linear proportion to oo . But if He >> 1, then the interfacial velocity, and hence U, is limited by
the ability of the electrolyte to conduct away the convected charge.

lo azscover wnat ximlts tne magnitude of
U, suppose that ao is made the optimum value
so that He = 1. Then, Eq. 14 becomes

-Id b
U = (16)opt 2 3 (16)8R ob (a: +2 b)

The magnitude of I is limited by the
maximum excursion of the double-layer potential
from Vd. From Eqs. 13a and 15, the interfacial
potential variation has the amplitude

3a
b = 3d +_ U (17)

47R2rb "b
•q . . .. • •b

These voltage contrlbutions are respectively 0
due to conduction and convection. With He = 1,
the second term cancels half of the first, so e
that the pole-to-pole excursion in potential,
2Pb , can be used to write Eq. 16 as Fig. 10.12.3. Dependence of drop velocity

on normalized double layer charge.
2b (b

U b (18)
opt 6 3

b -2 -3

Typical values are jb = 0.1 V, ab = 10- 2 2 mhos/m, na = -b = 10 for water based electrolytes, and hence
velocities on the order of 3 cm/sec. Of course, the low Reynolds number condition may not be met with
such a velocity. But clearly, the double layer mechanism can be the basis for significant motions.

The mechanical response to an electrical drive has been emphasized. That fields are generated
by the motion is a reminder that the electrocapillary double layer can be the site of a reverse trans-
duction.
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Problems for Chapter 10

For Section 10.2:

Prob. 10.2.1 The region between two planes, at x = A and x = 0, is filled with a material having
uniform thermal properties that sustains fully developed flow with velocity v = v(x)ly. The surfaces
are at the respective constant temperatures (Ta, TS). In the volume, there is an arbitrary dissipation

Yd(x).

(a) Determine the temperature distribution T(x).

(b) What is the thermal flux at the boundaries? Note that this is one of a group of "fully developed"
heat conduction configurations, playing a role in heat transfer analogous to the fluid mechanics
relations of Table 9.3.1.

For Section 10.3:

Prob. 10.3.1 The magnetically excited layer considered in this section is embedded in a system in
which the surroundings are relatively thermally insulating. The temperature of the layer rises to a
sufficient extent that the steady dissipation is accommodated by the steady heat flux. However, insofar
as the time-varying part of the heat flux is concerned, the layer surfaces are bounded by thermal insula-
tors. What are the temperatures at the layer surfaces?

Prob. 10.3.2 The moving slab of Fig. 10.3.1 is now a semi-insulating dielectric having uniform elec-

trical conductivity a and permittivity E. Potential distributions at the a and B surfaces are

respectively Re$O expj(wt-ky) and ReV expj(wt-ky).

(a) Write the electrical dissipation density in the form of Eq. 10.3.6.

(b) Find the temperature distribution throughout the slab and the heat fluxes at its surfaces. Assume

that at the a and B surfaces the respective temperatures are

T + ReT expj(w 2 t-k 2y) and T + ReTexpj(w2t-k2y).

For Section 10.4:

Prob. 10.4.1 A ferrofluid has a permeability that has the temperature dependence 1 = a[1-a (T-T ),
where •a and uP are constant parameters. In the channel of Fig. 10.4.1, the fluid is subjected to a

uniform transverse magnetic field intensity Ho . The object is to pump the fluid by imposing the temper-

atures Ta and Tb on the grids, and hence producing a variation in the permeability in the direction of

the heat flux. Assume that the boundary layer thickness is small compared to the channel cross section,

so that the velocity is uniform across the channel. Determine the pressure-velocity relation that is

analogous to Eq. 10.4.7 and the temperature distribution and heat flux.

For Section 10.5:

Prob. 10.5.1 The rotor described by Eqs. 10.5.16 - 10.5.18 is in the state of steady rotation described

by Eqs. 10.5.23.

(a) Show that this stationary state is overstable if R exceeds

4
(l+f) pT+ (l+f)

2a =T f pT- (l+f)

(b) Show that the frequency of oscillation at the onset of this instability is

1/ [pT+(l+f)]
2= 2PT(l+f) [pT (l+f)l

Prob. 10.5.2 The rotor of Fig. 10.5.1 is heated from the side rather than from below. Thus the exter-

nal temperature distribution is given by Eq. 10.5.1 with sine + cose.

(a) Deduce the equations of motion, similar to Eqs. 10.5.16 - 10.5.18.

(b) Use a graphical solution similar to that pictured by Fig. 10.5.3 to determine the steady angular

velocity. Explain qualitatively the direction of rotation.
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For Section 10.6:

Prob. 10.6.1 Implicit to Eq. 10.6.17 is the principle of exchange of stabilities. That is, as Ram is
raised, each temporal mode becomes unstable with sn = 0. If it is only the condition for onset of
instability that is of interest, it can be assumed at the outset that sn = 0 and Ram can be treated
as an eigenvalue. Thus (Ram)n is the value of Ram that reduces the frequency of the nth mode to zero.

(a) Use Eqs. 10.6.8 and 10.6.9 with the boundary conditions that T = 0 and v = 0 on the boundaries
x = 0, x = 1 to show that, provided Ram > 0, the principle of exchange of stabilities holds.
(See the Temporal Modes subsection of Sec. 8.18.)

(b) Set w = 0 in Eqs. 8 and 9 and solve the eigenvalue problem for Ram. The result should be
Eq. 10.6.18 and hence 10.6.19.

Prob. 10.6.2 For the thermal-hydromagnetic layer between the planes a and a as treated in this
section, determine the transfer relations

ri8

_p [Cij] v-x
pýcl -x

L7

Prob. 10.6.3 Consider the layer of Fig. 10.6.2, but with viscosity.

(a) Show that the normalized equations replacing Eqs. 10.6.8 and 10.6.9 are

2_2 j j  2_ 2 2 H 2 =
[(D2-k2 - (D -k2) - 2 D2]V = -RT A]- 

p m x a

--(D2_k2 ) = -v
x

where

=KT/A 2A ^
T = TADT

x = xA vx =v xKT/A

k = k/A E = pAb2 /K•2P

and the conventional Rayleigh, Prandtl and Hartmann numbers are

ap gA DT n T IA2 c2 H
0 s T 2 oo

R -=p ; H
a KTfl PT PKT T v m 71

(b) Outline a scheme to determine the transfer relations expressing the surface stresses and
heat flux (S, Sxx Sa 5̂ , x, Px) in terms of the surface velocities and temperatures
(0x, , , , TO). The motions may be assumed to be independent of z, so kz = 0.

For Section 10.7:

Prob. 10.7.1 A thin metal cylinder-having radius R is charged by unipolar ions having the density

po at the radius a from the cylinder's center. Assume that at a given instant the charge per unit

length on the cylinder is X and that the self fields of the ions in the volume are negligible com-

pared to those due to the charge on the cylinder.

(a) Determine the ion charge density as a function of radial distance r.

(b) What is the current per unit length collected by the cylinder as a function of the voltage

of the cylinder relative to that at r = a?

(c) If the cylinder is allowed to charge up, what is X(t) given that when t = 0, X = 0?
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electric f eld on a homogeneous layer of liquid bounded from above (at x = 0) by air. Model the liquid
as devoid f all but one positive species of electrical carriers with charge density p+. Agsume that
charge in heneighborhood of the interface shields the field from the liquid bulk so that E = Eoix
at x = 0 a d E + 0 as x W-m. Hence, self fields of the ions are included.

(a) With negligible net current through the air, and hence in the liquid, show that the electric field
and charge density comprising the monolayer of surface charge for x< 0 are

Ex = Eo/(l-x/d) ; + = (E o/ad)/(l-x/ad)2 ; d = 2K+/bEo

(b) For E = 10 v/m, what is a typical value of d ?

For Section 10.8:

Prob. 10.8.1 An electrolyte is bounded by plane parallel boundaries, each having the potential -5.
They are positioned at x = 0 and x = A.

(a) Under the assumption that i << 1, what is the distribution of M? What is the potential D E= at
- -c

the midplane?

(b) For arbitrary magnitude of 0, show that in terms of normalized variables the potential distribution
is S d!

2 coshý - coshic

where again Ic is the potential at the midplane.

(c) Given the normalized spacing A E A/6 , describe a numerical procedure for finding ( and hence
determining the potential distribution.

(d) For A = 2 and 5 = 3, what is ý' ? Plot the potential distribution.

For Section 10.9:

Prob. 10.9.1 The boundaries of a planar duct, such as pictured in Table 9.3.1, have a spacing A that
is not necessarily large compared to Sd"

(a) Used Eq. a from Table 9.3.1 to express the velocity distribution in terms of the potential distrib-
ution.

(b) Show that this expression reduces to Eq. 10.9.5 in the case where the Debye length is short compared

to the channel width.

(c) In Prob. 10.8.1, a procedure is developed for finding the potential distribution with arbitrary wall

spacing. Show that the velocity distribution can be written in the normalized form

2 6
v = kTy • - D + ((x) +

2CE kT 3y - AA 
y

where v = veE kT/nq and x = x6 and where O(x) follows from Prob. 10.8.1.
- y - D

Prob. 10.9.2 A two-dimensional channel having width A has walls with potentials A = -ý . The current

density in the y direction is "fully developed" and hence the total current through the channel is given

by Eq. 10.9.13.

(a) Show that the current is related to the imposed E and the pressure gradient 2p/9y by

2P 4256
o D E A_ 3p'

i = a + E
n(kT/q) y n l y

(b) For an "open-circuit" channel (i = 0) having a length 9 and pressure difference Ap = -Z8p/9y, what

is the streaming potential v -E £?
Y
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For Section 10.10:

Prob. 10.10.1 Following Eq. 10.10.2, it is argued that the shear stress induced surface current is
ignorable compared to that driven by the imposed field. Approximate the shear stress contribution using
the velocity U that was determined and justify this approximation.

Prob. 10.10.2 The particle considered in this section is fixed on a "stinger" which does not distort
the field or impede the flow but does constrain the particle to a fixed position relative to the fluid
at infinity. What is the force imparted by the electric field to the stinger?

Prob. 10.10.3 The particle is fixed on a stinger, as in Prob. 10.10.2, but both a uniform electric
field and a uniform flow velocity are imposed at infinity. Because the flow is now forced, the contrib-
utions of the shear stress to the surface current can be significant. In view of Eq. 10.9.12, represent
the surface current as

K8 = OsE 8 + BS6r

where for 4 < kT/q, a = 2po6D2/n(kT/q) and determine the potential distribution around the particle
as a function of E and U. What is the potential if E = 0? What is f ?

For Section 10.11:

Prob. 10.11.1 A clean interface is modeled as having a surface tension Yo at the voltage vd = Od,
the tension being independent of the area A, and a Helmholtz double layer consisting of a plane parallel
capacitor having spacing A, permittivity E and zero double layer charge at vd = *d. Determine Cd, ad
and Ws, and compare to Fig. 10.11.1.

Prob. 10.11.2 A hemisphere of mercury submerged in an Pa
electrolyte is shown in cross section in Fig. P10.11.2.
The interface between liquids forms a double layer of -- ------- -----1
thickness A, pictured here as being a "Helmholtz"
layer. (Prob. 10.11.1) jte

(a) Write an expression for static equilibrium using aP
!

the control volume shown to balance the pressure
forces against those due to the combined surface
tension and Maxwell stresses. Show that the

-------- 

resulting expression is as would be deduced t- - I 

from Eq. 10.11.1, where the electrocapillary
surface tension is found in Prob. 10.11.1.

(b) Now suppose that, by means of an orifice at the center Fig. P10.11.2
of the hemisphere, a small additional amount of mercury
is introduced, so that the interface expands from R to R + 6S. Use the result of (a) to compute
the incremental change in pressure implied by the electrocapillary model.

(c) An alternative model might depict the double layer as composed of a film of insulating fluid.
In that case, the equilibrium would take the same form as found in (a). But, suppose that with
the addition of an increment of mercury the surface expands in such a way that the insulating
layer of fluid preserves its volume. Find an expression for the change in pressure associated
with an incremental change in radius 6 . Compare the result to that found in (b) and explain
the difference.

For Section 10.12:

Prob. 10.12.1 With the objective of determining the mobility b = U/Eo of the mercury drop in an
electrolyte, consider a drop that is highly conducting, with a surrounding electrolyte permeated by an
electric field which is Eoiz far from the drop. Following steps paralleling those in this section, show
that the mobility is

b = R/(- + (2 + 3 )

A mercury drop in an electrolyte is the configuration of a dropping mercury electrode, widely
used to study electrochemical double layers because the surface is constantly renewed by continual
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Prob. 10.12.1 (continued)

generation of drops.1 The dropping mercury electrode is used in analytical chemistry as a sensitive
means of measuring trace constituents of the electrolyte.2

Prob. 10.12.2 A linear volume rate of flow is secured in the configuration of Fig. P10.12.2 by
exploiting the double layer shearing surface force density. An electrolyte is bounded from above by
insulating walls and from below by alternate sections of insulator and pools of mercury, each having
length Z >> a or b.

elecTr
e tylo i ns ulat ing con d t

Electrodes fixed adjacent to the
pool edges are driven by an external
current source and cause a "standing
wave" of current with the distribution
sketched. Hence, the ideally polarized
double layer experiences a shearing sur-
face force density tending to carry the
liquid in one direction, while the insu-
lating sections prevent backward motion
where that force density would be
reversed.

(a) Model the system as quasi-one-
dimensional, assuming fully Fig. P10.12.2
developed plane flow in each
of the sections and using mass and momentum conservation to piece these flows together at the pool
edges. Assume that gravity holds the interface flat and that the system is closed on itself.
Assume that the electrolyte is sufficiently highly conducting that charge convection at the
interface can be ignored and the interface can beregarded as essentially uniformly polarized
(even with the driving current producing a voltage drop in the interfacial plane).

(b) Find the volume rate of flow of the electrolyte as a function of the driving current.

1. An extensive treatment of the subject is given by V. G. Levich, Physicochemical Hydrodynamics,
Prentice-Hall, Englewood Cliffs, N.J., 1965, pp. 493-551.

2. J. Heyrovski and K. Jaroslav, Principles of Polarography, Academic Press, New York, 1966.
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