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Problems

however, the validity of ignoring the acceleration and speed voltage effects in this last region
should be examined.

The curve of velocity in Fig. 5.2.14 indicates that this system behaves much like a linear
statically unstable system (see curve A of Fig. 5.1.7). In some cases it may be desirable to
approximate the equations of motion by a linear set with a static instability. This is especially
true if the nonlinear expressions cannot be integrated analytically.

Although we have confined our attention in this section to discussing
examples in which the damping is mechanical in nature, electrical damping
can also dominate the dynamics. An example in which this is the case was
discussed in Section 5.1.3. There the dynamic behavior of a coil rotating in a
magnetic field was discussed in the limit at which the inductive reactance
could be ignored [condition of (5.1.32)]. This made it possible to reduce
the solution of the nonlinear motions to the problem of integrating (5.1.34),
a procedure that is analogous to integrating (5.2.19).

5.3 DISCUSSION

In this chapter there have been two objectives. For the first, important
types of dynamical behavior have been illustrated in which attention has been
given to the relation of basic electromechanical interactions to mathematical
models. For the second objective we have formed a basis on which to build an
understanding of continuum interactions. In this regard both the mathe-
matical techniques and physical approximations of this chapter are important
in the chapters that follow.

PROBLEMS

5.1. Two parallel, perfectly-conducting plates are constrained as shown in Figure 5P.1
in such a way that the bottom plate is fixed and the top one is free to move only in the
x-direction. A field is applied between the plates by the voltage source v(t). When x = 0,
the spring is in its equilibrium position.
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Lumped-Parameter Electromechanical Dynamics

(a) What is the force of electric origin exerted on the upper plate?
(b) Write the complete equations of motion for this system.
(c) If R = 0 and v(t) = (Vo sin wt)u_ 1(t), where u-1(t) is the unit step function, what

is x(t)? Assume that the system is in static equilibrium when t < 0.
5.2. The system illustrated in Fig. 5P.2 is a schematic model of a differential transformer,
which is a device for measuring small changes in mechanical position electrically. The
movable core is constrained by bearings (not shown) to move in the x-direction. The two
excitation windings, each having N 1 turns, are connected in series with relative polarity
such that, when the movable core is centered as shown, there is no coupling between the
excitation circuit and the signal winding. When the core moves from the center position
in either direction, a voltage is induced in the signal winding. In the analysis neglect
fringing fields and assume that the magnetic material is infinitely permeable.
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Fig. 5P.2

(a) Calculate the lumped-parameter equations of state, A1(i, -),i ,x), 2(i,x), for
this system.

(b) Terminal pair 1 is constrained by a current source iI = Io cos cot and the system
operates in the steady state. The open-circuit voltage v2 is measured. Calculate the
amplitude and phase angle of v2 as a function of displacement x for the range
-a < x < a.

5.3. A pair of highly conducting plates is mounted on insulating sheets, as shown in Fig.
5P.3a. The bottom sheet is immobile and hinged to the top sheet along the axis A. The
top sheet is therefore free to rotate through an angle v. A torsion spring tends to make
y = yo so that there is a spring torque in the +•-direction TS = K(Vo - y). A source
of charge Q(t) is shunted by a conductance G and connected by flexible leads between the
conducting plates. We wish to describe mathematically the motion of the upper plate [e.g.,
find cy(t)]. To do this complete the following steps:

(a) Find the static electric field E between the two flat, perfectly conducting plates
shown in Fig. 5P.3b. Assume that each of the plates extends to infinity in the r-
and z-directions.

(b) If the angle y is small [,a << D, ya << (b - a)] so that fringing fields are not
important, the electric field of part (a) can be used to approximate E between the
metal plates of Fig. 5P.3a. Under this assumption find the charge q on the upper
metal plate. Your answer should be in the form of q = q(V, V) and is the electrical
terminal relation for the block diagram of Fig. 5P.3c.
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(c) Use part (b) to find the electrical energy stored between the plates W = W(q, p)
and, using W, find the torque of electrical origin T e exerted by the field on the
movable plate.

(d) Write two differential equations that, with initial conditions, define the motion of
the top plate. These equations should be written in terms of the two dependent
variables W(t) and q(t). The driving function Q(t) is known and the movable plate
has a moment of inertia J.

(e) Use the equations of part (d) to find the sinusoidal steady-state deflection yP(t) if
G = 0 and Q(t) = Q, cos wot. You may wish to define y as yV= ytp + py'(t), where
v, is a part of the deflection which is independent of time. Identify the steady-state
frequency at which the plate vibrates and give a physical reason why this answer
would be expected.

M
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5.4. This is a continuation of Problem 3.4, in which the equations of motion for the
system shown in Fig. 3P.4 were developed.

(a) The resistance R is made large enough to be ignorable and the current I(t) = Io,
where Io is a constant. Write the equation of motion for x(t).

(b) Use a force diagram (as in Example 5.1.1) to determine the position x = xo,
where the mass can be in static equilibrium, and show whether this equilibrium is
stable.

(c) With the mass M initially in static equilibrium, x(O) = zo, it is given an initial
velocity vo. Find x(t) for x xo.

5.5. Two small spheres are attached to an insulating rod, and a third sphere is free to slide
between them. Each of the outside spheres has a charge Q1, whereas the inside sphere has
a charge Qo and a mass M. Hence the equation of motion for the inside sphere is

d2x QoQ 1 QIQo
dt2 42re(d + )2 47rE(d - x)2 "

d d
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Fig. 5P.5

(a) For what values of Qo and Qx will the movable sphere have a stable static equilib-
rium at x = 0? Show your reasoning.

(b) Under the conditions of (a), what will be the response of the sphere to an initial
small static deflection x = xz? xz << d. (When t = 0, x = xo, dx/dt = 0.)

5.6. Figure 5P.6 shows a sphere of magnetic material in the magnetic field of a coil. The
coenergy of the coil is

W'(i,x)= 1 - 4 i'21L \/

Fig. 5P.6
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where Lo is positive. The sphere has a mass M and is subject to a gravitational force Mg
(as shown).

(a) Write the differential equation that determines x(t).
(b) Find the equilibrium position(s).
(c) Show whether this (these) equilibrium position(s) is (are) stable.

5.7. In Problem 3.15 we developed the equation of motion for a magnetic wedge, and it
was shown that, with a constant current i = I o applied, the wedge could be in static
equilibrium at 0 = 0. Under what conditions is this equilibrium stable?

5.8. The system shown in Fig. 5P.8 is one third of a system (governing vertical motion
only) for suspending an airfoil or other test vehicle in a wind tunnel without mechanical
support. The mass M0, which represents the airfoil, contains magnetizable material and is
constrained by means not shown to move in the vertical direction only. The system is
designed so that the main supporting field is generated by current i1 and the stabilizing
field is generated by current i2. Over the range of positions (x) of interest, the electrical
terminal relations may be expressed as:

Lli1 Mi2A1(i, i2, x) = +
(1 + x/a)3 (1 + x/a) '

Mi1 L2 i2
(1 + xa)3 (1 + x/a)

3 '

where a, L1, L2 , and M are positive constants and M 2 < L1L2.
(a) Find the force of electric originfe(il, i2,x) acting on mass Mo.
(b) Set i1 = I, a constant current, and set i2 = 0. Find the equilibrium position X o

wheref e is just sufficient to balance the gravitational force on the mass Mo.
(c) With the currents as specified in part (b), write the linear incremental differential

equation that describes the motion of mass M o for small excursions x'(t) from the
equilibrium X o. If an external force f(t) = Iou,(t) (an impulse) is applied to the
mass in the positive x-direction with the mass initially at rest, find the response
x'(t).

(d) For stabilization of the equilibrium at X o a feedback system, which uses a light
source, photoelectric sensor, and amplifiers, supplies a current is such that
i2(t) = ca'(t), where a is a real constant. Keeping ix = I, write the equation of
motion for x'(t). For what range of a is the impulse response x'(t) bounded?

^I
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(e) To make the impulse response tend to zero as t - co, the signal from the photo-
electric sensors is operated on electronically to produce a current i2 such that

is = ax'(t) + dT ,

where ac and fl are real constants. Again, write the equation of motion for x'(t).
For what ranges of a and f does the impulse response x'(t) tend to zero as t - oo ?

5.9. A conservative magnetic field transducer for which variables are defined in Fig. 5P.9
has the electrical equation of state A = AAzi, for x > 0, where A is a positive constant.
The system is loaded at its mechanical terminals by a spring, whose spring constant is K

i fe

B

Fig. 5P.9

and whose force is zero when x = 1o, and a mechanical damper with the constant B. The
electrical terminals are excited by a direct-current source I, with the value

(a) Write the mechanical equation in terms offe.
(b) Find f' in terms of data given above.
(c) Find by algebraic techniques the possible equilibrium positions for the system and

show whether each equilibrium point is stable.
(d) Check the results of part (c) by using graphical techniques to investigate the

stability of the equilibrium points.

Fig. 5P.10
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5.10. An electric field system has a single electrical terminal pair and one mechanical
degree of freedom 0 (Fig. 5P.10). The electrical terminal variables are related by q =
Co(1 + cos 20)v, where 0 is the angular position of a shaft. The only torques acting on
this shaft are of electrical origin. The voltage v = - Vo , where Vo is a constant.

(a) At what angles 0 can the shaft be in static equilibrium?
(b) Which of these cases represents a stable equilibrium? Show your reasoning.

5.11. Figure 5P.11 shows a diagrammatic cross section of a two-phase, salient-pole
synchronous machine. The windings in an actual machine are distributed in many slots

Magnetic axis (2)

Fig. 5P.11

along the periphery of the stator, rather than as shown. The rotor is made of magnetically
soft iron which has no residual permanent magnetism. The electrical terminal relations are
given by

A, = (Lo + M cos 20)i I + M sin 20 is,

A 2 = M sin 20 i1 + (Lo - M cos 20)i2.

(a) Determine the torque of electrical origin T*(i, i2, 0).
(b) Assume that the machine is excited by sources such that i1 = I cos oat,

i --= Isin w,t, and the rotor has the constant angular velocity w,. such that
0 = o,.t + y. Evaluate the instantaneous torque T'. Under what conditions
is it constant?

· _.__
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(c) The rotor is subjected to a mechanical torque (acting on it in the +0-direction):
T = To + T'(t), where To is a constant. The time-varying part of the torque
perturbs the steady rotation of (b) so that 0 = wot + yo + y'(t). Assume that
the rotor has a moment of inertia J but that there is no damping. Find the possible
equilibrium angles V, between the rotor and the stator field. Then write a differen-
tial equation for y'(t), with T'(t) as a driving function.

(d) Consider small perturbations of the rotation y'(t), so that the equation of motion
found in (c) can be linearized. Find the response to an impulse of torque T'(t) =
Iu,(t), assuming that before the impulse in torque the rotation velocity is constant.

(e) Which of the equilibrium phase angles Yo found in (c) is stable?

5.12. An electromechanical model for a magnetic transducer is shown in Fig. 5P.12. A
forcef(t) is to be transduced into a signal vo(t) which appears across the resistance R. The

"1 o -

Fig. 5P.12

system is designed to provide linear operation about an equilibrium where the coil is
excited by a constant current I. The plate is constrained at each end by springs that exert
no force when x = 0.

(a) Find the force of electrical origin fe(x, i) on the plate in the x-direction.
(b) Write the equations of motion for the system. These should be two equations in

the dependent variables (i, x).
(c) The static equilibrium is established with f(t) = 0, x = X, and i = I. Write the

equilibrium force equation that determines X. Use a graphical sketch to indicate
the equilibrium position X at which the system is stable. Assume in the following
that the system is perturbed from this stable static equilibrium.

(d) The resistance R is made large enough so that the voltage drop across the
resistance is much larger than that across the self-inductance of the coil. Use this
fact as the basis for an approximation in the electrical equation of motion.
Assume also that perturbations from the equilibrium conditions of (c) are
small enough to justify linearization of the equations. Given thatf(t) - Re [fejit],
vo(t ) = Re [voeJwt], solve for the frequency response Volf.

5.13. The cross-section of a cylindrical solenoid used to position the valve mechanism of a
hydraulic control system is shown in Fig. 5P.13. When the currents il and i2 are equal, the
plunger is centered horizontally (x = 0). When the coil currents are unbalanced, the plunger
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Fig. 5P.13

moves a distance x. The nonmagnetic sleeves keep the plunger centered radially. The mass
of the plunger is M, the spring constant K, and the viscous friction coefficient is B. The
displacement x is limited to the range -d < x < d. You are given the terminal conditions

rA = L1 1i, + L12i•
2s = L12i1 + L22ij

L = Lo 3- 2 x

L 22 = L (3 +2 W2

L2 = Lo I - X).

where

7/, oo,

K

g
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(a) Write the mechanical equation of motion.
(b) Assume that the system is excited by the bias current Io and the two signal current

sources i(t) in the circuit of Fig. 5P.13 with the restriction that ii(t)I <<Io.
Linearize the mechanical equation of motion obtained in part (a) for this exci-
tation.

(c) Is the system stable for all values of Io?
(d) The system is under damped. Find the response x(t) to a step of signal current

i(t) = =Iul(t).
(e) Find the steady-state response x(t) to a signal current i(t) = Isin ot.

5.14. A plane rectangular coil of wire can be rotated about its axis as shown in Fig. 5P.14.
This coil is excited electrically through sliding contacts and the switch S by the constant-
current source I in parallel with the conductance G. A second coil, not shown, produces a

A"•Uniform magnetic
field

Fig. 5P.14

uniform magnetic field perpendicular to the plane of the rectangular coil when 0 = 0.
Assume that the terminals of the second coil are described by the variables i2, )2, so that
we can write the electrical terminal relations as A, = Li i + i2M cos 0, •2 = i 1M cos 0 +
Li2, where L1, M, and L2 (the self- and maximum mutual inductances of the coils) are
constants. Concentrate attention on the electrical variables of the rotating coil by assuming
that i2 = I2 = constant. This is the excitation that provides the uniform constant magnetic
field. In addition, assume that the mechanical position is constrained by the source
O = Ot.

(a) Write the electrical equation for the coil. This equation, together with initial
conditions, should determine i:(t).

I
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(b) Assume that the switch S is closed at t = 0; that is, the initial conditions are,
when t = 0, 0 = 0 and i1 = 0. Find the current il(t).

(c) Find the flux A1(t) that links the rotating coil.
(d) Consider the limiting case of (b) and (c) in which the current i1 can be considered

as constrained by the current source.

LIlfGL1 << 1 and IGL 1 <<
MI,

Sketch il(t) and IA(t).
(e) Consider the limiting case in which the electrical terminals can be considered to be

constrained to constant flux fGL1 > 1 and sketch il(t) and A1(t).
(f) Compute the instantaneous torque of electrical origin on the rotating coil.
(g) Find the average power required to rotate the coil. Sketch this power as a function

of the normalized conductance QGL 1. For what value of OGL, does G absorb
the maximum power?

5.15. In the system illustrated in Fig. 5P.15 the lower capacitor plate is fixed and the upper
plate is constrained to move only in the x-direction. The spring force is zero when x = 1,
and the damping with coefficient B is so large that we can neglect the mass of the movable

V0

Fig. 5P.15

plate. The capacitor plates are excited by a constant voltage source in series with a resistance
R. Neglect fringing fields. The voltage Vo is adjusted so that a stable, static equilibrium
occurs at Xo = 0.71. With the system at rest at this equilibrium position, a small step of
mechanical forcef is applied:f = Fu_1 (t). In all of your analyses assume that the pertur-
bations from equilibrium are small enough to allow use of linear incremental differential
equations.

(a) Calculate the resulting transient in position x.
(b) Specify the condition that must be satisfied by the parameters in order that the

mechanical transient may occur essentially at constant voltage. Sketch and label
the transient under this condition.

(c) Specify the condition that must be satisfied by the parameters in order that the
initial part of the mechanical transient may occur essentially at constant charge.
Sketch and label the transient under this condition.

5.16. A mass M has the position x(t). It is subjected to forces fl and f2 which have the
dependence on x shown in Fig. 5P.16. The mass is released at x = 0 with the velocity vo.
In terms of Fo and K, what is the largest value of vo that will lead to bounded displacements
of M?
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5.17. The electric field transducer shown in Fig. 5P.17 has two electrical terminal pairs and
a single mechanical terminal pair. Both plates and movable elements can be regarded as
perfectly conducting.

(a) Find the electrical terminal relations qz = qx(vl, v2, x), q2 = q2 (v1, V2 , X).
(b) Now the terminals are constrained so that v, = Vo = constant and q, = 0. Find

the energy function U(x) such that the force of electrical origin acting in the
x-direction on the movable element is

axfe T

tq2

Fig. 5P.17

I
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5.18. The central plate of a three-plate capacitor system (Fig. 5P.18) has one mechanical
degree of freedom, x. The springs are relaxed in the equilibrium position x = 0 and fringing
can be neglected. For a long time the system is maintained with the central plate fixed at
x = 0 and the switch closed. At t = 0 the switch is opened and the center plate is released
simultaneously.

(a) Find, in terms of given parameters, a hybrid energy function W" such that
fO = -8W'Bax for t > 0.

vith constant K/4

tharea A

her dimensions

pened and central
eased at

Fig. 5P.18

(b) Determine the criterion that the central plate be in stable equilibrium at x = 0.
(c) In the case in which the criterion of part (b) is satisfied, sketch a potential well

diagram for -a gxa a, indicating all static equilibrium points, and whether
they are stable or unstable.

5.19. An electromechanical system with one electrical and one mechanical terminal pair
is shown in Fig. 5P.19. The electrical terminal relation is

Loi
(1 - ala)4 '

where L o and a are given constants. The system is driven by a voltage Vo + v(t), where Vo
is constant. The mass of the plunger can be ignored. Gravity acts on M as shown.

(a) Write the complete equations of motion for the system. There should be two
equations in the unknowns i and a.
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V
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Fig. 5P.19

(b) With v(t) = 0, the current produced by Vo holds the mass M in static equilibrium
at x = x0 . Write the linearized equations of motion for the perturbations from
this equilibrium that result because of v(t).

5.20. The upper of the three plane-parallel electrodes shown in the Fig. 5P.20 is free to move
in the x-direction. Ignore fringing fields, and find the following:

(a) The electrical terminal relations ql(vl, v2, x) and q2(v1, v2, x).

-- , to

Fig. 5P.20

(b) Now the top plate is insulated from the lower plates after a charge q2 = Q has
been established. Also, the potential difference between the lower plates is
constrained by the voltage source v1 = Vo,. Find a hybrid energy function

W"(V,Vo ,, ) such that

= aW"(Vo, Q, )Q,

5.21. In Problem 3.8 the equation of motion was found for a superconducting coil rotating
in the field of a fixed coil excited by a current source. This problem is a continuation of
that development in which we consider the dynamics of the coil in a special case. The
current I is constrained to be I o = constant.

i---F
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(a) Write the equation of motion in the form

d'0 av
J+ -0.

dt" 80

(see Section 5.2.1) and sketch the potential well.
(b) Indicate on the potential-well sketch the angular positions at which the rotor

can be in stable static equilibrium and in unstable static equilibrium.
(c) With the rotor initially at rest at 0 = 0, how much kinetic energy must be imparted

to the rotor to make it rotate continuously?

5.22. The system of Fig. 5P.22 contains a simple pendulum with mass M and length 1.
The pivot has viscous (linear) friction of coefficient B. The mass is made of ferromagnetic
material. It causes a variation of coil inductance with angle 0 that can be represented

ation of
ityg

viscous friction
coefficient B

Fig. 5P.22

approximately by the expression L = Lo(1 + 0.2 cos 0 + 0.05 cos 20), where Lo is a
positive constant. The coil is excited by a constant-current source I at a value such that
ILo = 6Mgl with no externally applied forces other than gravity g.

(a) Write the mechanical equation of motion for the system.
(b) Find all of the possible static equilibria and show whether or not each one is

stable.

5.23. The one-turn inductor shown in Fig. 5P.23 is made from plane parallel plates with a
spacing w and depth (into the paper) D. The plates are short-circuited by a sliding plate in
the position x(t). This movable plate is constrained by a spring (constant K) and has a
mass M.

(a) Find the equation of motion for the plate, assuming that the electrical terminals
are constrained to constant flux A = A = constant.

(b) Find the position(s) x = X o at which the plate can be in static equilibrium.
Determine if each point represents a stable equilibrium. Can you assign an
equivalent spring constant to the magnetic field for small-signal (linear) motions?

-- "-~-~--~U I ~"--"~
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Fig. 5P.23

(c) Use a potential-well argument to describe the nonlinear motions of the plate.
Include in your discussion how you would use the initial conditions to establish
the constant of the motion E.

(d) Briefly describe the motions of the plate constrained so that i = I = constant.

5.24. The terminals of the device shown in Problem 4.23 are now constrained to a constant
value of A: A= A o = constant. The rotor has a moment of inertia J and is free of damping.

(a) When 0 = 0, the angular velocity dO/dt = 0. Find an analytical expression for
dOldt at each value of 0. (Given the angle 0, this expression should provide the
angular velocity.)

(b) What is the minimum initial angular velocity required to make the rotor rotate
continuously in one direction?

(c) For what values of 0 can the rotor be in static equilibrium? Which of these
equilibria is stable?

(d) Describe quantitatively the angular excursion of the rotor when it is given an
initial angular velocity less than that found in (b).

5.25. A mass M, attached to a weightless string rotates in a circle of radius r on a fixed
frictionless surface as illustrated in Fig. 5P.25. The other end of the string is passed through
a frictionless hole in the surface and is attached to a movable capacitor plate of mass M2.
The other capacitor plate is fixed and the capacitor is excited by a voltage source v(t). The
necessary dimensions are defined in the figure. The length of the string is such that when
x = 0, r = 0. You may assume that a > x and ignore the effects of gravity and electrical
resistance. With v(t) = Vo = constant and r = 1, the mass M1 is given an angular velocity
wo necessary for equilibrium.

(a) Find the force of electromagnetic origin exerted on the capacitor plate.
(b) Determine the equilibrium value of w,.
(c) Show that the angular momentum Mr 2 dO/dt is constant, even if r = r(t) and

0 = 0(t). [See Problem 2.8 for writing force equations in (r, 0) coordinates.]
(d) Use the result of (c) to write the equation of motion for r(t). Write this equation

in a form such that potential well arguments can be used to deduce the dyamics.
(e) Is the equilibrium found in (b) stable?

i
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Fig. 5P.25

5.26. As an example of a lossy nonlinear system, consider the basic actuator for an
electrically damped time-delay relay* illustrated in Fig. 5P.26. The transducer is designed
to operate as follows. With switch S open, the spring holds the plunger against a mechanical
stop at a = ax. When switch S is closed, the magnetic field is excited, but the winding that
is short-circuited through resistance R2 limits the rate of buildup of flux to a low value. As
the flux builds up slowly, the magnetic force increases. When the magnetic force equals the
spring force, the plunger starts to move and close the air gap. The velocity of the plunger
is so low that inertia and friction forces can be neglected; thus, when the plunger is moving,
the spring force is at all times balanced by the magnetic force (see Section 5.2.2).

(a) Write the electrical circuit equations. The magnetic flux ( is defined such that
A1 = Nj1 and )2 = N20. Use these equations to find a single equation involving
(G, x) with V as a driving function.

(b) Define two constants: the flux Do linking the coils with the air gap closed (x = 0),

o = 2powdN1V/gR 1 , and the time constant r, for flux buildup when the air
gap is closed,

2pwd N12 N2 2

g R 2 R

Show that the result of (a) can be written in the form

The transient behavior of this device can be divided into three intervals:

I. The switch S is closed with the plunger at x = xe and with zero initial flux 0. The flux
builds up to a value necessary to provide a magnetic force equal to the spring force that is
holding the plunger against the stop at x = z0.

2. The plunger moves from the stop at x = ao to the stop at X = 0. During this motion
the spring force is the only appreciable mechanical force and is balanced by the magnetic
force.

3. The plunger is held against the stop at x = 0 by the magnetic force, whereas the flux
4 continues to build up to 0 o-

* Standard Handbook for Electrical Engineers, 9th ed., McGraw-Hill, New York, 1957,
Sections 5-150 and 5-168.

I_-------·yl·l~· _· _·
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(c) Determine the transient in D during interval (1). Write an equation of force
equilibrium for the plunger to determine the flux 0 = ODwhen interval (1) ends.

(d) Write an equation for Dduring interval (2). Assume the parameters

- = 2, - 4, - 10
X0 g (I

and integrate the equation resulting from (c) to find D(t) in interval (2).
(e) Find the transient in cDduring interval (3).
(f) Sketch Dand x as functions of time throughout the three intervals.

w -




